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Abstract: An iridium-catalysed hydrogen transfer strategy, enabling straightforward access to
tetrahydro pyridine derivatives from aryl-1,8-naphthyridines and indolines, was developed. This
method proceeds with unprecedented synthetic effectiveness including high step-economic fashion
together with the advantages of having no by-product and no need for external high-pressure H2

gas, offering an important basis for the transformation of 1,8-naphthyridines and indolines into
functionalized products.
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1. Introduction

Coupling of two components by transfer hydrogenation is an attractive but challeng-
ing task in organic chemistry, materials and medicinal science. Its significance lies in the
applications in both creation of a wide array of functional products and hydrogen energy
storage [1–6]. In general, transfer hydrogenation (TH) is a fundamental tool in organic
chemistry, to which great efforts have been made because it does not need flammable
high-pressure H2 gas, and offers more convenient and safe production processes. Pio-
neered by Benkeser [7,8] and Birch [9,10] reduction, much attention has been focused on the
transfer hydrogenation with specific reducing agents [11–14] and the hydrogenation with
high-pressure H2 gas [7,8]. Moreover, the Krische group has reported distinguished contri-
butions on the coupling between alcohols and C–C double/triple bonds [15–20]. Li and
co-workers have demonstrated significant achievements converting phenol derivatives into
amines in the presence of NaCO2H [21,22] as the hydrogen donor. Despite these valuable
contributions, the utilization of such a strategy to construct functionalized N-heterocycles
is rarely explored.

1,2,3,4-Tetrahydronaphthyridines (THNADs) constitute the core structure of numer-
ous functionalized molecules, exhibiting diversely interesting biological and therapeutic
activities [11–14,23–25]. Traditionally, procedures for these compounds required the use
of organometallic hydrides, strong acids or alcohols. However, the preparation of such
compounds has to date presented a difficult goal. We have been committed to the ongo-
ing study of N-heterocyclic generation through transfer hydrogenation coupling strate-
gies [26–35], and we have reported C(sp3)-H bond alkylation using tetrahydro-n-heterarene
as a coupling partner and hydrogen donor. Initially, our motivation was to test the trans-
fer hydrogenation coupling of indoline with 2-phenyl-1,8-naphthidine. However, after
repeated attempts at this reaction, we did not achieve the expected product reported in
this paper, and a dehydrogen-coupled compound was detected as the only product at a
yield of 12%. Considering that the preparation of indoline feedstock involves the prefab-
rication step of catalytic hydrogenation of indole derivatives, we then tested the direct
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coupling of indole with 2-phenyl-1,8-naphthidine under the same conditions. Interest-
ingly, by releasing hydrogen, it produced an even higher yield of 18%. To our knowledge,
although a range of approaches have been well explored for functionalization of differ-
ent sites of the indole and pyrrole skeletons, direct arylation of indole without directing
group assistance, prefunctionalization, or consumption of external oxidants remains an
unaddressed goal [36–44]. After further investigation of these new findings, we reported
a new method for directly obtaining nitrogen-containing biological heterocyclic aromatic
hydrocarbons by iridium-catalyzed cross-coupling of the β-site of indole/pyrrole with
the α-site of N-heterocyclic aromatic hydrocarbons (Scheme 1(1)) [34], we went back and
continued to be motivated to test the transfer hydrogenative by using indoline (b) as both
the coupling partner and the hydrogen donor, coupling with 2-phenyl-1,8-naphthyridine
(1g) in the presence of iridium NaOTf and tert-amyl alcohol (1.0 mL) at 110 ◦C for 16 h
under N2 protection. To our delight, the reaction produced the expected product 1gb
in 5% yield and a tetrahydro-1,8-naphthyridine 1g’ was detected (Scheme 1(2)). Upon a
thorough investigation of this observation, we herein report an iridium-catalyzed transfer
hydrogenative coupling reaction of indolines and 1,8-naphthyridines, offering a practica-
ble approach for the construction of an α-functionalized tetrahydro-1,8-naphthyridines
structurally unique product.
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2. Results and Discussion

Our initial studies focused on developing a more efficient catalytic system for the
coupling of 2-(4-(trifluoromethyl)phenyl)-1,8-naphthyridine 1a with 2-methylindoline 2a
as a model system. First, the reaction was performed at 130 ◦C for 16 h by using [Cp*IrCl2]2
(1 mol %) as a catalyst and NaOTf (50 mol %) as an additive, which afforded the product
3aa in 35% yield (entry 1). Then, a series of acids and bases were evaluated (50 mol %,
entries 2–7); unfortunately, they were totally ineffective or less effective. Gratifyingly, no
use of additive led to an improved yield (entry 9, 68%), and the absence of catalyst failed
to yield any product (entry 10), indicating that the iridium catalyst plays a crucial role in
affording the product. Further, serval ligands (entries 12–13) did not show any activity
under the studied reaction conditions. Moreover, other palladium and iridium catalysts
employed for the reaction showed less reactivity for the transformation. Finally, change
of reaction temperatures (entry 10) or solvents (entries 14–15) were not fruitful since no
increase of product yield was obtained. Thus, the optimal conditions are as indicated in
entry 9 of Table 1.
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Table 1. Screening of the Optimal Conditions a.
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2 [Cp*IrCl2]2 (1) benzoic acid (50) 27
3 [Cp*IrCl2]2 (1) CF3COOH (50) 29
4 [Cp*IrCl2]2 (1) HOTf (50) 25
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7 [Cp*IrCl2]2 (1) NaOH (50) -
8 [Cp*IrCl2]2 (1) - 59
9 [Cp*IrCl2]2 (1) 68 c

10 [Cp*IrCl2]2 (1) - (39, 47) d

11 - - -
12 [Cp*IrCl2]2 (1) DPPB -
13 [Cp*IrCl2]2 (1) 1,10-Phenanthroline -
14 [Cp*IrCl2]2 (1) - (51, 55) e

15 [Cp*IrCl2]2 (1) - (47, trace) f

16 [IrClCOD]2 (1) - trace
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a Reaction conditions: unless otherwise stated, the reaction in t-amyl alcohol (1.0 mL) was performed with 1a
(0.2 mmol), 2a (0.2 mmol), catalyst (1 mol %), additive (50 mol %) at 130 ◦C for 16 h under N2 protection. b Isolated
yield. c 2-methylindoline 2a (0.3 mmol). d Temperature at 100 ◦C and 150 ◦C. e Yields are with respect to p-xylene
and 4-chlorobenzene as the solvents, respectively. f Yields are with respect to 1,4-dioxane and DMF as the solvents,
respectively. Cp* = C5Me5. DPPB = butane-1,4-diylbis[diphenylphosphine].

With the optimal conditions in hand, we next examined the generality and the
limitation of the synthetic protocol. First, a series of 1,8-nphthyridines [1a-1l] and N-
heteroaromatics (1m-1p) with 2-methylindoline 2a, for their structures (see Supporting
Information (SI) Table S1) were tested. As shown in Scheme 2, all the reactions proceeded
smoothly and furnished the desired products in moderate to good isolated yields. The
results indicated that the substituents on the aryl ring of reactant 1 significantly affected
the reactions. Specially, electron-withdrawing substitutents afforded the products (3aa-ca)
in much higher yields than those of electro-rich substitutents. This observation might be
attributed to the electron-withdrawing groups that could enhance the electrophilicity of
the in situ formed imine intermediate, thus favoring the coupling process. Gratifyingly,
2-(1-methyl-1H-pyrrol-2-yl)-1,8-naphthyridine (1m) proved to be an effective coupling
partner, yielding the products in reasonable yields (see 3ma). Moreover, Substrate 1o and
2p, nitrogen-modified 1,8-naphthyridines, effectively coupled with 1a to give compound
3oa and 3pa in 56% and 52% yield, respectively; this example demonstrates the potential of
the methodology to be applied to other heterocyclic scaffolds. It is worth mentioning that a
series of functional groups such as -CF3, OH, -Cl, -Br, -NO2, and -CN are well tolerated in
the synthetic protocol which would offer the potential for molecular complexity via further
chemical transformation.
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(1.0 mL) was performed with 1 (0.2 mmol), 2 (0.3 mmol), [Cp*IrCl2]2 (1 mol %), at 110 ◦C for 16 h
under N2 protection.

Subsequently, we focused on the variation of both coupling partners. Thus, various
combinations of 1 with indolines 2 were tested. Similar to the results described in Scheme 2,
all the reactions afforded the desired products in moderate-to-excellent isolated yields
(Scheme 3). Gratifyingly, a series of indolines underwent efficient transfer hydrogen
evolution cross-coupling reactions, and the reactions of electron-rich indolines (2b-c) with
electron-poor 1,8-nphthyridines (1a,1h) could give satisfactory yields, presumably because
the electron-donating group could enhance the nucleophilicity of the indole skeleton, which
is also beneficial for the coupling step.
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Scheme 3. Variation of indolines.

To gain insights into the possible mechanism, several verification experiments were
performed. The model reaction was subsequently interrupted after 3 h to analyse the
intermediates. By means of GC analyses, product 3ga, tetra- and di-hydronaphthyridine
were detected in 5%, 5% and 2% yields, respectively (Scheme 4). Then, the reaction
1g’, 2a’ and 2-methyl-1,2,3,4-tetrahydroquinoline as the hydrogen donor under standard
conditions produced product 3aa in 21% yield. Further it was found that 2a’ failed to
directly couple with the di-hydronaphthyridine 1g’ to give product 3ga, indicating that
tetrahydronaphthyridine 1g’ is not the reaction intermediate; finally, treating 3ga’ with
equimolar amount of 2a or e was not able to afford 3ga (Scheme 4), showing that c-1g may
be the key intermediate and 3ga’ as the intermediate of the reaction is less likely.
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Scheme 4. Control Experiments.

Although the mechanism of this reaction has not been fully elucidated, on the basis
of the above-observed findings, a hydrogen transfer is proposed in Scheme 5. Based on
metal-catalyzed transfer hydrogen mechanism reported in the literature [45,46] and the
above control experiments, a plausible reaction pathway is proposed in Scheme 5. First,
IrCp*Cl2 and NaOTf proceed in a ligand exchange process to generate complex A which
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thereupon reacts with 2-methylindoline 2a to give B followed by β-H elimination to form 2-
methyl-1H-indole 2a’ and metal hydride C. Next, 2-phenyl-1,8-naphthyridine 1g undergoes
coordination with C and then experiences hydrometallation to afford intermediate E.
Subsequently, with the alcoholysis of E, transfer hydrogenation intermediate c-1g or its
tautomerism c-1g’ is produced, and A is regenerated to accomplish the catalytic cycle.
Finally, the formed c-1g and 2-methyl-1H-indole 2a’ undergoes the classic nucleophilic
addition to provide the desired tetrahydro α-functionalized product 3ga.
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3. Experimental
3.1. General Information

All the obtained products were characterized by melting points (m.p.), 1H-NMR, 13C-
NMR and infrared spectra (IR). Melting points were measured on an Electrothemal W-X4
microscopy digital melting point apparatus and are uncorrected; IR spectra were recorded
on a FTLA2000 spectrometer; 1H-NMR and 13C-NMR spectra were obtained on Bruker-400
and referenced to CHCl3 (7.26 ppm for 1H, and 77.2 ppm for 13C) or DMSO-d6 (2.50 ppm
for 1H, and 39.5 ppm for 13C). Chemical shifts were reported in parts per million (ppm, δ)
downfield from tetramethylsilane. Proton coupling patterns are described as singlet (s),
doublet (d), triplet (t), multiplet (m); TLC was performed using commercially prepared
100–400 mesh silica gel plates (GF254), and visualization was effected at 254 nm; Unless
otherwise stated, all the reagents were purchased from commercial sources (J&KChemic,
TCI, Fluka, Acros, SCRC, Shanghai, China), used without further purification.

3.2. Substrates Preparation

The preparation of 1,8-naphthyridines 2. 2-aminonicotinaldehyde 4 (5 mmol), ketones
5 (5 mmol), t-BuOK (20 mol %) and ethanol (10 mL) were introduced in a flask (50 mL). Then,
it was stirred at 50 ◦C under atmosphere for 2 h. After cooling down to room temperature,
the resulting mixture was filtered and washed with ethyl acetate, and then concentrated
by removing the solvent under vacuum. Finally the residue was purified by preparative
TLC on silica, eluting with petroleum ether (60–90 ◦C): ethyl acetate (10:1, v/v) to give
1,8-naphthyridines, all the substrates used in our reaction are listed in Table S1. All the
reagents were purchased from Bide Pharmatech Ltd. and Energy Chemical, all the solvents
were purchased from Greagent (Shanghai Titansci incorporated company, Shanghai, China)
and used without further purification. All the reactions were heated by metal sand bath
(WATTCAS, LAB-500, https://www.wattcas.com (accessed on 17 May 2017)).

https://www.wattcas.com
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3.3. Typical Procedure for the Synthesis of Ester 3aa

The mixture of 2-phenyl-1,8-naphthyridine 1a (0.2 mmol), 2-methylindoline 2a
(0.3 mmol), [Cp*IrCl2]2 and t-amyl alcohol (1.0 mL) were added to the Schlenk tube (50 mL)
successively under nitrogen protection; then, the reaction tube was closed and placed in
an oil bath at a temperature of 110 ◦C, where the reaction took place for 16 h. After that,
the Schlenk tube was then removed from the oil bath and placed in the air to cool. After
cooling down to room temperature, the reaction mixture was concentrated by removing
the solvent under vacuum. Finally, the residue was purified by preparative TLC on silica,
eluting with ethyl acetate: petroleum ether (60–90 ◦C) = 1:5, to give the desired product 3aa.

4. Conclusions

In summary, by employing hydrogen transfer strategy and indoline as both hydrogen
donor and the reactant, we have developed a novel straightforward synthesis of functional-
ized N-heterocycles. This method proceeds with unprecedented synthetic effects including
high step-economic fashion together with the advantages of being without any by-product
and having no need for external high pressure H2, offering a practicable approach for
the construction of an α-functionalized tetrahydro-1,8-naphthyridines structurally unique
product. Further investigation applying the hydrogen transfer coupling strategy in other
hetero cyclic systems as well as the asymmetric synthesis is ongoing in our laboratory and
will be reported in due course.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28237886/s1, Table S1: Synthesis of substrates 1,8-
naphthyridines; Scheme S1: Substrates employed. Refs. [47–53] are cited in Supplementary Materials.
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