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Abstract: In recent years, the widespread application of artificial intelligence algorithms in protein
structure, function prediction, and de novo protein design has significantly accelerated the process of
intelligent protein design and led to many noteworthy achievements. This advancement in protein
intelligent design holds great potential to accelerate the development of new drugs, enhance the
efficiency of biocatalysts, and even create entirely new biomaterials. Protein characterization is
the key to the performance of intelligent protein design. However, there is no consensus on the
most suitable characterization method for intelligent protein design tasks. This review describes
the methods, characteristics, and representative applications of traditional descriptors, sequence-
based and structure-based protein characterization. It discusses their advantages, disadvantages,
and scope of application. It is hoped that this could help researchers to better understand the
limitations and application scenarios of these methods, and provide valuable references for choosing
appropriate protein characterization techniques for related research in the field, so as to better carry
out protein research.

Keywords: intelligent protein design; protein characterization techniques; sequence characterization;
structural characterization

1. Intelligent Design for Protein Molecules

Protein molecular design refers to the comprehensive use of multidisciplinary tech-
niques to obtain novel proteins with better target performance than natural proteins based
on the structure–function relationship of proteins. This process mainly involves establish-
ing a structural model of the target protein, studying the structure–function relationship,
proposing a reasonable design and renovation plan, and further modifying the design
through experimental verification, which often requires multiple iterations to achieve the
desired purpose (Figure 1) [1]. The main types of protein structural designs include: (1) Mi-
nor, (2) Moderate, (3) Major modifications, which can be described, in order, as follows:
(1) Artificially modifying amino acid (AA) residues of natural proteins with known struc-
tures to investigate and improve their function and properties, (2) Splicing and assembling
protein structural domains from different sources to obtain protein molecules with new
functions through the transfer of the corresponding functions, (3) Designing entirely new
proteins with specific spatial structures and functional properties from scratch [1,2].

Early work in protein design focused on redesigning helical bundles [3], using strate-
gies designed to generate specific hydrophobic/hydrophilic patterns to control the protein
folding process without predicting specific side chain orientations [4–6]. In 1997, protein
structure design methods were gradually extended to irregular geometries to increase
the diversity and variability of backbone structures in protein design [7]. For example,
RosettaDesign, a universal computing protocol, was used to predict the low-freedom en-
ergy sequences of nine natural protein backbones. Comparing the NMR structure of the
predicted sequence with that of the natural protein, showed that RosettaDesign could
reliably identify the amino acid sequence of the protein backbone [8]. In 2003, the Baker Lab
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continuously iterated between sequence design and structure prediction to break the exist-
ing topologies of protein redesign, obtain novel protein folding structures, and produce the
Top7 α/β topology [9]. However, the early exploratory efforts targeting computational pro-
tein design suffered from a small range of structural modifications, low success rates, and
ineffective results. They relied on cyclic iterative experimental screening, which resulted in
significant consumption of human, material, and time resources.

Figure 1. The flowchart for protein design.

In recent years, the updated optimization of artificial intelligence algorithms, increas-
ing arithmetic power of computer hardware, and massive expansion of experimental
protein structure data have created favorable infrastructure for intelligent protein design,
resulting in many remarkable results (Figure 2). In 2019, Ingraham et al. [10] introduced a
protein generation model based on a graphical representation of the three-dimensional (3D)
structure of proteins, which improves both computational speed and reliability compared
to traditional neural-network-based approaches due to its ability to exploit the spatial local-
ization of dependencies in the molecular structure. In 2020, Strokach et al. [11] developed
a deep graph neural network called ProteinSolver that was trained to precisely design
sequences that were folded into a predetermined shape. Deep graph neural networks
can rapidly design specific novel protein sequences, which are difficult to achieve using
traditional computational design methods. In 2021, Anishchenko et al. [12] from the Baker
Lab developed a deep neural network hallucination method, using trRosetta, which is
trained in protein structure prediction and has the capability to capture protein sequences
and structural information as a background network. This method generates new protein
sequences with specific functions by “inducing” random sequences from the input. This
facilitates an exploration of all possible protein structure spaces that is credited to the
ability of deep learning to process large datasets. The following year, Wang et al. [13] from
the same group developed a deep learning method based on hallucination and inpaint-
ing to enable the construction of protein binding and catalytic functional sites without
pre-specifying backbone folding or secondary structure.



Molecules 2023, 28, 7865 3 of 21

Figure 2. The summary of the classic examples of de novo protein design [14–41]. The left and right
of the figure show model-based and data-driven examples, respectively.

The core of intelligent protein design involves establishing a relationship between
structure and function. Therefore, the prediction of protein structure and function by
artificial intelligence algorithms is also a key aspect of protein design, apart from in the
above-mentioned intelligent protein design methods that directly modify protein structure
to target the desired performance. AlphaFold2 [42], which has made great progress on the
“protein structure prediction” problem that has plagued the academic community for five
decades, has predicted structures covering 98.5% of the human proteome [43]; similarly,
these data will provide a transformative impact on the intelligent design of proteins with
specified functions. In February 2022, Bileschi et al. [44] used a dataset constructed from the
Protein Families Database (Pfam) to train a neural network (called ProtCNN) to functionally
classify protein sequences to achieve a 200-fold increase in speed, and a 9-fold reduction
in error, compared to the traditional BLASTp method. This advancement in functional
prediction provides a powerful tool for accelerating the intelligent design of proteins.
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It is evident that the latest advances in artificial intelligence algorithms (especially
deep learning technology) can boost the overall intelligent protein design process by as-
sisting protein structure modification and structure and function prediction [10–13,42,43].
Structural characterization of protein molecules is a crucial part of the intelligent protein
design process. The ability to represent protein structures in a comprehensive, accurate,
and efficient manner in a machine-recognizable language or vector is essential for the
success of downstream intelligent protein design tasks using intelligent algorithms. This
review systematically described various protein characterization techniques and repre-
sentative applications used in intelligent protein design and discussed their advantages,
disadvantages, and application areas. We hope to provide a valuable reference for scholars
to conduct relevant research in this field.

2. Examples of Applications for Intelligent Protein Design

Artificial intelligence has been used in many applications in the field of protein en-
gineering; including protein structure, function, thermal stability [45–47], and stereos-
electivity prediction [48,49]; owing to its high accuracy, fast computational speed, and
independence from protein structure and function information compared with earlier pro-
tein design methods. Various deep learning algorithms and natural language processing
(NLP) techniques based on deep learning were successfully used in numerous applications,
apart from classical machine learning algorithms (support vector machines, decision trees,
Gaussian regression, and so on) [50–54]. The following section focuses on three recent
successful cases in protein structure prediction, function prediction, and de novo protein
design to systematically analyze the advantages of artificial intelligence algorithms applied
in protein engineering.

2.1. Protein Structure Prediction

Protein structure prediction is a critical step in the intelligent design of proteins and is
a fundamental scientific problem in the field of protein computation. This problem can be
traced back to the famous statement made by Christian B. Anfinsen (the Nobel laureate in
chemistry in 1972), that the AA sequence of a polypeptide chain contains all the information
about its 3D structure [55]. Currently, experimental techniques for obtaining 3D protein
structures include X-ray crystallography [56], nuclear magnetic resonance (NMR) [57], and
cryo-electron microscopy (cryo-EM) [58]. There are only about 205,000 experimentally
resolved protein structures in the Protein Data Bank (PDB) as of June 2023 [59], while the
UniProt database contains over 250 million sequences [60]. This means that the number
of proteins with known sequences is more than 1200 times greater than the number of
experimentally resolved protein structures. In contrast, the number of known protein
sequences was only 160 times that of the experimentally resolved protein structures in
2011 [61]. It is evident that the number of protein structures solved is far lower than the
total number of protein sequences.

To address this problem, the academic community has been organizing the critical
assessment of protein structure prediction (CASP) competitions since 1994, which has
greatly promoted the development of computational methods for protein structure pre-
diction. For example, I-TASSER [62] represents a homology modeling approach that
uses threading to predict structures and has won multiple championships in the CASP.
In 2020, AlphaFold2 [42], developed by DeepMind, won CASP14 by a landslide using
the transformer algorithm. In 2022, DeepMind released the AlphaFold protein struc-
ture library, AlphaFold DB [63], demonstrating the dominance of the AlphaFold tool for
protein structure prediction. In addition, RoseTTAFold [64], developed by Baker Lab,
achieved considerable prediction accuracy at CASP14, ranking only behind AlphaFold2.
Novel artificial intelligence-driven protein folding prediction tools such as AlphaFold2 and
RoseTTAFold provide powerful drivers for rapid and accurate protein structure prediction
and subsequent protein design modifications [65–73]. Many studies were conducted using
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them to further improve the accuracy and speed of protein structure predictions. Table 1
summarizes the methods, models, and functions of relevant studies.

Table 1. Several tools for protein structure prediction derived from AlphaFold2 and RoseTTAFold.

Methods Models Inputs Multimeric
Structure Advantages URLs References

ColabFold JAX MSA-based Yes 40–60 × faster prediction than
AlphaFold2, and user friendly

https://github.com/sokrypton/
ColabFold, accessed on

24 November 2023
[65]

OpenFold PyTorch MSA-based Yes PyTorch replication of
AlphaFold, high flexibility

https://github.com/aqlaboratory/
openfold, accessed on

24 November 2023
N/A

Uni-Fold PyTorch MSA-based Yes
Friendly operating

environment, and wide
hardware adaptation

https://github.com/dptech-corp/
Uni-Fold, accessed on

24 November 2023
[66]

FastFold PyTorch MSA-based No Reduced training time from
11 days to 67 h

https:
//github.com/hpcaitech/FastFold,

accessed on 24 November 2023
[67]

HelixFold PaddleHelix MSA-based No
Improved training and

prediction speed, and reduced
memory consumption

https:
//github.com/PaddlePaddle/
PaddleHelix/tree/dev/apps/

protein_folding/helixfold, accessed
on 24 November 2023

[68]

MindSpore-
Fold MindSpore MSA-based Yes

Based on MindSpore
framework, high performance,

and fast prediction speed

https://github.com/mindspore-
ai/mindspore, accessed on

24 November 2023
N/A

MEGA-
Fold MindSpore MSA-based No

More accurate and efficient
protein structure prediction

than AlphaFold2

https://gitee.com/mindspore/
mindscience/tree/master/

MindSPONGE/applications/
MEGAProtein, accessed on

24 November 2023

[69]

EMBER3D PyTorch pLM-based No

Ability to visualize the effect
of mutations on predicted

structures and high predictive
efficiency

https://github.com/kWeissenow/
EMBER3D, accessed on

24 November 2023
N/A

ESM-Fold PyTorch pLM-based No

Reduced dependence on MSA
input, inference speed is an

order of magnitude faster than
AlphaFold2

N/A [51]

HelixFold-
Single PaddleHelix pLM-based No

Breaking the speed bottleneck
of relying on MSA retrieval

models, and prediction
accuracy is comparable to
AlphaFold2 and nearly a

thousand times faster

https:
//github.com/PaddlePaddle/
PaddleHelix/tree/dev/apps/

protein_folding/helixfold-single,
accessed on 24 November 2023

[70]

OmegaFold PyTorch pLM-based No

Protein
homology-independent, easy

to install, and overall
predictive power comparable

to AlphaFold2 and
RoseTTAFold

https://github.com/
HeliXonProtein/OmegaFold,

accessed on 24 November 2023
[71]

IgFold PyTorch pLM-based No

Focus on antibody structure
prediction, high prediction

accuracy, and prediction time
less than 1 min

https:
//github.com/Graylab/IgFold,
accessed on 24 November 2023

[72]

D-I-
TASSER PyTorch MSA-based Higher prediction accuracy

with online server

https:
//zhanggroup.org/D-I-TASSER/,

accessed on 24 November 2023
[73]

The advent of AlphaFold2 and RoseTTAFold has increased the accuracy of protein
structure prediction to a new level. However, these methods are not effective at predicting
the structure of orphan proteins because of the lack of homologous proteins. In October
2022, Chowdhury et al. [54] proposed an end-to-end recurrent geometric network com-
putational model named RGN2 that predicts the structure of orphan proteins with better
accuracy than AlphaFold2 and RoseTTAFold. It uses the protein language AminoBERT
to parse the potential structural information of orphan proteins, and its computational
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efficiency is 106 times faster than that of AlphaFold2. In November of the same year,
Wang et al. [52] proposed a single-sequence protein structure prediction algorithm called
trRosettaX-Single. The algorithm integrates sequence embeddings from the Transformer
protein language model into a knowledge-distillation-enhanced multiscale network to pre-
dict two-dimensional geometric structures between residues. Then, the three-dimensional
structure is reconstructed using an energy minimization approach, which improves the
accuracy and efficiency of orphan protein structure prediction.

In addition to protein monomer structure prediction, multimer structure prediction
has also been studied recently. In October 2021, the DeepMind team developed AlphaFold-
Multimer [74], with innovative multi-chain feature extraction and symmetric replacement
modules based on AlphaFold2. It achieved prediction accuracies of 67% and 69% at the
contact interface of heterologous and homologous multimers, respectively. In September
2022, Tang et al. [75] proposed the first MSA pairing algorithm, ColAttn, which combines
the outputs of protein language models into a joint MSA form to identify paired homologs
from single chains using the attention score in the MSA Transformer, making it demonstrate
the best structure prediction accuracy on heterodimers. Meanwhile, Uni-Fold v.2.0.0 [66],
released by DP Technology, also added a protein multimer structure prediction function.
The tool is modeled on the model AlphaFold-Multimer architecture and modifies and opti-
mizes the model details, achieving a two-fold increase in speed and accuracy. In addition,
Zhang Yang’s lab proposed the DMFold-Multimer [73], which combines DeepMSA2 for
searching homologous sequences from large-scale genomic and metagenomics databases
with AlphaFold2-Multimer’s structure model generator, leading to the champion of the
protein complex structure prediction project in the CASP15. However, these studies were
mainly constrained by the limited number of multimer structures used for training and
the lack of accurate characterization of multimer clustering relationships. This provides
limited prediction accuracy and few structure predictions of protein–ligand complexes.
In conclusion, the structure prediction of protein monomers with homologs was basically
solved with the advent of AlphaFold2 and Uni-Fold v.2.0.0. The accuracy of the structural
predictions for orphan proteins and multimers requires improvement. Moreover, structural
prediction research on protein–ligand complexes is sparse, and mainly relies on docking
and dynamic simulations to predict protein–ligand binding patterns. The direct predic-
tion of protein–ligand complex structures by artificial intelligence-based methods would
receive significant attention from scholars with the increase in experimentally resolved
protein–ligand complex structures, the development of protein complex characterization
methods, and the further improvement of computer performance.

2.2. Protein Function Prediction

The primary sequence of a protein determines its high-level structure that determines
its function according to the golden rule of sequence–structure–function correspondence.
Thus, the protein sequence ultimately determines protein function. A deep understanding
of the relationship between protein sequence and function enables the rapid localization
of novel protein functions that facilitates de novo protein design by direct sequence mod-
ification. The advent of low-cost and efficient sequencing technologies has driven rapid
growth in the number of protein sequences [76,77]. The UniProtKB database contains
over 200 million sequences, with only approximately 0.25% manually annotated by March
2022 [78]. Determining the relationships between sequences and functions has become a
critical issue in protein design with the growing number of protein sequences.

In 2020, Hippe et al. [79] proposed the ProLanGO2 method that follows the design prin-
ciples of natural language translation and uses sequence-based recurrent neural networks
for protein function prediction. Its prediction performance is comparable to that of other
sequence-based methods, and even the network-based method NetGO2.0. ProLanGO2 has
proven its potential for protein function prediction by converting protein function predic-
tion into natural language translation. In 2021, Gligorijević et al. [80] proposed a graphical
convolutional network model, DeepFRI, which combines deep learning with more available
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sequence information to substantially improve protein function prediction. In the same
year, Yong et al. [81] proposed an automated protein function prediction method based on
graph neural networks, DeepGraphGO, which significantly outperformed many state-of-
the-art methods by fully combining protein sequences and higher-order protein network
information. In 2022, Zhang Yang’s lab established a unified and efficient multi-domain
protein structure and function prediction platform, I-TASSER-MTD, by integrating methods
developed by his lab in recent years. This includes protein sequence structural domain
delineation, deep learning spatial geometric constraint prediction, single-domain structure
modeling, multi-domain structure assembly, and structure-based function annotation to
achieve fully automated multi-domain protein structure and function prediction from
protein sequences [51].

Various types of information were used for automated prediction of protein function
in addition to sequence-based methods for intelligent prediction, such as domain-based
prediction [82–84], homologous-protein-based functional transfer [85–87], and protein-
network-dependent methods [88–90]. However, there is a lack of functional sites, homol-
ogous proteins, or biological network information for newly sequenced or less studied
proteins. Therefore, in future protein function prediction, we can focus on three key aspects.
Firstly, we need to accurately characterize the relationship between protein structure and
function to enhance the overall performance of protein function prediction. Secondly, we
can use correlations between different functions to aid in the precise localization of protein
functions for multifunctional proteins. Lastly, we can integrate protein structural features,
global and local sequence features, and genomic contextual environmental features to
achieve accurate protein function prediction.

2.3. De Novo Protein Design

The emergence of de novo protein design can be traced back to the 1980s, when
DeGrad et al. [91] made a preliminary attempt at protein design and successfully con-
structed stable four-stranded helix bundles using rule-based heuristics. In the late 1990s,
Dahiyat et al. [7] pioneered the design of AA sequences using an automated optimization
approach with the development of molecular mechanics energy functions, AA side-chain
conformational libraries, and optimization algorithms.

The automatic design method based on energy functions is not limited by the type
of main chain structure compared with the purely heuristic design method. Furthermore,
the specific spatial accumulation between residues and the quantitative calculation of
hydrogen bond interactions improves the success rate of the design. In the 21st century,
Baker first designed protein folding that does not exist in nature, leading to the de novo
design of protein backbones. In 2008, Baker proposed an inside-out protein design strategy
to artificially create several non-natural enzymes (such as Diels–Alder synthase [92], Kemp
eliminase [14], and Aldolase [15]) through theoretical computational design.

In recent years, algorithms emerging from the de novo design of proteins were gradu-
ally applied to the structural-functional remodeling of natural proteins. In 2015, the David
Lab group re-engineered formaldehyde polymerase (FLS) to catalyze the polymerization of
formaldehyde using a specific natural benzaldehyde lyase (BAL) unearthed from a database
and employing Foldit and RosettaDesign tools [93]. Further modification of the FLS design
increased its activity 4.7-fold in 2021. This makes it a key enzyme in the in vitro pathway
converting inorganic carbon to organic carbon in the synthesis of starch from CO2 [94].
Most of the above studies used energy functions as indicators for protein design evaluation
or tools, such as Foldit and RosettaDesign, for de novo protein design, collectively referred
to as model-based de novo protein design. Classic de novo protein design examples are
presented in Figure 2.

Data-driven approaches to de novo protein design (including structural data and mas-
sive protein sequences) have also emerged in recent years [32–41,95] along with the wave of
big data and artificial intelligence development, the development of high-throughput data
collection methods, and the accumulation of available data. Liu and co-authors made a sig-
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nificant contribution to the development of data-driven protein design methods [96]. The
authors constructed the SCUBA model for the de novo design of protein backbone struc-
tures, using neural network energy functions and the statistical energy model ABACUS.
This method is critical for designing AA sequences for a given backbone structure, and it is
the only fully experimentally validated method for the de novo design of proteins besides
RosettaDesign. However, this approach to sequence design by optimizing the energy
function has limited success rates and computational efficiency. The Baker Lab proposed a
multi-stranded and symmetry-aware model architecture, ProteinMPNN, which generates
sequences that fold more reliably and accurately into the natural protein backbone than the
original natural sequences [40]. This tool significantly improves computational efficiency
compared to physically based methods, such as Rosetta. It is widely used in protein design,
owing to its high design success rate, low time consumption, and applicability to almost all
protein sequence designs [97,98]. In addition, Baker Lab also constructed a versatile protein
design framework based on an RF-based diffusion model, RFdiffusion, which enables de
novo binder design and the design of higher-order symmetric architectures [41].

De novo protein design using computational design has entered an unprecedented era,
wherein the structural and functional design of increasingly complex proteins would be
possible with the continuous iterative optimization of energy functions, main chain design,
and side chain optimization. A recent review by Ovchinnikov and Huang described how
structural information can replace traditional backbone design, side-chain optimization,
and energy functions [99]. Huang used structural features of AA neighbors to construct
“higher-order soft potential energy functions” [100]. Comparing traditional methods against
deep learning methods is an important issue in the anticipation of new methods.

3. Macromolecular Characterization Techniques and Their Application in Intelligent
Protein Design

Molecular characterization refers to measuring molecular properties in a certain aspect
that is either the basic physical and chemical properties of molecules, or numerical indica-
tors or vectors derived from the molecular structure using various algorithms to describe
the structural information of different layers of molecules [101]. They can be divided into
small and macromolecular characterizations depending on the size of the molecular system.
The threshold and difficulty of characterizing biomacromolecules is significantly higher
compared with the characterization techniques of small molecules, owing to their higher
molecular mass and higher structural complexity. Protein intelligence design involves
extracting and encoding the structural features of biological macromolecules, such as
DNA, proteins, and RNA, as quantitative vectors. These vectors are then used for machine
learning-based modeling tasks, including predicting protein binding regions [102–104],
functions [105–107], physical and chemical properties [108–111], and more. This review
characterized techniques for protein macromolecules as divided into four categories, accord-
ing to the degree of description for the structure information: (1) Characterization based on
traditional molecular descriptors, (2) Sequence-based characterization, (3) Structure-based
characterization, (4) Hybrid sequence–structure-based characterization. The subsequent
sections focus on these four aspects of macromolecular characterization techniques and
the corresponding application cases, as well as systematically analyzing the characteristics,
advantages, and limitations of each characterization method.

3.1. Characterization Based on Traditional Molecular Descriptors

In the early years, computer development was relatively delayed and hardware
standards were low. Traditional classical descriptors were widely used for crude charac-
terization of protein macromolecules, owing to their simplicity, ease of understanding,
and low arithmetic requirements. These traditional descriptors typically quantitatively
describe the intrinsic properties of a macromolecule based on its molecular composition
and physicochemical properties, including the frequency of AA occurrences in the pro-
tein composition [112], the isoelectric point used to determine the charge of the protein
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in different pH solutions [113,114], the hydrophilicity and hydrophobicity (which plays
a major role in maintaining protein conformation) [115–117], the absolute charge of the
protein [118], the sequence entropy to reflect the conservation and variability of the protein
AA sequence [119], the sequence length and molecular weight to reflect the protein length
and size [120], the solvent accessible surface area (SASA) [121,122] to indicate the degree of
AA exposure of a protein, and the dipole moment [123,124] (used to determine the spatial
conformation of a molecule), and so on. Characterization methods can be divided into
two categories: sequence-based and structure-based. The characteristics, categories, and
applications of each traditional descriptor representation are discussed in detail in Table 2.

Table 2. Summary of characteristics, properties, and applications of traditional descriptor characteri-
zation methods.

Encoding Description Characteristic Main Category Application

Ba
se

d
on

th
e

se
qu

en
ce

k-mer

K-mer is a subsequence of length
k that is used to minimize the

effects of arbitrary starting points,
where k is an integer, ranging

from 1 to hundreds.

Reflects the frequency of
k-conjoined AAs in the

protein sequence.

Based on AA
information [125–127]

PSSM

Logarithm of the probability of all
possible molecular types

occurring at each position in a
given biological sequence.

Powerful, but neglects the
interactions between

different residues.

Based on
evolutionary
information

[128,129]

BLOSUM Reflects the exchange probability
of AA pairs.

Research results vary with
the type of matrix.

Based on
evolutionary
information

[130]

Autocorrelation The interdependence of AAs in a
given sequence.

Reduces the feature space
and standardize the

sequence length.

Based on
physicochemical

properties
[131]

CTD
The composition, transition, and
distribution (CTD) of AAs in a

given sequence.

Reflects the distribution of
AAs with diverse structures

and physicochemical
characters in a

given sequence.

Based on
physicochemical

properties
[132–134]

CTriad

The conjoint triad (CTriad) is
generally regarded to consist of a

combination of three
adjacent AAs.

AAs were divided into 7
groups based on the side
chain volume and dipole.

Based on
physicochemical

properties
[135,136]

Z-scales
The Z-scales obtained from the
field of quantitative sequence-

activity modeling (QSAM).

The most widely used
descriptor set in

proteochemometric
modeling,

Based on
physicochemical

properties
[137]

VHSE

Vectors of hydrophobic, steric,
and electronic properties (VHSE)

are derived from principal
components analysis (PCA) of

independent families of 18
hydrophobic properties, 17 steric

properties, and 15 electronic
properties, respectively.

VHSE is of relatively
definite physicochemical

meaning, easy
interpretation, and contains
more information compared

with z scales.

Based on
physicochemical

properties
[138,139]

ProtFP

Protein Fingerprint (ProtFP)
is based on a selection of different

AA properties obtained
from the AAindex database.

The descriptor was obtained
using recursive elimination

of the most co-varying
properties after starting

with the full set of indices.

Based on
physicochemical

properties
[139,140]

FASGAI

The factor analysis scales of
generalized AA information

(FASGAI) are derived from 335
physicochemical properties of the

20 natural AAs.

Applying a factor analysis
rather than a PCA.

Based on
physicochemical

properties
[139,141]
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Table 2. Cont.

Encoding Description Characteristic Main Category Application

Ba
se

d
on

th
e

st
ru

ct
ur

e

T-scale
Derived from PCA on the
67 kinds of structural and

topological variables of 135 AAs.

The 3D properties of each
structure are not

explicitly considered.

Topology-based
representation

method
[142]

ST-scale

Structural topology scale
(ST-scale) was recruited as a novel
structural topological descriptor

derived from PCA on 827 structural
variables of 167 AAs.

The molecular structure was
optimized, and 3D
information of AAs

was used.

Topology-based
representation

method
[143,144]

MSWHIM

The MSWHIM descriptor set is
derived from 36 electrostatic
potential properties obtained

from the 3D molecule structure.

The number of indicators is
simple, easy to calculate,

and invariant to the
coordinate system.

Geometric-based
representation

method
[145]

Early traditional descriptors in intelligent protein design were mostly used in studies of
protein–macromolecule interactions, protein–small molecule interactions, and protein func-
tional site predictions [125,126,146–149]. Liu et al. [128] proposed a model called aPRBind
to predict the binding residues of RNA in proteins by convolutional neural networks,
that integrates the sequence features based on the spatial neighbor-based position-specific
score matrix (SNB-PSSM) and structural features (including residue-kinetic properties and
residue-nucleotide propensities), based on the I-TASSER model, to achieve superior pre-
dictive performance compared to other advanced methods. However, the best sensitivity,
specificity, accuracy, and Mathew’s correlation coefficient were 0.65, 0.82, 0.74, and 0.48,
respectively, indicating that there is still room for improvement in protein–RNA binding
site prediction. Traditional descriptors do not provide a comprehensive characterization
of the global information of an RNA/protein. Therefore, the accuracy of more complex
prediction tasks (such as functional sites) requires improvement. Consequently, these
methods are inappropriate for more complex protein design.

3.2. Sequence-Based Characterization

Protein sequence determines the three-dimensional structure. Therefore, the protein
sequence contains advanced structural information. Most protein-related studies have
employed sequence information to characterize the proteins when protein structures were
difficult to resolve and computing power was insufficient. One-hot and K-mer characteri-
zation methods were used extensively, owing to their simplicity and ease of understanding,
low computational effort, and high efficiency [150–154]. In addition, protein sequence char-
acterization methods such as word2vec [155,156], seq2vec [157], BioVec [158], doc2vec [159],
and N-gram [160,161] were proposed and applied based on the intrinsic similarities be-
tween protein sequences and natural languages.

A large variety of NLP models have emerged with a profound impact on the study of
intelligent protein design following advances in sequencing technology, the development
of deep learning algorithms, and significant improvements in computing power. In 2017,
Google released transformers based on the attention model that started a new era of
NLP [162]. This greatly improved the performance of various tasks, including clinical
diagnosis, image recognition, and protein–ligand affinity prediction [163–168]. Countless
adaptations of pre-trained language models have emerged, including the Bidirectional
Encoder Representation from Transformers (BERT) based on the transformer encoder
structure [169], the Generative Pre-trained Transformer (GPT) and the successors GPT-2
and GPT-3 [170–172], the Evolutionary Scale Modeling (ESM) family for predicting protein
structure and function (ESM-1b, ESM-MSA-1b, & ESM-1v) [173–175], the ProtTrans with
the largest training dataset [176], and the ProGen language model [177] that can control
protein generation.
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Advances in the transformer era inspired several studies to apply the concept of lan-
guage models to protein design. In February 2019, Yu et al. [161] applied n-gram modeling
to generate a probabilistic protein language model. In October 2019, Alley et al. [34] applied
a multiplicative long short-term memory network (mLSTM) to learn a language model that
predicted protein sequence stability with higher accuracy. In July 2022, Höcker et al. [37]
proposed a language model trained on protein space ProtGPT2 to generate new protein se-
quences according to natural principles. In December 2022, Rives et al. [178,179] found that
the ESM2 language model can generate new proteins beyond natural proteins and generate
complex and modular protein structures by learning and programming deep grammar.

NLP-based learning models for protein sequence representation have achieved remark-
able results in protein design [34,37,161,178,179]. However, there are deep grammatical
structural differences between modeling languages and protein representations. It is esti-
mated that a native American English speaker uses approximately 46,200 words on average
and multi-word expressions. However, only 20 different AAs are processed in proteins by
representation models in a manner similar to a linguistic lemma. Moreover, these language
models have relatively high spatial and temporal complexities. For example, the ESM-2
model with 15 billion parameters, requires significant computational time and powerful
computing equipment for training.

It is anticipated that NLP models will be further improved by simplification and
reducing their dependence on computing devices. New protein characterization meth-
ods will be developed to better represent the relationship between protein and natural
language. Alternatively, we may see the continued growth of protein sequences and the
implementation of quantum computers that will allow protein design models to achieve
human-like thinking and precisely achieve the second law proposed by Manfred Reetz:
“You get what you designed” [180].

3.3. Structure-Based Characterization

Proteins are composed of one or more peptide chains, and the connections and folding
patterns of each peptide chain constitute their special three-dimensional spatial struc-
ture [181]. The unique spatial structure determines the specific biological functions. In
theory, obtaining the structural information of proteins could lead to a better understanding
of the relationship between the structure and function of proteins, which could lead to
a better intelligent protein design. Therefore, protein intelligent design and functional
studies require structural characterization. Structural characterizations can be divided into
graph structure-based and geometric structure-based characterizations according to the
manner in which they are performed. Graph structure-based characterization methods can
be divided into topology and distance-graph-based protein characterization methods.

3.3.1. Graph Structure-Based Characterization
Topology Structure-Based Protein Characterization

Topology-based protein characterizations describe AAs based on the atomic linkage
indices generated from molecular graphs. These mainly include traditional T-scale and
ST-scale topology descriptors, and newer meta-graph and circuit topology descriptors.

In 2007, T-scale was proposed by Tian et al. [107] based on a computer program.
generating 67 generic topological descriptors based on 135 AAs. However, these descriptors
do not explicitly consider the 3D features of each structure, and they are based only on the
strength of the AA linkage table. In 2009, ST-scale proposed by Yang et al. [182] used the
3D information of 167 AAs and PCA based on 827 structural dimensions. The chemical
structure of a set of peptides and their analogs can be characterized by describing the
position of each AA using eight ST-scale values based on ST-scale.

A meta-graph is a newly proposed graph structure that differs from the traditional
network themes or sub-graphs. It captures specific topological arrangements involving
interactions and associations between proteins and keywords. Each protein can be de-
scribed by a series of meta-graphs illustrating its interactions with other proteins and
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their associations with keywords. Proteins with similar functions often exhibit similar
meta-graph representations [183].

Circuit topology is a newly proposed descriptor that theoretically assesses the rela-
tionship between contact pairs on the protein backbone and provides information about
the protein structure (such as the order of residues and residue contacts). The use of circuit
topology to predict the folding rate of proteins has improved pathogenicity prediction of
missense mutations [184].

Distance Map-Based Protein Characterization

Protein distance graphs can be obtained by calculating the distance between Cα atoms
or neighboring residues. A protein of length n can be represented as a n × n matrix, and
descriptor values can then be obtained using matrix decomposition or image processing
techniques. The contact graph is a binary graph obtained by setting a distance threshold
on the distance graph. Distance and contact graphs have the advantage of rotational or
translational invariance of the protein structure and low dimensionality, which makes
them computationally efficient. Currently, contact, and distance graphs were extensively
used in protein structure prediction methods, such as AlphaFold [185], trRosetta [186],
C-I-TASSER [187], C-QUARK [188], DeepFold [189], and so on.

3.3.2. Geometry-Based Characterization

Geometry-based protein characterization is related to indicators representing the
structural features of a protein, such as the locations of atoms in space, and the shape and
size of the protein. These include point clouds [50], three-dimensional tessellation [190],
three-dimensional convolutional neural network (3D-CNN) [191], and GVP-GNN [192].

A point cloud is a set of points representing object-space partitioning and external
attributes in the same spatial reference system. It is a group of isolated nodes with a given
position in 3D space, called a 3D point cloud [50]. Point clouds are significantly faster
than other procedures in terms of data processing. They can be directly processed by
rotation and other variable operations, thereby avoiding extension of the data. Currently,
point clouds are used in areas involving protein–ligand binding affinity prediction and
protein–ligand binding site prediction [50,193].

Three-dimensional tessellations allow graphical representation of proteins by dividing
the three-dimensional space into cells with specific properties. Each node represents a cell
and any contact between two cells is represented by each edge. A Voronoi diagram is a
typical type of tessellation that describes the structure and interactions of proteins and is
mostly applied in structural bioinformatics [190]. For example, it is used to estimate the
deviation between the predicted and native protein structures [194], and to analyze the
structure of protein–protein interactions [195]. An effective programming representation
of Voronoi graphs requires quite a complex data structure. The high cost of developing
and maintaining these data structures is a notable barrier to fully utilizing this powerful
mathematical concept in practice.

The 3DCNN divides 3D space into multiple grids, allowing direct manipulation of
atomic positions in space by vowelizing the structure and facilitating the capture of the
local microenvironment of the protein structure. Thus, the 3DCNN automatically extracts
protein structural features and has powerful structural characterization capabilities that are
compatible with the detection of structural patterns, binding pockets, and other important
structural features of specific shapes. Li et al. [191] used deep 3D convolutional neural
networks to predict the changes in the thermodynamic stability of proteins upon point
mutations. Zhao et al. [196] predicted the binding sites of metal ions on RNA by 3DCNN.

The GVP-GNN introduces Geometric Vector Perceptrons (GVPs) and extends the
standard dense layer to enable manipulation of a collection of Euclidean vectors [192]. By
introducing GVPs, GVP-GNN can incorporate protein 3D structure vectors into GNNs that
satisfy rotational translation covariance and conveniently capture spatial neighborhood
information to enhance the ability of the GNN to represent proteins. GVP-GNN can
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also accomplish covariant and invariant representation of biomolecular geometry with
lightweight parameters. It is well suited for biomolecules and biomolecular complexes and
is expected to be further developed in the field of intelligent protein design.

3.4. Hybrid Sequence–Structure-Based Characterization

Protein design often relies on three-dimensional structural data to fully capture the
functional information of proteins. It is typically richer than the information provided by
sequence data. However, current models predominantly use sequence features, owing
to the lack of proper 3D structure characterization methods. Most are computationally
expensive and cannot avoid information loss when dimensional reduction is performed.
Furthermore, deep learning models may not fully explore the hidden information in high-
dimensional data [197]. Consequently, multi-scale representation methods that incorporate
sequence and structural information have emerged for protein design. Currently, there is a
lack of direct representation methods for multimodal data; therefore, researchers mainly
separately use the sequence and structural representation methods described above, and
then merge the extracted feature vectors using downstream models. Sequence information
provides complementary information that is not fully covered by three-dimensional struc-
ture data. This can improve the accuracy of predicting protein–small molecule interactions
and protein functional sites [125,128].

4. Conclusions and Outlook

At present, intelligent protein design is in a boom period, and several intelligent
protein design models were developed, including SCUBA, ABACUS, ProteinMPNN, and
RFdiffusion. This significantly improved the success rate and computational efficiency of
protein design. However, the accurate and rapid protein design concept of ‘You get what
you designed’ is yet to be realized in practice.

Effective protein characterization is essential for intelligent protein design. Four
protein characterization methods (namely, traditional descriptor-based, sequence-based,
structure-based, and hybrid sequence-structure-based methods), were introduced. Tradi-
tional protein representation methods were applied in the early days due to their simplicity
and ease of understanding. However, they could not comprehensively represent proteins.
The similarity between natural language and protein sequences resulted in sequence-based
protein characterization methods based on NLP becoming the main method for protein
sequence characterization. Structure-based protein characterization methods, such as point
clouds based on spatial coordinates and GVP-GNNs based on geometric vectors, have
also received widespread attention with the rapid development of protein structure pre-
diction methods and artificial intelligence algorithms. However, their applications are
limited because of their high computational requirements. Researchers have attempted to
integrate sequence and structural information to represent proteins to comprehensively
consider computational power and protein characterization; however, determining the best
combination of multiple features remains still an open question.

Although the representation of proteins for intelligent model construction is largely
resolved, there is no consensus on which representation is most appropriate for charac-
terizing proteins. We believe that a large amount of protein structure resolution and the
development of intelligent algorithms will inspire new efforts to improve protein character-
ization. This would promise to accurately extract useful information from the vast amount
of data, and associate sequence structure information with functional phenotypes to enable
efficient and accurate protein design with new functions.
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