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Abstract: Selective oxidative C–O coupling of hydrazones with diacetyliminoxyl is demonstrated, in
which diacetyliminoxyl plays a dual role. It is an oxidant (hydrogen atom acceptor) and an O-partner
for the oxidative coupling. The reaction is completed within 15–30 min at room temperature, is
compatible with a broad scope of hydrazones, provides high yields in most cases, and requires no
additives, which makes it robust and practical. The proposed reaction leads to the novel structural
family of azo compounds, azo oxime ethers, which were discovered to be highly potent fungicides
against a broad spectrum of phytopathogenic fungi (Venturia inaequalis, Rhizoctonia solani, Fusarium
oxysporum, Fusarium moniliforme, Bipolaris sorokiniana, Sclerotinia sclerotiorum).

Keywords: oxime radicals; C–O coupling; fungicidal compounds; crop protection; new modes
of action

1. Introduction

The functionalization of organic compounds employing free radicals has emerged as
a powerful tool in modern organic chemistry [1,2]. In particular, N-oxyl radicals [3] have
gained much attention as key agents in oxidative functionalization due to their mild condi-
tions of generation, relatively high stability combined with high reactivity towards organic
substrates, and outstanding structural diversity, allowing for control of their properties.
However, N-oxyl radicals are usually generated in situ from corresponding N-hydroxy
compounds and thus their usage demands oxidants or catalysts and other additives. Fre-
quently, these additional reagents contain transition-metal salts, pose limitations on the
substrate scope, and do not correspond to the principles of green chemistry. The pecu-
liar feature of the present work is the use of diacetyliminoxyl [4] as a single ready-to-use
free-radical reagent which plays the role of both oxidant and coupling partner for the
oxidative functionalization reaction of hydrazones (Scheme 1C). Previously, free-radical
chemistry of hydrazones was associated mainly with addition and hydrogen substitution
reactions of aldehyde hydrazones [5–7] (Scheme 1A) and cyclizations of hydrazone-derived
N-radicals [7–9] (Scheme 1B). However, ionic mechanisms were proposed for oxidative
cyclizations of α,β-unsaturated N-tosylhydrazones in some cases [8,10]. It should also
be noted that in some functionalizations of type A (Scheme 1A), an additional synthetic
step of chelate complex formation was necessary for effective radical functionalization of
hydrazones [11–13]. Hydrazones are reported to undergo peroxidation by t-BuOOH in
the presence of cobalt–salen complexes with the formation of geminal azoperoxides and
geminal azoxyperoxides [14]. Unstable geminal azohydroperoxides [15] are formed as a
result of hydrazone autoxidation by molecular oxygen [16–19]. In general, free-radical
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functionalization of hydrazones with the formation of azocompounds is less developed
compared to methods based on electrophilic attack of hydrazone carbon atoms, such as
Michael-type reactions [20–23], chlorination [24], alkoxylation, or cyanation [25]. Geminal
azoacetates are synthesized by the oxidation of hydrazones with Pb(OAc)4 [26–28]. In the
present work (Scheme 1C), diacetyliminoxyl was used as the only necessary reagent for
high-yielding oxidative C–O coupling with the broad scope of both ketohydrazones and
aldehyde-derived hydrazones at room temperature. It should be noted that none of the
products of oxidative functionalization of hydrazones mentioned above were considered as
fungicidal compounds. Unexpectedly, synthesized C–O coupling products were discovered
as a new structural family of fungicides with activity against phytopathogenic fungi at the
level of commercially used crop-protection compounds. This finding is very important
in the light of the continuous development of strains of phytopathogenic fungi which are
resistant against known synthetic fungicide types [29–31].
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2. Results and Discussion

Hydrazone 2aa was used for the initial experiments with diacetyliminoxyl 1 (Table 1).
CH2Cl2 was used as a solvent because it is a convenient medium for the synthesis and
storage of diacetyliminoxyl 1. The reaction of 2aa with two equivalents of diacetyliminoxyl
under air afforded C–O coupling product 3aa with an 85% yield (Table 1, entry 1), along
with diacetyl oxime 1-H. The reaction completed in 15 min, as evidenced by the disap-
pearance of the dark red color characteristic of diacetyliminoxyl (for UV-Vis spectrum of 1,
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see [32]) and TLC. To check the possible involvement of oxygen as an oxidant [18] in the
discovered process, or its possible negative impact on the yield, an experiment under argon
was conducted (Table 1, entry 2). However, carrying out the reaction under inert conditions
did not lead to a significant change in the yield of 3aa. The increase in the amount of
1 above the stoichiometric ratio increased the yield of 3aa by 10% (entry 3 compared to
entry 1). Finally, the reaction with excess of hydrazone 2aa resulted in almost the same
yield as in the case of the stoichiometric amount of 2aa (entry 4).

Table 1. Screening of the reaction parameters.
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1 1 (2 mmol), 2aa (1 mmol), air 85 (84) 86 (82)
2 1 (2 mmol), 2aa (1 mmol), Argon 79 79
3 1 (3 mmol), 2aa (1 mmol), air 95 96
4 1 (2 mmol), 2aa (2 mmol), air 83 b 85 b

a Yields were determined by 1H NMR using 1,1,2,2-tetrachloroethane as an internal standard. Isolated yields
are given in parentheses. b Yields are based on 1 because 2aa was used in excess. According to the reaction
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The conditions of entry 1 of Table 1 were used to test the scope of the discovered C–O
coupling (Scheme 2). The discovered C–O coupling is compatible with a wide range of
hydrazones derived from aromatic ketones (Scheme 2A), aromatic aldehydes (Scheme 2B),
aliphatic ketones (Scheme 2C), and aliphatic aldehydes (Scheme 2D).

Good yields of C–O coupling products 3aa–3ah (74–96%) were observed for N-
arylhydrazones of methylarylketones containing electron-donating or electron-withdrawing
substituents at benzene rings. The structure of 3ag was unambiguously confirmed by XRD
analysis (see the ESI). The replacement of a methyl group by ethyl did not affect the re-
action yield significantly (product 3ai compared to 3aa, yields 84–87%). Hydrazone of
benzophenone gave an almost quantitative yield of 3aj despite steric hindrance and the
expected low energy of the formed C–O bond [33] due to the steric and electronic effects of
phenyl rings. 2-Pyridyl moiety at the nitrogen atom of ketohydrazone was also tolerated
(product 3ak). The reaction took place even in the case of bulky biphenylalkyl hydrazones
with long-chain alkyl groups and a 2,4-dinitrophenyl group at the nitrogen atom, albeit
with moderate yields of 42–46% (products 3am, 3an). The reaction of diacetyliminoxyl with
β,γ-unsaturated phenylhydrazone 2al delivered the C–O coupling product 3al at 87% with
the intact double C=C bond, despite the possible radical cyclization reactions typical of
β,γ-unsaturated phenylhydrazones [9]. Moreover, diacetyliminoxyl 1 is known to undergo
addition to C=C double bonds at room temperature [34]. Hydrazones derived from aro-
matic aldehydes also furnish C–O coupling products (3ba–3bd) in moderate to high yields.
Of note, 3bd was obtained at a 68% yield employing N-methyl-substituted hydrazone 2bd.
The reaction proceeded with high yields with acetone phenylhydrazone (product 3ca),
and somewhat lower yields were obtained with higher homologues of acetone (products
3cd, 3cd). As in the case of unsaturated hydrazone 2al, allylacetone phenylhydrazone 2cd
underwent oxidative C–O coupling with the formation of product 3cd containing intact
C=C bond. Cyclic phenylhydrazones with ring sizes of 4–6 furnished the corresponding
products 3ce–3cg at a 82–89% yield. The hydrazones of aldehydes reacted smoothly with
diacetyliminoxyl, providing azocompounds 3da–3de with a 58–74% yield.
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Scheme 2. Oxidative C–O coupling of various hydrazones 2 with diacetyliminoxyl 1.

Scheme 3 demonstrates the practical applicability of the developed protocol for the
synthesis at a 4 mmol scale without chromatographic purification or recrystallization
(Scheme 3, (1)). Due to the instability of some phenylhydrazones in their pure form, we
developed a one-pot procedure delivering the in situ generation of hydrazone that was
sequentially added to the solution of diacetyliminoxyl (Scheme 3, (2)). Employing this
protocol, the corresponding C–O coupling product 3ca was obtained at a yield of 71%.

Control experiments were conducted to support the plausible reaction mechanism
(Scheme 4). N,N-diphenyl phenylhydrazone 2ao was introduced in the reaction with
diacetyliminoxyl at standard reaction conditions (Scheme 4, (1)). There was no C–O
coupling product observed by 1H-NMR monitoring of the crude reaction mixture after
24 h, indicating that hydrogen atom abstraction from the nitrogen atom is a possible crucial
step rather than the addition of an oxime radical at the C=N double bond. The experiment
with TEMPO (Scheme 4, (2)) is a typical control reaction which is usually employed to
intercept possible C-centered radical intermediates. The introduction of two equivalents
of TEMPO into the reaction of diacetyliminoxyl 1 with hydrazone 2aa did not lead to
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significant changes; product 3aa was obtained without yield loss (Scheme 4, (2)). Moreover,
no formation of a TEMPO adduct with C-centered radical was observed (TEMPO recovery
91%), highlighting the exceptionally high efficiency of diacetyliminoxyl in scavenging
stabilized C-centered radicals [33].
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Scheme 4. Control experiments: (1) reaction of 1 with N,N-disubstituted hydrazone, (2) TEMPO
scavenging experiment.

Two possible reaction pathways can be proposed for the discovered C–O coupling of
diacetyliminoxyl with hydrazones (Scheme 5). In path I, the hydrogen atom abstraction
from hydrazone 2ca by diacetyliminoxyl 1 is followed by the coupling of the resultant
hydrazyl radical A with 1. In path II, diacetyliminoxyl is added to hydrazone 2ca first,
then hydrogen atom from adduct B is abstracted. In both cases, the first stage is expected
to be rate determining, whereas the second is expected to be very fast or even barrierless.
In order to evaluate which path is more plausible, DFT calculations were performed
by employing the low-cost but robust B97-3c composite method [35]. The calculations
revealed that path I is favored, both kinetically and thermodynamically, compared to
path II; however, both pathways demonstrate activation barriers less than 20 kcal·mol−1,
which are acceptable for room temperature reactions. The fact that path I is energetically
more favored than path II is in agreement with the published data on C–O coupling of
diacetyliminoxyl with pyrazolones, isoxazolones, and phenols [33]. However, it should be
noted that diacetyliminoxyl addition reactions to π-systems were reported recently [34].
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3. In Vitro Fungicidal Activity of the Synthesized Azo Compounds

In the second part of our research, the synthesized azo oxime ethers 3 were dis-
covered as a new class of fungicides. Fungal diseases of agricultural crops represents
one of the major threats to crop production [36–39]. Phytopathogenic fungi contribute
significantly to reductions in crop yield [37–40] and produce mycotoxins, which can be
extremely dangerous food contaminants [41–46] (for example, aflatoxins produced by
Aspergillus genus, trichothecenes by Fusarium species, and ergot alkaloids produced by
fungi of Claviceps genus). Fungicides remain the most effective tool for crop protection
against fungal diseases [47]; however, fungicidal resistance development against known
active compound classes [29–31,48] is a serious threat to crop production, forcing scientists
to search for new types of fungicides. Currently, despite the large number of fungicidal
compounds used in agriculture, most of them belong to a limited number of classes and
share a common mode of action. Namely, succinate dehydrogenase inhibitors (SDHIs),
demethylation inhibitors (DMIs, imidazoles and triazoles), quinone outside inhibitors (QoI,
or strobilurins), and quinone inside inhibitors (QiI) dominate the fungicide global market
and development [49–51]. Thus, the discovery of novel antifungal agents with unforeseen
modes of action is a primary scientific goal [52–58].

Synthesized products 3 were tested for fungicidal activity at concentrations of 10–30 µg/mL
against six phytopathogenic fungi from different taxonomic classes: V. i.—Venturia in-
aequalis, R. s.—Rhizoctonia solani, F. o.—Fusarium oxysporum, F. m.—Fusarium moniliforme,
B. s.—Bipolaris sorokiniana, S. s.—Sclerotinia sclerotiorum (Table 2). Triadimefon and kresoxim-
methyl—commercially available fungicides—were used as reference compounds.

Table 2. In vitro fungicidal activity of the synthesized azo oxime ethers 3.

Compound C, mg/L
Mycelium Growth Inhibition (%)

V. i. R. s. F. o. F. m. B. s. S. s.

1
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Table 2. Cont.

Compound C, mg/L
Mycelium Growth Inhibition (%)

V. i. R. s. F. o. F. m. B. s. S. s.
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Table 2. Cont.

Compound C, mg/L
Mycelium Growth Inhibition (%)

V. i. R. s. F. o. F. m. B. s. S. s.
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The data on fungicidal activity exceeding the standard (triadimefon) are highlighted in green. 

As can be seen from Table 2, compounds 3da and 3dc exhibit the greatest activity 
against phytopathogenic fungi. In general, azo oxime ethers with small aliphatic substit-
uents at the quaternary carbon atom (3ca–cg and 3da–de) possess a higher activity com-
pared to azo oxime ethers bearing aromatic substituents at the quaternary center (3aa, 3ae, 
3ag, and 3ba). Compounds 3aj, 3al, 3am, and 3an with bulky substituents at quaternary 
carbon atom do not show significant fungicidal activity, as well as azo oxime ether 3bd 
with a Me substituent at the nitrogen atom. Aldehyde-derived azo oxime ethers (3ba and 
3da–de), in general, are superior to ketone derivatives (3aa, 3ae, 3ag, and 3ca–cg). In the 
series of long-chain alkyl or cyclic azo compounds, activity decreases with increasing alkyl 
chain (3ca, 3cb, 3cc) or ring size (3ce, 3cf, 3cg). AIBN, an alkyl azo derivative frequently 
used as a radical initiator taken for comparison, does not show significant activity. Com-
pounds with a diacetyl oxime moiety, obtained by oxidative C–O coupling of diace-
tyliminoxyl with alkenes [34], pyrazolones [33], phenols [33], and dicarbonyl compounds 
[59], were also tested for fungicidal activity. None of them show essential mycelium 
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As can be seen from Table 2, compounds 3da and 3dc exhibit the greatest activity
against phytopathogenic fungi. In general, azo oxime ethers with small aliphatic sub-
stituents at the quaternary carbon atom (3ca–cg and 3da–de) possess a higher activity
compared to azo oxime ethers bearing aromatic substituents at the quaternary center (3aa,
3ae, 3ag, and 3ba). Compounds 3aj, 3al, 3am, and 3an with bulky substituents at quater-
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nary carbon atom do not show significant fungicidal activity, as well as azo oxime ether 3bd
with a Me substituent at the nitrogen atom. Aldehyde-derived azo oxime ethers (3ba and
3da–de), in general, are superior to ketone derivatives (3aa, 3ae, 3ag, and 3ca–cg). In the
series of long-chain alkyl or cyclic azo compounds, activity decreases with increasing alkyl
chain (3ca, 3cb, 3cc) or ring size (3ce, 3cf, 3cg). AIBN, an alkyl azo derivative frequently
used as a radical initiator taken for comparison, does not show significant activity. Com-
pounds with a diacetyl oxime moiety, obtained by oxidative C–O coupling of diacetylimi-
noxyl with alkenes [34], pyrazolones [33], phenols [33], and dicarbonyl compounds [59],
were also tested for fungicidal activity. None of them show essential mycelium growth
inhibition, indicating that diacetyl oxime moiety itself is not sufficient for the manifestation
of the observed fungicidal activity. It is noteworthy that the activity of the synthesized
azo compounds in the present study was not predictable due to their structural novelty.
The closest related fungicidal compounds are generally diaryl azo derivatives [60–62] and
substituted oxime derivatives with a RO–N=C–N=N-Ar fragment at the oxime moiety [63].
In contrast to these fungicides, the azo oxime ethers reported in the present work contain a
tertiary C(sp3) atom at the azo group. The activity of the azo oxime ethers 3ca, 3cd–cf, and
3da–de is comparable to that of triadimefon and kresoxim-methyl, which are commercially
available fungicides widely used in crop protection.

EC50 values were measured for the most promising azo compounds, 3ca and 3da, and
reference compound kresoxim-methyl (Table 3).

Table 3. EC50 Values for mycelium growth inhibition by the most active azo oxime ethers 3ca and
3da in comparison with kresoxim-methyl.

EC50 (mg/L)

Compound V. i. R. s. F. o. F. m. B. s. S. s.

3ca 0.77 1.3 0.44 0.45 3.3 2.1
3da 1.7 1.3 0.37 0.41 0.94 1.0

Reference
compound

(kresoxim-methyl)
0.16 0.053 0.45 1.0 4.1 0.30

Synthesized azo compounds 3ca and 3da have a similar activity spectrum that greatly
differs from that of kresoxim-methyl. Overall, the EC50 values of 3ca and 3da are compara-
ble to those of kresoxim-methyl; however, at higher concentrations, these azo compounds
demonstrate stronger mycelium growth inhibition (Table 2).

4. Materials and Methods

In all experiments RT stands for 22–25 ◦C. 1H and 13C NMR spectra were recorded
on Bruker AVANCE II 300 and Bruker Fourier 300HD (300.13 for 1H and 75.47 MHz for
13C, respectively) spectrometers in CDCl3. Chemical shifts were reported in parts per
million (ppm), and the residual solvent peak was used as an internal reference: 1H (CDCl3
δ = 7.26 ppm); 13C (CDCl3 δ = 77.16 ppm). Multiplicity was indicated as follows: s (singlet),
d (doublet), t (triplet), q (quartet), m (multiplet). Coupling constants were reported in
Hertz (Hz). FT-IR spectra were recorded on Bruker Alpha instrument. High resolution
mass spectra (HR-MS) were measured on a Bruker maXis instrument using electrospray
ionization (ESI). The measurements were performed in a positive ion mode (interface
capillary voltage—4500 V); mass range from m/z 50 to m/z 3000 Da; external calibration with
Electrospray Calibrant Solution (Fluka). A syringe injection was used for all acetonitrile
solutions (flow rate 3 µL/min). Nitrogen was applied as a dry gas; interface temperature
was set at 180 ◦C.

Phenylhydrazine 97%, p-tolylhydrazine hydrochloride 98%, 4-chlorophenylhydrazine
hydrochloride 97%, 4-(trifluoromethyl) phenylhydrazine 96%, 2-hydrazinopyridine 98%, 2,4-
dinitrophenylhydrazine 97%, methylhydrazine 98%, acetophenone 98%, 4-methylacetophenone
95%, 4-nitroacetophenone 98%, 4-methoxyacetophenone 98%, 4-bromoacetophenone 98%,
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2-hydroxyacetophenone 98%, propiophenone 99%, benzophenone 99%, benzaldehyde 98%,
4-chlorobenzaldehyde 98%, 4-methoxybenzaldehyde 99%, 4-heptanone 98%, 6-undecanone
97%, 5-hexen-2-one 98%, cyclobutanone 98%, cyclopentanone 99%, cyclohexanone 99%,
acetaldehyde 99.5%, propionaldehyde 98%, isobutyraldehyde 99+%, pivaldehyde 96%,
hexanal 96%. Hydrazones 2 were synthesized by condensation with the corresponding car-
bonyl compounds [64–69]. Ketones and corresponding hydrazones 2l–n were synthesized
according to published procedures [70–73]. Compounds 4 and 8 [34], 5 [4,33], 7 [33], and
6 [59] with a diacetyl oxime moiety were synthesized by oxidative C–O coupling according
to published procedures. CH2Cl2 was distilled prior to use. Acetone was distilled over
KMnO4. The preparation of diacetyliminoxyl radical is described earlier in [4]. Then,
Pb(OAc)4 (469 mg, 1.0 mmol) was added to a stirred solution of diacetyl oxime (258 mg,
2 mmol) in CH2Cl2 (4 mL) with vigorous stirring. Stirring was continued for 10 min; then,
the reaction mixture was chromatographed on silica gel using CH2Cl2 as eluent. The
fraction corresponding to the dark-red spot was collected, so that the volume of the fraction
was 50 mL.

General reaction conditions for Table 1
Hydrazone 2aa (1–2 mmol) was added to a stirred solution of diacetyliminoxyl radical

1 (2–3 mmol) in CH2Cl2 (50 mL), prepared as described earlier in [4], at room temperature.
The reaction mixture was stirred for 15 min under air (entries 1, 3, 4) or under argon
(entry 2) atmosphere, until the dark red color of diacetyliminoxyl disappeared. After
that, the reaction mixture was rotary evaporated under a water-jet vacuum. Yields were
determined by 1H NMR using 1,1,2,2-tetrachloroethane as an internal standard.

Experimental details for Scheme 2
Hydrazone 2 (1 mmol, 134–460 mg) was added to a stirred solution of diacetyliminoxyl

1 (2 mmol) in CH2Cl2 (50 mL) at room temperature. The reaction mixture was stirred at RT
for 15–30 min until the red color of diacetyliminoxyl disappeared. After that, the reaction
mixture was rotary evaporated under a water-jet vacuum. C–O coupling products 3 were
isolated by column chromatography on silica gel.

(E)-3-((1-phenyl-1-(phenyldiazenyl)ethoxy)imino)pentane-2,4-dione, 3aa, was synthesized
as a yellow oil (84%, purified by column chromatography with DCM as eluent). 1H NMR
(300.13 MHz, CDCl3): δ = 7.81–7.69 (m, 2H), 7.56–7.43 (m, 5H), 7.43–7.28 (m, 3H), 2.48 (s, 3H),
2.27 (s, 3H), 2.05 (s, 3H). 13C NMR (75.47 MHz, CDCl3): δ = 198.8, 194.7, 156.6, 151.6, 139.4,
131.6, 129.2, 128.7, 128.6, 126.5, 122.9, 105.2, 30.5, 25.9, 23.8. FT-IR (thin layer): νmax = 1725,
1690, 1363, 960, 695. HR-MS (ESI): m/z = 360.1313, calcd. for C19H19N3O3+Na+: 360.1319.

(E)-3-((1-(phenyldiazenyl)-1-(p-tolyl)ethoxy)imino)pentane-2,4-dione, 3ab, was synthe-
sized as a yellow oil (96%, purified by column chromatography with DCM as eluent). 1H
NMR (300.13 MHz, CDCl3): δ = 7.81–7.71 (m, 2H), 7.54–7.44 (m, 3H), 7.41 (d, J = 8.2 Hz,
2H), 7.19 (d, J = 8.2 Hz, 2H), 2.49 (s, 3H), 2.35 (s, 3H), 2.29 (s, 3H), 2.06 (s, 3H). 13C NMR
(75.47 MHz, CDCl3): δ = 198.7, 194.7, 156.5, 151.6, 138.6, 136.4, 131.4, 129.24, 129.18, 126.5,
122.8, 105.2, 30.5, 25.8, 23.5, 21.2. FT-IR (thin layer): νmax = 1725, 1687, 1363, 1305, 968.
HR-MS (ESI): m/z = 352.1654, calcd. for C20H21N3O3+H+: 352.1656.

(E)-3-((1-((4-chlorophenyl)diazenyl)-1-(p-tolyl)ethoxy)imino)pentane-2,4-dione, 3ac, was
synthesized as a yellow oil (81%, purified by column chromatography with DCM as eluent).
1H NMR (300.13 MHz, CDCl3): δ = 7.70 (d, J = 8.7 Hz, 2H), 7.44 (d, J = 8.7 Hz, 2H), 7.39 (d,
J = 8.3 Hz, 2H), 7.19 (d, J = 8.3 Hz, 2H), 2.47 (s, 3H), 2.35 (s, 3H), 2.29 (s, 3H), 2.04 (s, 3H).
13C NMR (75.47 MHz, CDCl3): δ = 198.6, 194.6, 156.7, 149.9, 138.7, 137.5, 136.2, 129.4, 129.3,
126.4, 124.1, 105.3, 30.5, 25.8, 23.4, 21.2. FT-IR (thin layer): νmax = 1726, 1690, 1362, 1300,
1088, 959. HR-MS (ESI): m/z = 386.1252, 388.1230, calcd. for C20H20ClN3O3+H+: 386.1266,
388.1238.

(E)-3-((1-phenyl-1-((4-(trifluoromethyl)phenyl)diazenyl)ethoxy)imino)pentane-2,4-dione,
3ad, was synthesized as a yellow oil (95%, purified by column chromatography with DCM
as eluent). 1H NMR (300.13 MHz, CDCl3): δ = 7.85 (d, J = 8.4 Hz, 2H), 7.75 (d, J = 8.4 Hz,
2H), 7.58–7.49 (m, 2H), 7.47–7.32 (m, 3H), 2.49 (s, 3H), 2.29 (s, 3H), 2.10 (s, 3H). 13C NMR
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(75.47 MHz, CDCl3): δ = 198.5, 194.5, 156.7, 153.3, 138.8, 132.89 (q, J = 32.7 Hz), 128.9, 128.7,
126.42 (q, J = 3.6 Hz), 123.84 (q, J = 272.5 Hz), 123.0, 105.5, 30.5, 25.7, 23.6. FT-IR (thin layer):
νmax = 1726, 1692, 1364, 1324, 1169, 1131, 1066, 959. HR-MS (ESI): m/z = 428.1198, calcd. for
C20H18F3N3O3+Na+: 428.1192.

(E)-3-((1-(4-nitrophenyl)-1-(phenyldiazenyl)ethoxy)imino)pentane-2,4-dione, 3ae, was syn-
thesized as a yellow oil (98%, purified by column chromatography with DCM as eluent).
1H NMR (300.13 MHz, CDCl3): δ = 8.25 (d, J = 8.9 Hz, 2H), 7.81–7.67 (m, 4H), 7.56–7.45 (m,
3H), 2.48 (s, 3H), 2.24 (s, 3H), 2.03 (s, 3H). 13C NMR (75.47 MHz, CDCl3): δ = 198.2, 194.3,
157.1, 151.3, 148.0, 146.6, 132.2, 129.4, 127.8, 123.8, 123.0, 104.1, 30.4, 25.9, 24.4. FT-IR (thin
layer): νmax = 1727, 1693, 1605, 1522, 1350, 1300, 1142, 1109, 1079, 1067, 958, 855, 769, 758,
693. HR-MS (ESI): m/z = 405.1161, calcd. for C19H18N4O5+Na+: 405.1169.

(E)-3-((1-(4-methoxyphenyl)-1-(phenyldiazenyl)ethoxy)imino)pentane-2,4-dione, 3af, was
synthesized as a yellow oil (75%, purified by column chromatography with DCM as eluent).
1H NMR (300.13 MHz, CDCl3): δ = 7.80–7.67 (m, 2H), 7.55–7.38 (m, 5H), 6.95–6.82 (m, 2H),
3.80 (s, 3H), 2.47 (s, 3H), 2.28 (s, 3H), 2.04 (s, 3H). 13C NMR (75.47 MHz, CDCl3): δ = 198.8,
194.7, 159.9, 156.5, 151.6, 131.4, 129.2, 128.0, 122.8, 113.9, 105.1, 55.4, 30.5, 25.8, 23.3. FT-IR
(thin layer): νmax = 1725, 1690, 1608, 1514, 1363, 1303, 1253, 1185, 1109, 1030, 960, 834, 769.
HR-MS (ESI): m/z = 390.1423, calcd. for C20H21N3O4+Na+: 390.1424.

(E)-3-((1-(4-bromophenyl)-1-(phenyldiazenyl)ethoxy)imino)pentane-2,4-dione, 3ag, was
synthesized as yellow crystals (82%, purified by column chromatography with DCM as
eluent). Mp = 90–91 ◦C. 1H NMR (300.13 MHz, CDCl3): δ = 7.81–7.70 (m, 2H), 7.55–7.45 (m,
5H), 7.44–7.35 (m, 2H), 2.47 (s, 3H), 2.27 (s, 3H), 2.01 (s, 3H). 13C NMR (75.47 MHz, CDCl3):
δ = 198.6, 194.6, 156.8, 151.4, 138.6, 131.8, 129.3, 128.4, 123.1, 122.9, 104.6, 102.8, 30.5, 25.9,
23.8. FT-IR (thin layer): νmax = 1773, 1484, 1397, 1362, 1302, 1135, 1078, 1010, 966, 920, 828,
685, 550. HR-MS (ESI): m/z = 416.0608, 418.0592, calcd. for C19H18BrN3O3+H+: 416.0604,
418.0585. Single crystal X-ray analysis is available (see Supplementary Figure S1, page S15).

(E)-3-((1-(2-hydroxyphenyl)-1-(phenyldiazenyl)ethoxy)imino)pentane-2,4-dione, 3ah, was
synthesized as a pale yellow solid (74%, purified by column chromatography with DCM
as eluent) Mp = 103–104 ◦C. 1H NMR (300.13 MHz, CDCl3): δ = 8.16 (s, 1H), 7.74–7.71 (m,
2H), 7.54–7.49 (m, 3H), 7.36–7.27 (m, 2H), 6.97–6.90 (m, 2H), 2.46 (s, 3H), 2.25 (s, 3H), 2.09 (s,
3H). 13C NMR (75.47 MHz, CDCl3): δ = 198.2, 194.4, 157.0, 155.4, 150.9, 132.5, 131.3, 129.6,
127.3, 124.0, 123.0, 120.3, 118.5, 106.9, 30.6, 25.9, 22.8. FT-IR (thin layer): νmax = 1727, 1692,
1483, 1458, 1364, 1299, 1246, 1201, 1105, 957, 939, 76. HR-MS (ESI): m/z = 376.1260, cald. for
C19H19N3O4+Na+ = 376.1268.

(E)-3-((1-phenyl-1-(phenyldiazenyl)propoxy)imino)pentane-2,4-dione, 3ai, was synthe-
sized as a yellow oil (87%, purified by column chromatography with DCM as eluent).
1H NMR (300.13 MHz, CDCl3): δ = 7.85–7.69 (m, 2H), 7.57–7.53 (m, 2H), 7.51–7.47 (m,
3H), 7.44–7.30 (m, 3H), 2.52 (s, 3H), 2.60–2.35 (m, 2H), 2.23 (s, 3H), 0.88 (t, J = 7.4 Hz, 3H).
13C NMR (75.47 MHz, CDCl3): δ = 198.8, 194.7, 156.7, 151.6, 138.2, 131.4, 129.2, 128.5,
128.3, 126.9, 122.8, 106.9, 31.1, 30.3, 25.8, 7.7. FT-IR (thin layer): νmax =2979, 1726, 1691,
1450, 1363, 1296, 1138, 1070, 963, 763, 699, 691. HR-MS (ESI): m/z = 374.1472, calcd. for
C20H21N3O3+Na+: 374.1475.

(E)-3-((diphenyl(phenyldiazenyl)methoxy)imino)pentane-2,4-dione, 3aj, was synthesized
as a slightly yellow solid (98%, purified by column chromatography with DCM as eluent).
Mp = 103–104 ◦C. 1H NMR (300.13 MHz, CDCl3): δ = 7.86–7.75 (m, 2H), 7.58–7.45 (m, 7H),
7.43–7.30 (m, 6H), 2.56 (s, 3H), 2.05 (s, 3H). 13C NMR (75.47 MHz, CDCl3): δ = 198.7, 194.7,
156.3, 151.5, 139.9, 131.6, 129.3, 128.6, 128.4, 128.0, 123.0, 105.6, 30.1, 25.7. FT-IR (thin layer):
νmax = 1725, 1686, 1300, 1013, 976, 941, 762, 695. HR-MS (ESI): m/z = 422.1461, calcd. for
C24H21N3O3+Na+: 422.1475.

(E)-3-((1-phenyl-1-(pyridin-2-yldiazenyl)ethoxy)imino)pentane-2,4-dione, 3ak, was syn-
thesized as a yellow oil (89%, purified by column chromatography with PE/EtOAc = 2/5 as
eluent). 1H NMR (300.13 MHz, CDCl3): δ = 8.70 (d, J = 4.2 Hz, 1H), 7.85 (td, J = 7.7, 1.8 Hz,
1H), 7.60–7.48 (m, 3H), 7.46–7.29 (m, 4H), 2.48 (s, 3H), 2.28 (s, 3H), 2.12 (s, 3H). 13C NMR
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(75.47 MHz, CDCl3): δ = 198.6, 194.6, 162.2, 156.8, 149.6, 138.6, 138.5, 129.0, 128.7, 126.5,
125.8, 114.3, 106.0, 30.6, 25.9, 23.5. FT-IR (thin layer): νmax = 1725, 1690, 1583, 1455, 1425,
1363, 1299, 1261, 1194, 1145, 1119,1069, 955, 791, 770, 699. HR-MS (ESI): m/z = 339.1448,
calcd. for C18H18N4O3+H+: 339.1452.

3-((((Z)-1,4-diphenyl-1-((E)-phenyldiazenyl)but-3-en-1-yl)oxy)imino)pentane-2,4-dione, 3al,
was synthesized as a slightly yellow viscous gum (87%, purified by column chromatogra-
phy with DCM as eluent). 1H NMR (300.13 MHz, CDCl3): δ = 7.79–7.70 (m, 2H), 7.58–7.45
(m, 5H), 7.45–7.17 (m, 8H), 6.54 (d, J = 11.8 Hz, 1H), 5.58 (dt, J = 11.8, 7.2 Hz, 1H), 3.57
(dd, J = 7.2, 1.8 Hz, 2H), 2.50 (s, 3H), 1.98 (s, 3H). 13C NMR (75.47 MHz, CDCl3): δ = 198.6,
194.7, 156.6, 151.5, 137.3, 137.2, 132.5, 131.6, 129.2, 128.74, 128.67, 128.61, 128.4, 127.0, 126.9,
124.9, 122.9, 106.3, 36.2, 30.3, 25.6. FT-IR (thin layer): νmax = 1725, 1690, 1600, 1494, 1449,
1363, 1301, 1193, 1059, 1018, 1003, 950, 765, 699. HR-MS (ESI): m/z = 462.1781, calcd. for
C27H25N3O3+Na+: 462.1788.

(E)-3-(((1-([1,1′-biphenyl]-4-yl)-1-((2,4-dinitrophenyl)diazenyl)hexyl)oxy)imino)pentane-2,4-
dione, 3am, was synthesized as a viscous orange gum (46%, purified by column chromatog-
raphy with DCM as eluent). 1H NMR (300.13 MHz, CDCl3): δ = 8.83 (d, J = 2.3 Hz, 1H), 8.51
(dd, J = 8.7, 2.3 Hz, 1H), 7.73–7.56 (m, 6H), 7.52–7.41 (m, 3H), 7.41–7.32 (m, 1H), 2.60–2.47
(m, 2H), 2.44 (s, 3H), 2.33 (s, 3H), 1.42–1.20 (m, 6H), 0.94–0.77 (m, 3H). 13C NMR (75.47
MHz, CDCl3): δ = 198.5, 194.4, 157.1, 148.6, 148.1, 146.1, 141.7, 140.2, 135.6, 129.0, 128.4,
127.9, 127.5, 127.18, 127.15, 120.5, 120.3, 108.1, 37.3, 31.8, 30.2, 25.8, 22.6, 22.4, 14.0. FT-IR
(thin layer): νmax = 3103, 2957, 2931, 2869, 1726, 1692, 1608, 1536, 1487, 1346, 1298, 1147, 954,
836, 766, 744, 698. HR-MS (ESI): m/z = 582.1955, calcd. for C29H29N5O7+Na+: 582.1959.

(E)-3-(((1-([1,1′-biphenyl]-4-yl)-1-((2,4-dinitrophenyl)diazenyl)octyl)oxy)imino)pentane-
2,4-dione, 3an, was synthesized as a viscous orange gum (42%, purified by column chro-
matography with DCM as eluent). 1H NMR (300.13 MHz, CDCl3): δ = 8.82 (d, J = 2.3 Hz,
1H), 8.51 (dd, J = 8.7, 2.3 Hz, 1H), 7.78–7.55 (m, 6H), 7.54–7.40 (m, 3H), 7.39–7.29 (m, 1H),
2.66–2.49 (m, 2H), 2.45 (s, 3H), 2.34 (s, 3H), 1.55–1.09 (m, 10H), 0.86 (t, J = 6.5 Hz, 3H). 13C
NMR (75.47 MHz, CDCl3): δ = 198.5, 194.4, 157.1, 148.6, 148.1, 146.1, 141.8, 140.2, 135.6,
129.0, 128.4, 127.9, 127.5, 127.2, 120.5, 120.3, 108.1, 37.4, 31.8, 30.3, 29.6, 29.1, 25.8, 23.0, 22.7,
14.2. FT-IR (thin layer): νmax = 1724, 1691, 1607, 1545, 1541, 1346, 1297, 1194, 1146, 963, 835,
766, 747, 698. HR-MS (ESI): m/z = 605.2712, calcd. for C31H33N5O7+H+: 605.2718.

(E)-3-((phenyl(phenyldiazenyl)methoxy)imino)pentane-2,4-dione, 3ba, was synthesized
as a yellow oil (79%, purified by column chromatography with DCM as eluent). 1H NMR
(300.13 MHz, CDCl3): δ = 7.79–7.76 (m, 2H), 7.55–7.51 (m, 2H), 7.50–7.47 (m, 3H), 7.44–7.39
(m, 3H), 6.50 (s, 1H), 2.46 (s, 3H), 2.35 (s, 3H). 13C NMR (75.47 MHz, CDCl3): δ = 198.9,
194.4, 157.2, 151.6, 134.4, 131.9, 130.7, 129.8, 129.3, 129.0, 127.9, 123.7, 107.3, 30.6, 25.9. FT-IR
(thin layer): νmax =1725, 1693, 1453, 1419, 1360, 1195, 1098, 1019, 952, 766, 695. HR-MS
(ESI): m/z = 346.1162 cald. for C18H17N3O3+Na+ = 346.1162.

(E)-3-(((4-chlorophenyl)(phenyldiazenyl)methoxy)imino)pentane-2,4-dione, 3bb, was syn-
thesized as a yellow powder (58%, purified by column chromatography with DCM as
eluent). Mp = 49–50 ◦C. 1H NMR (300.13 MHz, CDCl3): δ = 7.84–7.69 (m, 2H), 7.57–7.42 (m,
5H), 7.42–7.35 (m, 2H), 6.45 (s, 1H), 2.45 (s, 3H), 2.35 (s, 3H) 13C NMR (75.47 MHz, CDCl3):
δ = 197.7, 194.3, 157.3, 151.4, 135.9, 132.9, 132.1, 129.3, 129.23, 129.19, 123.1, 106.5, 30.6, 26.0.
FT-IR (thin layer): νmax = 1725, 1697, 1488, 1413, 1363, 1296, 1091, 1049, 1019, 939, 821, 768,
691. HR-MS (ESI): m/z = 380.0770, cald. for C18H16ClN3O3+Na+: 380.0772.

(E)-3-(((4-methoxyphenyl)(phenyldiazenyl)methoxy)imino)pentane-2,4-dione, 3bc, was
synthesized as a yellow solid (88%, purified by column chromatography with DCM as
eluent). Mp = 69–70 ◦C 1H NMR (300 MHz, CDCl3): δ = 7.81–7.69 (m, 2H), 7.51–7.38 (m,
5H), 6.98–6.89 (m, 2H), 6.44 (s, 1H), 3.81 (s, 3H), 2.45 (s, 3H), 2.35 (s, 3H). 13C NMR (76
MHz, CDCl3): δ = 198.0, 194.5, 160.8, 157.0, 151.5, 131.8, 129.3, 129.2, 126.6, 123.0, 114.4,
107.2, 55.4, 30.6, 25.9. FT-IR (thin layer): νmax = 1725, 1692, 1515, 1360, 1300, 1253, 1027, 951.
HR-MS (ESI): m/z = 376.1261 cald. for C19H19N3O4+Na+ = 376.1268.
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(E)-3-(((4-chlorophenyl)(methyldiazenyl)methoxy)imino)pentane-2,4-dione, 3bd, was syn-
thesized as a yellow oil (68%, purified by column chromatography with DCM as eluent). 1H
NMR (300.13 MHz, DMSO-d6): δ = 7.53 (d, J = 8.6 Hz, 2H), 7.47 (d, J = 8.6 Hz, 1H), 6.36 (s,
1H), 3.85 (s, 3H), 2.35 (s, 3H), 2.32 (s, 3H). 13C NMR (75.47 MHz, DMSO-d6): δ = 198.2, 193.7,
156.9, 134.5, 133.1, 129.5, 128.9, 104.5, 57.0, 30.1, 25.6. FT-IR (thin layer): νmax = 1727, 1693,
1493, 1363, 1298, 1090, 977, 950. HR-MS (ESI): m/z = 318.0611, cald. for C13H14ClN3O3+Na+:
318.0616.

(E)-3-(((2-(phenyldiazenyl)propan-2-yl)oxy)imino)pentane-2,4-dione, 3ca, was synthesized
as a yellow oil (85%, purified by column chromatography with DCM as eluent). 1H NMR
(300.13 MHz, CDCl3): δ = 7.76–7.67 (m, 2H), 7.52–7.43 (m, 3H), 2.44 (s, 3H), 2.35 (s, 3H),
1.62 (s, 6H). 13C NMR (75.47 MHz, CDCl3): δ = 198.9, 194.8, 156.3, 151.6, 131.3, 129.2, 122.6,
104.7, 30.6, 25.8, 23.5. FT-IR (thin layer): νmax =1726, 1690, 1384, 1303, 1196, 1173, 1145,
1070, 963, 767, 691. HR-MS (ESI): m/z = 298.1160, calcd. for C14H17N3O3+Na+: 298.1162.

(E)-3-(((4-(phenyldiazenyl)heptan-4-yl)oxy)imino)pentane-2,4-dione, 3cb, was synthesized
as a yellow oil (73%, purified by column chromatography with DCM as eluent). 1H NMR
(300.13 MHz, CDCl3): δ = 7.75–7.63 (m, 2H), 7.54–7.41 (m, 3H), 2.44 (s, 3H), 2.34 (s, 3H),
2.15–1.91 (m, 4H), 1.55–1.19 (m, 4H), 0.90 (t, J = 7.3 Hz, 6H). 13C NMR (75.47 MHz, CDCl3):
δ = 199.0, 194.8, 156.2, 151.6, 131.2, 129.2, 122.5, 107.5, 37.2, 30.4, 25.8, 16.3, 14.6. FT-IR
(thin layer): νmax = 2964, 2934, 2875, 1726, 1690, 1363, 1303, 960, 768, 691. HR-MS (ESI):
m/z = 354.1782, calcd. for C18H25N3O3+Na+: 354.1788.

(E)-3-(((6-(phenyldiazenyl)undecan-6-yl)oxy)imino)pentane-2,4-dione, 3cc, was synthe-
sized as a yellow oil (70%, purified by column chromatography with DCM as eluent). 1H
NMR (300.13 MHz, CDCl3): δ = 7.73–7.64 (m, 2H), 7.53–7.42 (m, 3H), 2.44 (s, 3H), 2.34 (s,
3H), 2.13–1.93 (m, 4H), 1.49–1.18 (m, 12H), 0.86 (t, J = 6.8 Hz, 6H). 13C NMR (75.47 MHz,
CDCl3): δ = 198.9, 194.8, 156.3, 151.7, 131.1, 129.2, 122.5, 107.6, 34.8, 32.2, 30.4, 25.8, 22.5, 22.4,
14.1. FT-IR (thin layer): νmax = 2957, 2932, 2870, 1727, 1692, 1363, 1301, 960, 767. HR-MS
(ESI): m/z = 410.2402, calcd. For C22H33N3O3+Na+: 410.2414.

(E)-3-(((2-(phenyldiazenyl)hex-5-en-2-yl)oxy)imino)pentane-2,4-dione, 3cd, was synthe-
sized as a slightly yellow viscous gum (79%, purified by column chromatography with
PE/EA = 10/1 as eluent). 1H NMR (300.13 MHz, CDCl3): δ = 7.76–7.66 (m, 2H), 7.54–7.44
(m, 3H), 5.93–5.62 (m, 1H), 5.21–4.77 (m, 2H), 2.45 (s, 3H), 2.35 (s, 3H), 2.27–1.98 (m, 4H),
1.63 (s, 3H). 13C NMR (75.47 MHz, CDCl3): δ = 198.9, 194.8, 156.4, 151.6, 137.7, 131.4,
129.2, 122.6, 115.1, 106.0, 36.4, 30.5, 27.4, 25.9, 21.4. FT-IR (thin layer): νmax = 1726, 1690,
1420, 1367, 1303, 982, 960, 826. HR-MS (ESI): m/z = 338.1475, calcd. for C17H21N3O3+Na+:
338.1475.

(E)-3-((1-(phenyldiazenyl)cyclobutoxy)imino)pentane-2,4-dione, 3ce, was synthesized as
a slightly yellow viscous gum (89%, purified by column chromatography with DCM
as eluent). 1H NMR (300.13 MHz, CDCl3): δ = 7.81–7.70 (m, 2H), 7.56–7.42 (m, 3H),
2.69–2.50 (m, 4H), 2.46 (s, 3H), 2.35 (s, 3H), 2.09–1.84 (m, 2H).13C NMR (75.47 MHz, CDCl3):
δ = 198.7, 194.7, 157.3, 151.7, 131.4, 129.2, 122.8, 105.2, 31.9, 30.7, 25.9, 12.0. FT-IR (thin
layer): νmax = 1727, 1690, 1364, 1304, 1251, 1143, 954, 768, 690. HR-MS (ESI): m/z = 310.1163,
calcd. for C15H17N3O3+Na+: 310.1162.

(E)-3-(((1-(phenyldiazenyl)cyclopentyl)oxy)imino)pentane-2,4-dione, 3cf, was synthesized
as a slightly yellow viscous gum (82%, purified by column chromatography with DCM
as eluent). 1H NMR (300.13 MHz, CDCl3): δ = 7.78–7.63 (m, 2H), 7.55–7.40 (m, 3H), 2.44
(s, 3H), 2.35 (s, 3H), 2.30–2.12 (m, 4H), 1.96–1.81 (m, 4H). 13C NMR (75.47 MHz, CDCl3):
δ = 198.8, 194.8, 156.8, 151.7, 131.2, 129.2, 122.6, 115.6, 36.4, 30.5, 25.9, 24.8. FT-IR (thin
layer): νmax = 2959, 1725, 1685, 1363, 1302, 1188, 959, 766, 690. HR-MS (ESI): m/z = 340.1059,
calcd. for C16H19N3O3+K+: 340.1058.

(E)-3-(((1-(phenyldiazenyl)cyclohexyl)oxy)imino)pentane-2,4-dione, 3cg, was synthesized
as a slightly yellow viscous gum (89%, purified by column chromatography with DCM as
eluent). 1H NMR (300.13 MHz, CDCl3): δ = 7.74–7.64 (m, 2H), 7.55–7.39 (m, 3H), 2.46 (s,
3H), 2.45 (s, 3H), 2.19–2.06 (m, 2H), 1.92–1.68 (m, 5H), 1.67–1.46 (m, 2H), 1.45–1.27 (m, 1H).
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13C NMR (75.47 MHz, CDCl3): δ = 198.9, 194.8, 156.6, 151.7, 131.2, 129.2, 122.6, 105.2, 32.1,
30.6, 25.9, 25.0, 21.9. FT-IR (thin layer): νmax = 2938, 2863, 1727, 1689, 1599, 1450, 1420, 1363,
1304, 1275, 1256, 1195, 1159, 1146, 1069, 1023, 983, 960, 928, 911, 766, 691. HR-MS (ESI):
m/z = 316.1654, calcd. for C17H21N3O3+H+: 316.1656.

(E)-3-((1-(phenyldiazenyl)ethoxy)imino)pentane-2,4-dione, 3da, was synthesized as a pale
brown gum (74%, purified by column chromatography with DCM as eluent). 1H NMR
(300 MHz, CDCl3): δ = 7.79–7.69 (m, 2H), 7.54–7.44 (m, 3H), 5.67 (q, J = 6.3 Hz, 1H), 2.45
(s, 3H), 2.34 (s, 3H), 1.59 (d, J = 6.3 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ = 198.2, 194.5,
156.8, 151.5, 131.7, 129.3, 122.8, 103.5, 30.6, 25.9, 17.5. FT-IR (thin layer): νmax = 1727,
1691, 1365, 1299, 1107, 1088, 1060, 965, 770, 691. HR-MS (ESI): m/z = 300.0733, calcd. for
C13H15N3O3+K+: 300.0745.

(E)-3-((1-(phenyldiazenyl)propoxy)imino)pentane-2,4-dione, 3db, was synthesized as a
pale yellow gum (59%, purified by column chromatography with DCM as eluent). 1H
NMR (300 MHz, CDCl3): δ = 7.83–7.64 (m, 2H), 7.60–7.39 (m, 3H), 5.55–5.41 (m, 1H), 2.45
(s, 3H), 2.33 (s, 3H), 2.15–1.88 (m, 2H), 1.05 (t, J = 7.5 Hz, 3H). 13C NMR (75 MHz, CDCl3)
δ = 198.2, 194.6, 156.9, 151.5, 131.6, 129.3, 122.8, 107.9, 30.6, 25.9, 25.3, 8.7. FT-IR (thin layer):
νmax = 1726, 1691, 1363, 1301, 1022, 988, 950, 769, 691. HR-MS (ESI): m/z = 298.1152, calcd.
for C14H17N3O3+Na+: 298.1162.

(E)-3-((2-methyl-1-(phenyldiazenyl)propoxy)imino)pentane-2,4-dione, 3dc, was synthe-
sized as a yellow gum (68%, purified by column chromatography with DCM as eluent). 1H
NMR (300 MHz, DMSO-d6): δ = 7.77–7.68 (m, 2H), 7.62–7.49 (m, 3H), 5.42 (d, J = 5.5 Hz,
1H), 2.40 (s, 3H), 2.39–2.28 (m, 1H), 2.26 (s, 3H), 0.99 (t, J = 7.5 Hz, 6H). 13C NMR (75 MHz,
DMSO-d6): δ = 198.3, 193.7, 156.7, 150.9, 131.8, 129.4, 122.3, 109.1, 31.1, 30.0, 25.5, 17.5, 16.6.
FT-IR (thin layer): νmax = 2970, 1726, 1691, 1364, 1299, 1020, 998, 959, 769, 691. HR-MS
(ESI): m/z = 290.1500, calcd. For C15H19N3O3+H+: 290.1499.

(E)-3-((2,2-dimethyl-1-(phenyldiazenyl)propoxy)imino)pentane-2,4-dione, 3dd, was syn-
thesized as a pale yellow gum (21%, purified by column chromatography with DCM as
eluent). 1H NMR (300 MHz, CDCl3): δ = 7.80–7.69 (m, 2H), 7.53–7.44 (m, 3H), 5.27 (s,
1H), 2.44 (s, 3H), 2.29 (s, 3H), 1.08 (s, 9H). 13C NMR (75 MHz, CDCl3): δ = 198.1, 194.5,
156.8, 151.6, 131.6, 129.3, 122.9, 112.1, 36.0, 30.4, 25.7. FT-IR (thin layer): νmax = 2973, 1727,
1693, 1365, 1300, 1021, 999, 959. HR-MS (ESI): m/z = 326.1474, calcd. for C16H21N3O3+Na+:
326.1475.

(E)-3-(((1-(phenyldiazenyl)hexyl)oxy)imino)pentane-2,4-dione, 3de, was synthesized as
a yellow gum (70%, purified by column chromatography with DCM as eluent). 1H NMR
(300 MHz, CDCl3): δ = 7.80–7.67 (m, 2H), 7.55–7.42 (m, 3H), 5.55 (dd, J = 7.7, 5.1 Hz, 1H),
2.45 (s, 3H), 2.33 (s, 3H), 2.11–1.76 (m, 2H), 1.55–1.40 (m, 2H), 1.40–1.23 (m, 4H), 0.89 (t,
J = 6.9 Hz, 3H). 13C NMR (75 MHz, CDCl3): δ = 198.2, 194.6, 156.8, 151.5, 131.6, 129.2, 122.8,
107.0, 31.8, 31.6, 30.6, 25.9, 23.9, 22.5, 14.1. FT-IR (thin layer): νmax = 2956, 2931, 1727, 1691,
1363, 1299, 964. HR-MS (ESI): m/z = 318.1810, calcd. for C17H23N3O3+H+: 318.1812.

Experimental details for gram-scale synthesis of 3aa (Scheme 3)
Hydrazone 2aa (4 mmol, 840 mg) was added to a stirred solution of diacetyliminoxyl

1 (8 mmol) in CH2Cl2 (200 mL) at room temperature. The reaction mixture was stirred at
RT for 15 min, then rotary evaporated under a water-jet vacuum to an approximate volume
of 40 mL. The reaction mixture was successively washed with 50 mL of saturated solution
of NaHCO3, 50 mL of water, dried over MgSO4, and rotatory evaporated under a water-jet
vacuum. The obtained C–O coupling product 3aa (1.15 g, 3.41 mmol) was analytically pure,
which was further confirmed by 1H and 13C NMR spectroscopy.

Experimental details for one-pot procedure for the synthesis of 3ca (Scheme 3)
Phenylhydrazine (1 mmol, 108 mg) was dissolved in acetone (5 mL) and stirred at

room temperature for 30 min. Then, the resulting solution was added dropwise to a stirred
solution of diacetyliminoxyl 1 (2 mmol) in CH2Cl2 (50 mL). The obtained reaction mixture
was stirred at RT for 15 min, and was then rotary evaporated under a water-jet vacuum.
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The C–O coupling product 3ca was purified by column chromatography on silica gel as
described in the experimental details of Scheme 2.

Experimental details for reaction of 1 with N,N-disubstituted hydrazone 2ao (Scheme 4)
Hydrazone 2ao (1 mmol, 306 mg) was added to a stirred solution of diacetyliminoxyl

1 (2 mmol) in CH2Cl2 (50 mL) at room temperature. The reaction mixture was stirred at
RT for 24 h and analyzed by 1H-NMR spectroscopy using 1,1,2,2-tetrachloroethane as an
internal standard.

Experimental details for TEMPO scavenging experiment (Scheme 4).
TEMPO (2 mmol, 312 mg) and hydrazone 2aa (1 mmol, 210 mg) were added to a stirred

solution of diacetyliminoxyl radical 2 (2 mmol) in DCM (50 mL). The reaction mixture was
stirred for 15 min at room temperature and was then rotary evaporated under water-jet
vacuum. Column chromatography on silica gel afforded 3aa (310 mg, 0.92 mmol, 92%) and
TEMPO (284 mg, 1.81 mmol, 91% recovery).

Fungicidal activity tests (experimental details for Tables 2 and 3). The standard poi-
son food technique [58,74–78] was used for fungicidal activity measurements against six
phytopathogenic fungi of different taxonomic classes: V.i.—Venturia inaequalis MRA-16-2,
R.s.—Rhizoctonia solani 100063, F.o.—Fusarium oxysporum FO-8, F.m.—Fusarium monili-
forme 100146, B.s.—Bipolaris sorokiniana MRB(V)-1, S.s.—Sclerotinia sclerotiorum 100033.
The strains used in this work were obtained from the collection of the All-Russian Research
Institute for Phytopathology (B. Vyazemy, Moscow reg., Russia). The tested substances
were dissolved in acetone (concentration 1 mg/mL) and introduced into liquid sugar-
potato agar at 50–55 ◦C, so that the final substance concentration in the nutrient medium
was 10 mg/L, and mixed thoroughly. Then, the agar containing the tested substance was
poured into sterile Petri dishes. After the cooling of agar to room temperature, pieces of
mycelium from the peripheral growth zone of a 3–5 day old culture of the fungus were
transferred to test Petri dishes using a needle. A colony grown in the same medium without
the addition of a fungicidal substance (same volume of acetone without any substance was
added) was used as a control. The diameters of the formed fungal colonies were measured
72 h after inoculation. Each experiment was repeated 3 times, except for tests with V.i.
culture which were conducted in 5 replicates. The suppression of mycelium growth in
comparison with the control was calculated as ((Dc – Ds)/Dc) × 100%, where Dc is an
average fungus colony diameter in control medium, and Ds is an average fungus colony
diameter in the presence of the tested substance. Serial two-fold dilution experiments were
conducted for EC50 determination.

Computational details (Scheme 5). DFT calculations were conducted by the B97-3c
composite method [35] including D3 dispersion correction [79,80], as implemented in the
Orca 5.0.4 program [81]. The main conformers of diacetyliminoxyl 1 and hydrazone 2ca
were considered in all calculations. The presented results correspond to 218.15 K and
1 atm. See the supporting information for the cartesian coordinates and energy values
of optimized structures of 1a, 1, 2ca, A, B, and transition states for path I and path II.
Optimized geometries were visualized by the Avogadro 1.2 program [82].

5. Conclusions

In summary, we have disclosed the oxidative C–O coupling of hydrazones with
diacetyliminoxyl as a ready-to-use radical reagent playing two roles: the role of a hydrogen
atom acceptor and the role of a partner for the C–O coupling. The developed protocol
is compatible with both aromatic and aliphatic keto- and aldehyde-derived hydrazones.
Synthesized azo oxime ethers were discovered as a novel structural fungicide type with
activity against phytopathogenic fungi that is comparable to the activity of commercial
fungicides (triadimefon and kresoxim-methyl).

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules28237863/s1, 1H and 13C NMR spectra of the synthesized com-
pounds, XRD of 3ag, computational details. References [83–86] are cited in the supplementary materials.

https://www.mdpi.com/article/10.3390/molecules28237863/s1
https://www.mdpi.com/article/10.3390/molecules28237863/s1


Molecules 2023, 28, 7863 17 of 20

Author Contributions: Conceptualization, I.B.K. and A.O.T.; investigation, A.S.B., A.V.L., O.O.S.,
M.I.S., I.B.K. and A.L.A.; writing—original draft preparation, A.S.B.; writing—review and editing,
I.B.K., A.I.I. and A.O.T.; supervision, A.I.I., G.I.N. and A.O.T.; project administration, A.I.I. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Russian Science Foundation (Grant number 19-73-20190).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article and supplementary materials.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Castellino, N.J.; Montgomery, A.P.; Danon, J.J.; Kassiou, M. Late-Stage Functionalization for Improving Drug-like Molecular

Properties. Chem. Rev. 2023, 123, 8127–8153. [CrossRef] [PubMed]
2. Yi, H.; Zhang, G.; Wang, H.; Huang, Z.; Wang, J.; Singh, A.K.; Lei, A. Recent Advances in Radical C–H Activation/Radical

Cross-Coupling. Chem. Rev. 2017, 117, 9016–9085. [CrossRef] [PubMed]
3. Leifert, D.; Studer, A. Organic Synthesis Using Nitroxides. Chem. Rev. 2023, 123, 10302–10380. [CrossRef] [PubMed]
4. Krylov, I.B.; Paveliev, S.A.; Shelimov, B.N.; Lokshin, B.V.; Garbuzova, I.A.; Tafeenko, V.A.; Chernyshev, V.V.; Budnikov, A.S.;

Nikishin, G.I.; Terent’ev, A.O. Selective Cross-Dehydrogenative C–O Coupling of N-Hydroxy Compounds with Pyrazolones.
Introduction of the Diacetyliminoxyl Radical into the Practice of Organic Synthesis. Org. Chem. Front. 2017, 4, 1947–1957.
[CrossRef]

5. Prieto, A.; Bouyssi, D.; Monteiro, N. Radical-Mediated Formal C(Sp2)–H Functionalization of Aldehyde-Derived N, N-
Dialkylhydrazones. Eur. J. Org. Chem. 2018, 2018, 2378–2393. [CrossRef]

6. Van Der Worp, B.A.; Kosobokov, M.D.; Levin, V.V.; Dilman, A.D. Photoredox Fluoroalkylation of Hydrazones in Neutral and
Reductive Modes. Adv. Synth. Catal. 2021, 363, 1152–1158. [CrossRef]

7. Latrache, M.; Hoffmann, N. Photochemical Radical Cyclization Reactions with Imines, Hydrazones, Oximes and Related
Compounds. Chem. Soc. Rev. 2021, 50, 7418–7435. [CrossRef]

8. Lv, Y.; Meng, J.; Li, C.; Wang, X.; Ye, Y.; Sun, K. Update on the Synthesis of N-Heterocycles via Cyclization of Hydrazones
(2017–2021). Adv. Synth. Catal. 2021, 363, 5235–5265. [CrossRef]

9. Si, Y.; Lv, Q.; Yu, B. Radical Cascade Reactions of β,γ-Unsaturated Hydrazones/Oximes. Adv. Synth. Catal. 2021, 363, 4640–4666.
[CrossRef]

10. Paveliev, S.A.; Segida, O.O.; Bityukov, O.V.; Tang, H.; Pan, Y.; Nikishin, G.I.; Terent’ev, A.O. Electrocatalytic Synthesis of
Substituted Pyrazoles via Hypervalent Iodine Mediated Intramolecular C−N Coupling. Adv. Synth. Catal. 2022, 364, 3910–3916.
[CrossRef]

11. Rubanov, Z.M.; Supranovich, V.I.; Levin, V.V.; Dilman, A.D. BF 2 -Chelates of N-Acylhydrazones as Versatile Coupling Partners in
Photoredox Promoted Reactions. Eur. J. Org. Chem. 2023, 26, e202300247. [CrossRef]

12. Rubanov, Z.M.; Levin, V.V.; Dilman, A.D. Zinc Chelate Complexes of N-Acyl Hydrazones as Substrates for Addition of Alkyl and
Fluorinated Radicals. Adv. Synth. Catal. 2023, 365, 2636–2642. [CrossRef]

13. Dmitriev, I.A.; Levin, V.V.; Dilman, A.D. Boron Chelates Derived from N -Acylhydrazones as Radical Acceptors: Photocatalyzed
Coupling of Hydrazones with Carboxylic Acids. Org. Lett. 2021, 23, 8973–8977. [CrossRef] [PubMed]

14. Nishinaga, A.; Yamazakhi, S.; Nogusa, H.; Shimoyam, T.; Matsuura, T. Oxidation of Phenols and Hydrazones with T-Butyl
Hydroperoxide and Catalysis by Co(Salen). Chem. Informationsdienst 1985, 1985, 378–386. [CrossRef]

15. Tezuka, T.; Ando, S. Novel Substituent Effect Controlling the Stability of α-Azohydroperoxides. Chem. Lett. 1986, 15, 1671–1674.
[CrossRef]

16. Schulz, M.; Missol, U.; Bohm, H. Azoperoxide. I Synthese von trans-α-Hydroxy-dialkyldiazenen Aus α-Alkylazo-
alkylhydroperoxiden. J. Prakt. Chem. 1974, 316, 47–53. [CrossRef]

17. Baumstark, A.L.; Vasquez, P.C. Oxygen-Atom Transfer Chemistry of α-AZO Hydroperoxides: Effect of Competitive Intramolecu-
lar Hydrogen Bonding and α-Methyl Substitution. J. Phys. Org. Chem. 1988, 1, 259–265. [CrossRef]

18. Harej, M.; Dolenc, D. Autoxidation of Hydrazones. Some New Insights. J. Org. Chem. 2007, 72, 7214–7221. [CrossRef]
19. Nazran, A.S.; Warkentin, J. Concerted Homolysis in Thermal Decomposition of Peresters from. Alpha.-Hydroperoxydiazenes.

J. Am. Chem. Soc. 1982, 104, 6405–6407. [CrossRef]
20. Fernández, M.; Uria, U.; Vicario, J.L.; Reyes, E.; Carrillo, L. Enantioselective Conjugate Addition of Donor–Acceptor Hydrazones

to α,β-Unsaturated Aldehydes through Formal Diaza–Ene Reaction: Access to 1,4-Dicarbonyl Compounds. J. Am. Chem. Soc.
2012, 134, 11872–11875. [CrossRef]

21. Mondal, B.; Maiti, R.; Yang, X.; Xu, J.; Tian, W.; Yan, J.-L.; Li, X.; Chi, Y.R. Carbene-Catalyzed Enantioselective Annulation of
Dinucleophilic Hydrazones and Bromoenals for Access to Aryl-Dihydropyridazinones and Related Drugs. Chem. Sci. 2021, 12,
8778–8783. [CrossRef] [PubMed]

https://doi.org/10.1021/acs.chemrev.2c00797
https://www.ncbi.nlm.nih.gov/pubmed/37285604
https://doi.org/10.1021/acs.chemrev.6b00620
https://www.ncbi.nlm.nih.gov/pubmed/28639787
https://doi.org/10.1021/acs.chemrev.3c00212
https://www.ncbi.nlm.nih.gov/pubmed/37578429
https://doi.org/10.1039/C7QO00447H
https://doi.org/10.1002/ejoc.201701600
https://doi.org/10.1002/adsc.202001381
https://doi.org/10.1039/D1CS00196E
https://doi.org/10.1002/adsc.202101184
https://doi.org/10.1002/adsc.202100807
https://doi.org/10.1002/adsc.202200696
https://doi.org/10.1002/ejoc.202300247
https://doi.org/10.1002/adsc.202300606
https://doi.org/10.1021/acs.orglett.1c03501
https://www.ncbi.nlm.nih.gov/pubmed/34752109
https://doi.org/10.1246/nikkashi.1985.378
https://doi.org/10.1246/cl.1986.1671
https://doi.org/10.1002/prac.19743160107
https://doi.org/10.1002/poc.610010503
https://doi.org/10.1021/jo071091m
https://doi.org/10.1021/ja00387a042
https://doi.org/10.1021/ja3041042
https://doi.org/10.1039/D1SC01891D
https://www.ncbi.nlm.nih.gov/pubmed/34257877


Molecules 2023, 28, 7863 18 of 20

22. Matsuzaki, H.; Takeda, N.; Yasui, M.; Ito, Y.; Konishi, K.; Ueda, M. Synthesis of Pyrazoles Utilizing the Ambiphilic Reactivity of
Hydrazones. Org. Lett. 2020, 22, 9249–9252. [CrossRef] [PubMed]

23. De Gracia Retamosa, M.; Matador, E.; Monge, D.; Lassaletta, J.M.; Fernández, R. Hydrazones as Singular Reagents in Asymmetric
Organocatalysis. Chem. A Eur. J. 2016, 22, 13430–13445. [CrossRef] [PubMed]

24. Moon, M.W. Chlorination of Aldehyde and Ketone Phenylhydrazones. J. Org. Chem. 1972, 37, 383–385. [CrossRef]
25. Okimoto, M.; Takahashi, Y.; Kakuchi, T. Electrochemical Formation of Methoxy- and Cyano(Phenylazo)Alkanes from Aldehyde

and Ketone Phenylhydrazones. Synthesis 2003, 13, 2057–2063. [CrossRef]
26. Zheng, J.; Meng, S.; Wang, Q.; Wang, J. Synthesis of Antimicrobial Benzo[1,2,4]Triazoloazepinium Salts and Tetrahydronaphtho[1,2-

e][1,2,4]Triazines by Polar [3+ + 2] and [4 + 2]-Cycloaddition Reactions. J. Org. Chem. 2022, 87, 464–478. [CrossRef] [PubMed]
27. Luan, L.; Song, Z.; Li, Z.; Wang, Q.; Wang, J. Synthesis of Triazolodiazepinium Salts: Sequential [3+ +2] Cycloaddi-

tion/Rearrangement Reaction of 1-Aza-2-Azoniaallenium Cation Intermediates Generated from Piperidin-4-Ones. J. Org. Chem.
2018, 83, 3441–3452. [CrossRef]

28. Iffland, D.C.; Salisbury, L.; Schafer, W.R. The Preparation and Structure of Azoacetates, a New Class of Compounds 1. J. Am.
Chem. Soc. 1961, 83, 747–749. [CrossRef]

29. Yin, Y.; Miao, J.; Shao, W.; Liu, X.; Zhao, Y.; Ma, Z. Fungicide Resistance: Progress in Understanding Mechanism, Monitoring, and
Management. Phytopathology 2023, 113, 707–718. [CrossRef]

30. Arastehfar, A.; Gabaldón, T.; Garcia-Rubio, R.; Jenks, J.D.; Hoenigl, M.; Salzer, H.J.F.; Ilkit, M.; Lass-Flörl, C.; Perlin, D.S.
Drug-Resistant Fungi: An Emerging Challenge Threatening Our Limited Antifungal Armamentarium. Antibiotics 2020, 9, 877.
[CrossRef]

31. Corkley, I.; Fraaije, B.; Hawkins, N. Fungicide Resistance Management: Maximizing the Effective Life of Plant Protection Products.
Plant Pathol. 2022, 71, 150–169. [CrossRef]

32. Budnikov, A.S.; Krylov, I.B.; Ushakov, I.E.; Subbotina, I.R.; Monin, F.K.; Nikishin, G.I.; Efimov, N.N.; Gorbunov, D.E.; Gritsan,
N.P.; Tretyakov, E.V.; et al. Two Discoveries in One Crystal: σ-Type Oxime Radical as an Unforeseen Building Block in Molecular
Magnetics and Its Spatial Structure. Inorg. Chem. 2023, 62, 10965–10972. [CrossRef] [PubMed]

33. Budnikov, A.S.; Krylov, I.B.; Kuzmin, I.V.; Segida, O.O.; Lastovko, A.V.; Shevchenko, M.I.; Nikishin, G.I.; Terent’ev, A.O.
Diacetyliminoxyl as a Selective Radical Reagent for Organic Synthesis: Dehydrogenation and Dehydrogenative C–O Coupling
Reactions. Org. Chem. Front. 2023, 10, 388–398. [CrossRef]

34. Budnikov, A.S.; Krylov, I.B.; Lastovko, A.V.; Dolotov, R.A.; Shevchenko, M.I.; Terent’ev, A.O. The Diacetyliminoxyl Radical in
Oxidative Functionalization of Alkenes. Org. Biomol. Chem. 2023, 21, 7758–7766. [CrossRef] [PubMed]

35. Brandenburg, J.G.; Bannwarth, C.; Hansen, A.; Grimme, S. B97-3c: A Revised Low-Cost Variant of the B97-D Density Functional
Method. J. Chem. Phys. 2018, 148, 064104. [CrossRef]

36. Brauer, V.S.; Rezende, C.P.; Pessoni, A.M.; De Paula, R.G.; Rangappa, K.S.; Nayaka, S.C.; Gupta, V.K.; Almeida, F. Antifungal
Agents in Agriculture: Friends and Foes of Public Health. Biomolecules 2019, 9, 521. [CrossRef]

37. Oerke, E.-C. Crop Losses to Pests. J. Agric. Sci. 2006, 144, 31–43. [CrossRef]
38. Fisher, M.C.; Henk, D.A.; Briggs, C.J.; Brownstein, J.S.; Madoff, L.C.; McCraw, S.L.; Gurr, S.J. Emerging Fungal Threats to Animal,

Plant and Ecosystem Health. Nature 2012, 484, 186–194. [CrossRef]
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