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Abstract: The prediction of the metal cluster within a coordination polymer or complex, as well as
the dimensionality of the resulting polymer or complex (i.e., 0D, 1D, 2D, or 3D), is often challenging.
This is the case for Ph2P(CH2)mPPh2 ligands (1 ≤ m ≤ 8) and CuX salts, particularly for X = I. This
work endeavors a systematic statistical analysis combining studies in the literature and new data,
mapping the nature of the resulting CuI aggregates with eight different diphoshphines in 2:1, 3:2, 1:1,
2:3, and 1:2 CuI:Ph2P(CH2)mPPh2 molar ratios as a function of m, which lead to either pure products
or mixtures. Several trends are made relating stoichiometry and chain length to the CuI cluster
formed (i.e., globular vs. quasi-planar). Four new X-ray structures were determined: [Cu3I2(L1)3]I,
Cu3I3(L2)2, Cu2I2(L6)2, and Cu4I4(L8)2, where m is, respectively, 1, 2, 6, and 8, in which the CuxIy

central aggregates adopt triangular bipyramid, diamond, rhomboid, and cubane shaped motifs,
respectively. Photophysical measurements assisted the establishment of trends considering the
paucity of the crystallographic structures. During this study, it was also found that the 0D-complex
Cu2I2(Ph2P(CH2)5PPh2)2 exhibits thermally activated delayed fluorescence.

Keywords: copper(I) iodide coordination polymers; photophysics; TADF

1. Introduction

The quest to predict the resulting identity of complexes or coordination polymers
(CPs) formed during the reaction between low-valent metals and soft bidentate ligands
is, unfortunately, stubbornly futile. The ubiquitous structure–property relationship is of
utmost importance when it comes to the time at which to aim specific applications, such
as catalysis, medical, and photonic applications, since these features are directly linked
to the nature of the central resulting metal aggregates or nodes, and the constraints, both
rigidity and steric hindrance, imposed by the ligands [1,2]. For instance, the properties and
applications of (di)chalcogenoether and (di)chalcogenone complexes and CPs of copper(I)
halide salts have recently been reviewed, and the main conclusion is that 0D- (distinct
complexes), 1D-, 2D-, and 3D-coordination polymers (CPs) are formed in an unpredictable
manner, with a clear statistical preference for 1D- and 2D-CPs [1,2].

These observations are essentially based on probability. However, good practice states
that predictions should be performed using comparables with a minimum number of
variables to extract reliable cause-and-effect relationships.

Diphosphines, namely of the type Ph2P(CH2)mPPh2 (Ph = phenyl), are an important
class of ligands to the point that many are even available commercially (1 ≤ m ≤ 6, m = 8).
Their reactivity towards CuI salts has also been explored for m = 1 [3–5], 2 [6,7], 3 [8–10],
4 [9,11], and 5 [9], and the main observation is that this brochette of complexes is dominated
by 0D- species, except, to the best of our knowledge, in one case (m = 3), where a 1D-CP has
been reported [12]. This outcome drastically contrasts with that of other reported ligand
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classes, and the obvious question is why there is a such a drastic contrast. A large variation
in the secondary binding unit (SBU) of these complexes can also be found (Figure 1), with
as of yet very little predictability.
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Figure 1. Selected examples of known (CuI)n/diphosphine complexes: (top) step staircase [3,4] eared
cubane [8], and (bottom) rhomboid (C4 and C5 chains) [9]. Gray: carbon, orange: phosphorus, brown:
copper, purple: iodine.

From the reported literature only, it is impossible to extract statistical trends in the
formation of specific SBUs from the reaction conditions. This is due to the overwhelming
paucity in crystallographic and photophysical data. However, a firm preference for the
rhomboid SBU is found, especially for the 1:1 metal salt–ligand ratio, and 2 ≤ m ≤ 5 lig-
ands [6,9,10,13,14]. The apparent predominance of globular (i.e., cubane, eared-cubane,
diamond) motifs for ligand-poor reaction mixtures [6,7,11], and of CuI centers for ligand-
rich mixtures [5,8,12], is confirmed in this work.

We now report a systematic investigation where the stoichiometry of the reaction CuI
vs. diphosphine varies as 2:1, 3:2, 1:1, 2:3, and 1:2 for m = 1 to 8 inclusively (i.e., 40 reaction
mixtures). The presence of unidentified oligomers, for most cases, strongly interferes with
the purity and the uniqueness of the resulting products, where only seven out of forty
reactions give rise to a pure product.

Four new structures, two of which exhibit new motifs for this category of complexes,
were determined using a single crystal X-ray diffraction to increase the current data bank of
10 literature structures. The structure for the Cu4I4(L8)2 product is notable in the sense that
it is the first reported structure for such bis(diphenyl)phosphinoalkane ligands to exhibit a
cubane SBU. Moreover, an unusual (but not unheard of) motif ([triangular bipyramid]+) is
found for the [Cu3I2(L1)3]I complex. The addition of the structures of Cu2I2(L6)2 (rhomboid
SBU) and Cu4I4(L8)2 ends the heretofore inconvenient paucity of crystallographic structures
for these complexes with m > 5. Finally, the Cu3I3(L2)2 structure helps in the precision of
the stoichiometric dependency of the SBU.

A full photophysical characterization of all 40 reaction mixtures was performed to
link central CuI aggregate motifs with spectral and emission lifetime signatures, and
therefore expand the statistical trends reported herein by addressing the crystallographic
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paucity. New CuI cluster formation trends concerning stoichiometry and chain length can
be extracted for the CuI-diphosphine complexes.

2. Results

A code system is used to simplify the reading. In essence, ligands and complexes are
respectively coded Lm and m(x:y) where m is the number of CH2 in the chain and x:y is
the molar stoichiometry ratio used for the reaction CuI:diphosphine ligand.

2.1. Synthesis and Powder X-ray Diffraction (PXRD)

The general reaction is shown in Scheme 1, where dichloromethane was used to
solubilize the diphosphine ligands.
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Scheme 1. General reaction scheme for the preparation of all complexes.

The PXRD pattern of each reaction mixture was acquired. Three typical situations
occur and are now described. The remainder patterns are placed in the Supplementary
Material (Figures S1–S40). The first example concerns the case where the PXRD pattern
corresponds to that of another reported pattern, or a theoretical pattern calculated from a
deposited *.cif file. This is precisely the case for 1(2:1) (Figure 2). In this case, the PXRD
experiment compares favorably to that calculated for the step staircase motif presented in
Figure 1 (top left) [3,4]. Another case of such a situation is occasionally observed when
the stoichiometry of the reaction varies but the major product is the same. This is the case
for the reaction mixtures 4(2:3) and 4(1:2) for the known product (chelate-L4)CuI(bridging-
L4)CuI(chelate-L4) (Figure 3). [11] In brief, the identity and relative purity of a sample
can readily be assessed. The second example concerns the case where the PXRD pattern
exhibits large halos, indicating that the sample is amorphous with no crystalline domain.
The impossibility to crystallize a sample is often due to a mixture of ill-defined species
(like poorly soluble poly-dispersed oligomers). This is the case for the reaction mixture
7(2:3) (Figure 4). It is also noteworthy that, despite a great effort, all attempts to obtain
crystals suitable for X-ray crystallography for any reaction mixture containing L7 stubbornly
failed. Another situation concerns a pattern exhibiting a mixture of sharp diffraction peaks
(similar to those presented in Figures 2 and 3) along with halos (as exemplified in Figure 4),
and is indicative of amorphous and crystalline domains, most likely related to a mixture
of products.
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2.2. Single Crystal X-ray Diffraction

Despite that 40 reaction mixtures were attempted, success in obtaining single crys-
tals suitable for the SCXRD turned out to be poor, thus explaining the relative paucity of
the X-ray structures available throughout the literature (to the best of our knowledge 10,
as mentionned above). In this work, an X-ray analysis permitted us to determine four
new structures for the products issued from 2(2:1), 8(2:1), 6(1:1) and 1(1:1) (Figures 5–8;
crystallographic data in Table 1). The metal aggregates are of a globular shape and adopt,
respectively, a diamond (Cu3I3), cubane (Cu4I4), and triangular bipyramid ([Cu3I2]+) geom-
etry. A supplementary rhomboid (quasi-planar) motif is also found for 6(1:1). The cubane
and triangular bipyramid motifs are not uncommon, but turn out to be unprecedented for
this series of 0D-CuI/Ph2P(CH2)mPPh2 complexes. However, the cubane geometry was
also formed for a previously reported 1D-CP (3(2:1)). It is noteworthy that this CP was
obtained in different solvent and temperature conditions (MeCN/H2O, 1:1 vs. CH2Cl2).

The Cu···Cu distances of the three new structures presented in Figures 5–8 reveal
three distances in the cubane motif that are near the sum of the Van der Waals radii of
copper (2.8 Å), indicating very weak Cu···Cu interactions (Table 2) [1]. One distance at
2.522 Å is also depicted for the diamond central unit for the Cu-Cu bond tightly bridged
by a µ2-iodide. In this case, significant Cu···Cu (cuprophilic) interactions are suspected.
The other bond lengths, Cu-I and Cu-P, and the bond angles, are found to correspond to
previously led investigations on similar complexes [3–14].
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Table 1. Crystal data, data collection, and structure refinement for 2(2:1), 8(2:1), 1(1:1), and 6(1:1).

Compound 2(2:1) · 2 PrCN 8(2:1) 1(1:1) · 4CHCl3 6(1:1)

Formula C60H62Cu3I3N2P4 C64H72Cu4I4P4 C79H70Cl12Cu3I3P6 C60H64Cu2I2P4
Formula weight/g·mol−1 1506.35 1726.85 2201.89 1289.87

Temperature/K 173(2) 173(2) 173(2) 173(2)
Wavelength/Å 1.54178 0.71073 0.71073 0.71073
Crystal system monoclinic monoclinic monoclinic triclinic

Space group P21/c C2/c P21/c P -1
a/Å 17.9896(5) 21.253(6) 23.405(8) 9.9268(13)
b/Å 12.3774(4) 15.418(4) 18.989(7) 12.1348(16)
c/Å 26.7592(8) 21.004(5) 19.594(7) 12.5080(16)
α/◦ 90 90 90 103.0640(10)
β/◦ 96.468(1) 110.805(2) 93.927(5) 92.427(2)
γ/◦ 90 90 90 101.5630(10)

Volume/Å3 5910.5(3) 6434.0(3) 8688.0(5) 1431.8(3)
Z 4 4 4 1

Density (calc.)/g·cm−3 1.693 1.783 1.683 1.496
Absorption

coefficient/mm−1 14.876 3.361 2.315 1.969

F(000) 2968 3376 4336 648
θ range for data

collection/◦ 2.48 to 71.08 1.67 to 26.41 1.50 to 26.49 1.68 to 26.44

Index ranges
−19 ≤ h ≤ 21
−15 ≤ k ≤ 15
−31 ≤ l ≤ 32

−26 ≤ h ≤ 26
−19 ≤ k ≤ 19
−26 ≤ l ≤ 26

−29 ≤ h ≤ 29
−23 ≤ k ≤ 23
−24 ≤ l ≤ 24

−12 ≤ h ≤ 12
−15 ≤ k ≤ 15
−15 ≤ l ≤ 15

Reflections collected 75,549 54,820 68,189 19,954
Independent reflections 11,215 [R(int) = 0.07] 6588 [R(int) = 0.08] 17,432 [R(int) = 0.15] 5863 [R(int) = 0.02]

Refinement method Full-matrix
least-squares on F2

Full-matrix
least-squares on F2

Full-matrix
least-squares on F2

Full-matrix
least-squares on F2

Data/restraints/
parameters 11,215/0/651 6588/0/343 17,432/40/812 5863/0/307

Goodness-of-fit on F2 1.073 1.023 0.999 1.040

Final R indices [I > 2σ(I)] R1 = 0.0339
wR2 = 0.0819

R1 = 0.0344
wR2 = 0.0581

R1 = 0.0719
wR2 = 0.1416

R1 = 0.0275
wR2 = 0.0598

R indices (all data) R1 = 0.0396
wR2 = 0.0849

R1 = 0.0619
wR2 = 0.0650

R1 = 0.1890
wR2 = 0.1830

R1 = 0.0355
wR2 = 0.0628

Largest diff. peak and
hole/e·Å−3 0.939 and −0.766 0.712 and −0.593 1.562 and −1.378 1.106 and −0.754

Table 2. Distances between copper center in newly reported crystal structures showing cuprophilic
interactions. Roman numerals correspond to each copper center, as shown in Figures 5–8.

Sample Cu · Cu distances (Å)

2(2:1)
2.5216(8) (Cu2-Cu3)
3.1667(8) (Cu1-Cu2)
3.1837(8) (Cu1-Cu3)

8(2:1)

2.767(1) (Cu1B-Cu2A)
2.834(1) (Cu2A-Cu2B)

3.0868(9) (Cu1A-Cu2A)
3.202(2) (Cu1A-Cu1B)

1(1:1)
3.074(2) (Cu1-Cu3)
3.098(2) (Cu2-Cu3)
3.148(2) (Cu1-Cu2)

6(1:1) 3.9822(8) (Cu1A-Cu1B)

The structure for 8(2:1) confirms that globular, or cubane-derived, motifs are preferred
for the 2:1 ratio by joining the previously reported (1D-CP) cubane and eared-cubane
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motifs [8,12]. This is also true of 2(2:1)’s diamond-shaped cluster. However, this substance
is the first instance of such a motif in the 2:1 stoichiometry, as the only other reported
instance (with L1) is made from a 3:2 stoichiometry [5]. Based on the literature, 6(1:1)’s
rhomboid motif was highly suspected, as there is a clear trend in rhomboid preference
for this stoichiometric ratio (evidenced by the undisturbed line from m = 2 to m = 5,
inclusively) [6,9,10,13,14]. This trend is broken, however, by 1(1:1)’s peculiar (but not
unheard of) [triangular bipyramid]+ motif.

Using PXRD and SCXRD analyses with reliable identifications, along with those
reported in the literature (SCXRD), the current state of the art is summarized in Table 3.
However, there are many gaps in this Table, where the reaction mixture obtained could not
be identified reliably (Figures S1–S40).

Table 3. Motif of the CuI aggregates for stoichiometric ratios of CuI:diphosphine ligand a–c.

m 2:1 3:2 1:1 2:3 1:2

1 step staircase [3,4] diamond [5] [triangular
bipyramid]+ a – –

2 diamond a – chelate-rhomboid [6] CuI [6,7] CuI b

3
eared cubane [8]
1D-CP cubane

[12]
– chelate-rhomboid

[10,13] – –

4 rhomboid b rhomboid b bridging-rhomboid
[9,14] CuI b CuI [11]

5 – rhomboid b,c bridging-rhomboid
[9,13] – –

6 – rhomboid b,c bridging-rhomboid a – –
7 – – – – –
8 cubane a,c – – – –

a The identification was performed using SCXRD. b The identification was made by comparing the PXRD pattern
with a literature pattern, which was reliably identified. c These samples are reliably identified. However, samples
5(3:2), 6(3:2), and 8(2:1) contain another unidentified species.

It is noteworthy that the presence of excess γ-CuI particles has been observed based on
the characteristic PXRD peaks. From a photophysical standpoint, γ-CuI is non-emissive and
will not affect the luminescence band shape of aggregates containing saturated Cu-centers.
This is the case for several reactions in Table 4.

Table 4. Nature of the reaction mixtures of the CuI/diphosphine reactions in CH2Cl2 after washing
and isolation.

m 2:1 3:2 1:1 2:3 1:2

1 pure mixture a +
γ-CuI mixture a unknown but

pure mixture a

2 mixture a + γ-CuI pure + γ-CuI mixture a pure pure
3 mixture a mixture a mixture a mixture a mixture a

4 pure + γ-CuI pure + γ-CuI pure pure pure

5 mixture + γ-CuI mixture
γ-CuI mixture mixture a mixture a

6 mixture a + γ-CuI mixture a pure mixture a mixture a

7 unknown but pure
+ γ-CuI mixture a mixture a mixture a mixture a

8 mixture a mixture a mixture a mixture a mixture a

a Presence of an amorphous phase has been noted in the mixture.

2.3. Steady-State UV-Vis Spectroscopy

Single crystals suitable for X-ray structure determination were not obtained for all the
reaction mixtures attempted. In previous studies on CuI/dithioether-containing CPs [1,2], there
was a clear distinction between the photoluminescence arising from globular versus quasi-
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planar clusters. The former motifs (cubanes, fused dicubanes, etc.) tend to emit intensively,
and the emission bands are generally red-shifted towards the near-IR. Conversely, the
latter type of motifs (rhomboids, step staircases, etc.) exhibit a blue-shifted triplet emission,
and the intensity of the luminescence tends to be highly variable, most of the time being
silent. Based on this past observation, a trend was sought herein (globular motifs = cubane,
eared cubane, diamond, and triangular bipyramid; quasi-planar = rhomboid, CuI, and step
staircase) to use these signatures as a prediction tool (i.e., marker) for what may be present
in some of the mixtures.

Typical examples of absorption, emission, and excitation spectra are presented in
Figure 9. At room temperature (left), the position of the emission band (λem = 555 nm)
is red-shifted, meaning that the CuI-aggregate is of a globular shape, which is indeed
verified using SCXRD (vide supra) as a diamond shape (Figure 5). A weak shoulder in the
450–500 nm range is noticed. The assignment for the 555 nm-emission is readily ascribed to
a triplet cluster-centered excited state, 3CC*. The microsecond time scale for the emission
lifetimes (vide infra) confirms the triplet nature of this excited state. Upon cooling the solid
sample at 77 K, this intense band becomes weaker, a new band appears as a shoulder, and
this high-energy band then becomes the dominant feature (Figure 9, right). This behavior
is clearly reminiscent of certain Cu4I4P4 cubane-containing materials and permits us to
assign this higher energy signal to 3MXLCT* [15]. Concurrently, the product issued from
the reaction 4(1:1) is pure (Table 4), where 4(1:1) has been identified as the same product
reported in the literature based on the PXRD pattern [9,14]. In this case, the central motif is
a rhomboid motif, as shown in Figure 1 (bottom), and is non-emissive at room temperature.
Conversely, an emission band was detected at 413 nm at 77 K (Table 5). These behaviors
(blue-shifted and not strongly emissive at room temperature) are typical for this motif [1,2].
Moreover, this same behavior has been found for the reliably identified rhomboid motif of
the 6(1:1) reaction mixture.
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The rule of thumb dividing the globular vs. quasi-planar families at ~500 nm is not
bullet-proof as several cases do not conform to it. For instance, pure 1(2:1) (step staircase-
Cu4I4(L1)2, a quasi-planar motif, fused dirhomboid), strongly emits at 597 nm (293 K) and
622 nm (77 K). It is noteworthy that other step staircase-containing materials have also
been reported to be strongly emissive [1,2]. Moreover, a temperature dependence of the
relative intensity between the high- and low-energy bands, as illustrated for the product in
2(2:1), diamond Cu3I3(L2)2, is also possible. This is indeed the case for [Cu3I2(L1)3]I (1(1:1),
[triangular bipyramid]+), which is non-emissive at room temperature but is luminescent at
77 K (λem = 443 nm). One may suspect that the ionic character of this species promotes extra
non-radiative deactivation pathways (cation···anion interactions). Table 5 summarizes
the emission properties, emission maxima, λem, and quantum yields, QY, for all reaction
mixtures (see Figures S41–S106 for all spectra). Room and cryo-temperature spectra for all
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compounds are provided in Figures S41–S106, except for those which are non-emissive at
293 K or 77 K.

Table 5. Steady-state photophysical parameters for the reaction mixtures at 293 K λem (QY) and 77 K
λem (in italics).

Ligand 2:1 3:2 1:1 2:3 1:2

L1 597 nm (0.19)
622 nm

720 nm (<0.01)
423, 667 nm

– a

443 nm
644 nm (– b)
441, 679 nm

– a

441 nm

L2 555 nm (0.03)
435, 471 nm

542 nm (<0.01)
405, 500 nm

546 nm (<0.01)
445, 761 nm

– a

430 nm
– a

443 nm

L3 560 nm (0.08)
430, 600 nm

590 nm (0.06)
450, 600 nm

483 nm (0.04)
430 nm

476 nm (0.01)
445 nm

– a

459 nm

L4 510 nm (0.02)
470 nm

576 nm (0.03)
439, 475 nm

– a

413 nm
488 nm (0.02)

475 nm
– a

417 nm

L5 585 nm (0.31)
433, 599 nm

586 nm (0.14)
435, 569 nm

475 nm (0.01)
464 nm

479 nm (<0.01)
441 nm

– a

434 nm

L6 584 nm (0.39)
428, 586 nm

588 nm (0.17)
429, 589 nm

– a

431 nm
488 nm (– b)

438 nm
– a

433 nm

L7 544 nm (0.45)
457, 563 nm

585 nm (0.37)
433, 588 nm

560 nm (0.05)
430 nm

520 nm (0.01)
474 nm

513 nm (– b)
433 nm

L8 566 nm (0.24)
430, 572 nm

588 nm (0.08)
429, 579 nm

470 nm (0.01)
435, 463 nm

483 nm (<0.01)
430 nm

– a

440 nm
a No emission was observed. b Measurement below the limit of detection.

2.4. Time-Resolved UV-Vis Spectroscopy and Thermally Activated Delayed Fluorescence (TADF)

The emission lifetimes of the pure compounds (including these with γ-CuI) are placed
in Table 6 (all decays are placed in Figures S107–S172). Rigorous analyses of the whole decay
traces (χ2 ~ 1) indicate that the best fit is mostly a polyphasic decay in the microsecond time
scale. This time scale is typical for triplet emissions, and for this type of complexes, and
polyexponential decays are not uncommon for solid state samples. The emission decay of
2(3:2), an unidentified product (Table 3), at room temperature exhibits short components in
the picosecond and nanosecond time scales. These components are most likely associated
with a singlet emission strongly overlapping with the triplet luminescence band, thus
suggesting a small energy gap between the singlet and triplet excited states. Indeed, upon
cooling the sample at 77 K, these short-lived components (ps and short ns) disappear,
which is reminiscent of TADF, a phenomenon that is characterized by a strong dependence
of relative intensities of fluorescence and phosphorescence, along with the fluorescence
lifetime.

As an example, the reaction mixture 5(1:1) is known to produce the bridged rhomboid
(Cu2I2(L5)2) [9,13]. However, ns-components are depicted in the decay trace (Figure S142).
The time-resolved emission spectra, TRES, exhibit a very fast decay of the emission envelope
at 470 nm, finishing at 473 nm when reaching 18 ns (Figure 10), and longer (i.e., microsecond
time scale). At 77 K, these short-lived components disappear (Figure S143). This observation
is also reminiscent of TADF. Emission spectra measured at different temperatures also show
a shift in the placement of the emission band (whereby cooling down the solid compound
produces a slight red-shifting of the emission, Figure S174). Concurrently, measuring the
fluorescence and phosphorescence lifetimes of 5(1:1) at varying temperatures (Figure 11)
yields the calculation of an energy difference of 0.094 eV (758 cm−1) between the S1 and T1
excited states (Equation (1)), which confirms the occurrence of TADF. Indeed, a ∆EST value
under 0.38 eV is generally considered to be the condition for the occurrence of TADF.
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Table 6. Emission lifetimes of selected compounds. a Lifetimes for all compounds are listed in the
Supplementary Materials, Table S1.

Sample τ1 (f1,%) τ2 (f2,%) τ3 (f3,%) τ4 (f4,%) χ2 Notes

1(2:1)

1.03 µs
(1.64)

6.86 µs
(98.4) n.a. n.a. 1.032 293 K

366 ns
(28.3)

1.65 µs
(48.0)

6.38 µs
(23.7) n.a. 1.156 77 K, short

lifetimes

37.0 µs
(100) n.a. n.a. n.a. 1.053 77 K, long

lifetimes

2(3:2)

<100 ps
(21.8)

247 ps
(28.5)

1.30 ns
(49.7) n.a. 1.070 293 K, short

lifetimes

139 ns
(11.5)

704 ns
(27.5)

3.25 µs
(61.0) n.a. 1.076 293 K, long

lifetimes

8.82 µs
(72.7)

41.0 µs
(14.0)

160 µs
(13.3) n.a. 1.094 77 K

4(2:1)

1.73
(49.9)

5.87 µs
(31.3)

42.5 µs
(18.8) n.a. 1.011 293 K

7.85 µs
(34.2)

54.2 µs
(33.4)

250 µs
(32.4) n.a. 1.024 77 K, short

lifetimes

26.5 µs
(1.25)

1.60 ms
(13.2)

9.40 ms
(85.6) n.a. 1.043 77 K, long

lifetimes

4(3:2)

6.54 µs
(19.3)

17.9 µs
(56.7)

91.3 µs
(24.0) n.a. 1.011 293 K

308 ps
(16.1)

1.23 ns
(53.9)

4.85 ns
(30.0) n.a. 1.069 77 K, short

lifetimes

120 µs
(5.08)

1.60 ms
(8.03)

8.70 ms
(86.9) n.a. 1.045 77 K, long

lifetimes

4(1:1) 36.9 µs
(22.2)

110 µs
(47.3)

380 µs
(30.6) n.a. 1.059 77 K

4(2:3)

<100 ps
(5.94)

612 ps
(16.2)

2.24 ns
(41.6)

6.15 ns
(36.3) 1.075 293 K

487 ps
(20.3)

1.61 ns
(39.3)

5.25 ns
(40.4) n.a. 1.040 77 K, short

lifetimes

190 µs
(9.86)

1.10 ms
(11.4)

10.0 ms
(78.7) n.a. 1.003 77 K, long

lifetimes

4(1:2) 17.1 µs
(19.9)

68.1 µs
(50.7)

290 µs
(29.5) n.a. 1.063 77 K

6(1:1) 294 ns
(20.1)

55.8 µs
(49.6)

110 µs
(30.3) n.a. 1.036 77 K

7(2:1) 1.30 µs
(3.79)

5.00 µs
(96.2) n.a. n.a. 1.088 293 K

a fi(%) = (Biτi)/Σ(Biτi) ×100%; Iem(t) = Σ(Bi exp(−t/τi); n.a.: no further lifetime component found.

τobs =
1 + 1

3 exp
(
−∆EST

kBT

)
1

τS1
+ 1

3τT1
exp

(
−∆EST

kBT

) (1)
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3. Discussion
3.1. Statistical Structural Predictability

Three major conclusions can be drawn from the structural data presented herein.
Firstly, the crystallizable materials using bisphosphine ligands lead overwhelmingly

to 0D complexes rather than coordination polymers. This is assigned to the quite strong
Cu-P bond (especially compared to other reported CPs using CuX, such as with N- or S-
ligands) [1,2], as well as to the occasionally poor solubility of the products. However, the
presence of CPs, or more precisely poly-dispersed oligomers, within the mixtures, is highly
suspected, since a 1D-CP in the series, 3(2:1), was previously reported [12], and recent
investigations were carried out where [Cu4I4(PPh2R)2]n-containing CPs (bidentate ligands
with R = various rigid chains) were prepared but no crystal suitable for the SCXRD was
presented [16,17]. Moreover, large amorphous halos in the presented PXRD patterns can
readily be observed in this work.

Secondly, there seems to be a marked stoichiometric preference in the formation of
specific SBUs. Namely, cubane and other globally Cu2I2Lm aggregates strongly favor
ligand-poor mixtures. Diamond motifs prefer the slightly less ligand-poor 3:2 ratio, which
corresponds to the stoichiometry of the complex. Rhomboid motifs are frequently encoun-
tered when the 1:1 ratio is used, but do not occur exclusively within this ratio, as this very
stable motif may be preferentially formed in other more ligand-poor mixtures, leaving
extra metal salt behind (as seen from residual γ-CuI in the PXRD, Table 4). On the other
side of the stoichiometric spectrum, highly ligand-rich mixtures lead almost invariably to
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CuI centers, which is consistent with the unfavorable energetic costs of leaving the starting
uncoordinated ligands.

Thirdly, ligands exhibiting a short bite distance (i.e., L1 and L2) show a preference for
globular motifs (diamond, [triangular bipyramid]+), probably due to the high bond strain
that would be implied by the formation of a rhomboid motif.

3.2. Photophysical Trends

Although not bullet-proof, a general trend in the emission (phosphorescence) and
photoluminescence lifetimes of CuI-diphosphine complexes can be formed. Indeed, the
high- and low-energy bands observed in the emission spectra (under and above 500 nm
each) have been previously assigned to 3MXLCT*, metal/halide-to-ligand charge transfer,
and 3CC*, cluster-centered triplet excited states, respectively, for cubane species [18,19].
The 3CC* emission becomes more dominant (intense and red-shifted) as the cuprophilic
interactions get stronger (i.e., shorter Cu···Cu distances). For some cases, the relative
intensities of the 3CC* and 3MXLCT* bands are temperature-dependent [20]. This simplified
version, 3CC* (low-energy) and 3MXLCT* (high-energy), have recently been updated by
complementing this diagram with other upper excited states, which may appear at a
lower energy depending on the treatment of the Cu4I4P4 cubane-containing solid [15].
Concurrently, the rhomboid motifs exhibit 3MXLCT*-type excited states only [21]. In brief,
the emission maximum for the 3CC* and 3MXLCT*, which in a way may be associated
with globular and quasi-planar species, respectively, are mainly placed above and below
500 nm, respectively, at room temperature. Therefore, on the one hand, the occurrence of a
high-energy band associated with 3MXLCT phosphorescence under 500 nm is assigned
to rhomboid and associated quasi-planar motifs. On the other hand, the occurrence of
a lower-energy band associated with 3CC phosphorescence over 500 nm is assigned to
cubane and associated globular motifs. The temperature dependence of the prevalence of
3CC over 3MXLCT luminescence is also a trademark of globular motifs.

However, this rule has been shown to be of limited certitude, as several cases (e.g.,
1(2:1) and 1(1:1)) do not conform to it. In these cases, a complete SCXRD study is needed to
elucidate the identity of the SBU. However, the deviation from the rule can be explained
consequentially.

This tool based on emission wavelength can be complemented by the consideration
of the excited state lifetimes. Indeed, short (i.e., ps-ns) lifetimes overlapping with longer
(µs-ms) lifetimes can be a sign of a singlet emission strongly overlapping with a triplet
emission. This suggests a small singlet-to-triplet energy gap, which would suggest that
the lowest energy excited state is 3MXLCT*, thus leading to a rhomboid or quasi-planar
motif. Since the rare signature of TADF implies a very small difference between the S1
and T1 states, its presence could also be employed to establish a link between the structure
and photophysical behavior. Indeed, several rhomboid-containing complexes (Cu2I2P4)
have been reported to exhibit TADF [22–24]. This is true for other soft ligand complexes
involving the rhomboid motif Cu2I2L4 (L = N-, As-, or P- ligand) [24–27]. Conversely, to
the best of our knowledge for Cu4I4L4-cubane-containing materials (L = N-, P-, S-ligand),
the literature exhibits no evidence for TADF. This outcome is simply due to the large energy
gap between the singlet and triplet excited states for this type of complexes, as evidenced
by the very large Stoke shift generally encountered for this motif.

Therefore, quasi-planar motifs can be predicted if there is a prevalence of the following
signs: (1) emission under 500 nm, (2) low emission quantum yield, (3) co-occurrence of
ps-ns lifetimes with µs-ms lifetimes, (4) temperature-dependence of the lifetimes, where
the ps-ns components disappear at low temperatures, and (5) occurrence of TADF.

On the other hand, the prevalence of the following indicates a globular motif: (1) one
emission band over 500 nm at 293 K, (2) upon cooling, the appearance of a high energy
band (under 500 nm), (3) high emission quantum yield, and (4) no short (ps-ns) lifetimes.
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4. Materials and Methods
4.1. Synthesis
4.1.1. Materials

Copper(I) iodide, and seven bis(diphenylphosphino)alkanes (L1, L2, L3, L4, L5, L6,
and L8), 1,7-dibromoheptane, and diphenylphosphine (10% wt. in hexanes) were acquired
from Millipore Sigma (Burlington, MA, USA), Oakwood Chemicals (Estill, SC, USA), and
Ambeed (Arlington Heights, IL, USA). They were used without further purifications.

4.1.2. Procedure for the Synthesis of 1,7-Bis(Diphenylphosphino)Heptane (L7)

Powdered KOH (0.6 g, 10.5 mmol) was placed in a three-neck flask (150 mL), equipped
with a magnetic stirrer, under Ar atmosphere. DMSO (45 mL) was added, the mixture
was stirred at room temperature for 10 min, and diphenylphosphine (10% (wt. in n-
hexane) solution (10.5 mL, 3.8 mmol) was added dropwise. The resulting pink solution
was stirred at room temperature for another 10 min. Subsequently, 1,7-dibromoheptane
(0.3 mL, 1.7 mmol) was added dropwise. The reaction mixture was stirred for 5 min
after it became colorless and poured into 200 mL of water, followed by bubbling with air
for approximately 2 min. The product was extracted with hexanes (3 × 75 mL), organic
layers were combined, washed with water and brine, dried over Na2SO4, filtered, and
evaporated to obtain 0.9 g of a crude extract. The reaction was repeated on the same scale
and crudes from the two batches (0.9 g and 1.5 g) were combined and chromatophied
with silica with the help of a flash machine using a gradient elution from hexanes 100% to
hexanes/dichloromethane = 70/30%. The material obtained after chromatography was
precipitated twice from hot isopropanol under Ar to obtain 723 mg of the product as a
colorless oil. Y = 22%. 1H NMR (400 MHz, CDCl3, Figure S175): δ 7.47–7.41 (m, 8H),
7.38–7.32 (m, 12H), 2.06 (dd, J1 = 9.0 Hz, J2 = 6.1 Hz, 4H), 1.49–1.35 (m, 8H), 1.33–1.24
(m, 2H) ppm. 31P NMR (162 MHz, CDCl3, Figure S176): −15.71 ppm. 13C NMR (100 MHz,
CDCl3, Figure S177): 132.82, 132.64, 128.63, 128.46, 128.39, 31.07, 30.94, 28.82, 27.76, 25.89,
25.74 ppm.

4.1.3. General Procedure for the Synthesis of Complexes

Following Scheme 1, complexes 1(2:1) through 8(1:2) were synthesized in the same
manner. As an example, the synthesis of 1(2:1) is given. Dichloromethane (25 mL) is
degassed using argon for 5 min under magnetic stirring at room temperature. Copper(I) io-
dide (500 mg, 2.62 mmol) is suspended in the solvent, and bis(diphenylphosphino)methane
(523 mg, 1.31 mmol) is added. The reaction is stirred for 1–12 h at room temperature. For
some compounds, the reaction is completed when a white precipitate appears. For others,
it is found to be complete when a clear solution is reached. Precipitates are separated using
vacuum filtration. Solubilized products are isolated by the evaporation under reduced
pressure of the solvent. Residual solvent traces are removed by the application of a vacuum.

4.1.4. Crystalization

Single crystals of 2(2:1) were obtained by the slow cooling of a hot solution of the
product in propionitrile. CAUTION: Propionitrile is highly acutely toxic (LD50 = 39 mg/kg
bw oral, rats) through inhalation, dermal, and oral pathways [28]. Single crystals of 8(2:1)
and 1(1:1) were obtained by the slow evaporation of solutions of the products in chloroform.
Single crystals of 6(1:1) were obtained by layering a portion of hexanes over a concentrated
DCM solution of the compound and waiting for the non-solvent to diffuse and cause the
apparition of suitably large crystals.

Propionitrile acts as a modulating agent for crystallization, as it can momentarily replace
the ligand molecules in the complex. Chloroform and DCM can solubilize the complexes
rather easily in some cases. Hexanes is a very clear non-solvent and causes desolubilization.
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4.2. Instrumentation
4.2.1. Powder X-ray Diffraction Measurements

Powder samples of the reaction mixtures were used for PXRD measurements. A
small sample of powder was dispersed over a ZERO diffraction plate from Charles Supper
Company and placed for analysis in a BRUKER D8 ADVANCE diffractometer.

Diffractograms were acquired using the DIFFRAC.COMMANDER (version 8.6.3.0)
software (accessed on 30 September 2023) from BRUKER using Cu Kα (1.54060 Å) as
an X-ray source (40.0 kV, 40.0 mA). Data were collected from 4 to 60◦ (2θ) over 2046
steps (0.027◦step−1; 0.50 s.step−1) using a LynxEye detector. No further data treatment or
baselining was done to the acquired diffractograms.

4.2.2. Single Crystal X-ray Stucture Analyses

Single crystals of 2(2:1), 8(2:1), 1(1:1), and 6(1:1) were mounted on a Bruker D8 Venture
four-circle diffractometer equipped with an Oxford Cryosystems nitrogen jet stream low-
temperature system. X-ray radiation was generated with Mo-Kα radiation (λ = 0.71073 Å)
or Cu-Kα for 2(2:1), monochromated through graphite from a microfocus IµS tube from
Incoatec GmbH, Geesthacht, Germany. Applying a least-squares fit to the optimized setting
angles of the entire set of collected reflections yielded the lattice parameters. Intensity
data were recorded as φ and ω scans with κ offsets. No significant intensity decay or
temperature drift was observed during data collections. SAINT v8.37A (Bruker AXS Inc.,
Madison, WI, USA, 2015) software was used to reduce data, and absorption correction
was effected using SADABS-2016/2 (Bruker, 2016). Structure elucidation was performed
using SHELXT (Sheldrick, 2015) with intrinsic phasing. H-atoms were placed geometrically
and refined on a riding model. Hydrogen atoms were located from difference Fourier
maps, refined at idealized positions riding on the carbon atoms with isotropic displacement
parameters Uiso(H) = 1.2Ueq(C) or 1.5Ueq(-CH3) and C-H 0.95–1.00 Å. All CH3 hydrogen
atoms were allowed to rotate but not to tip. Full-matrix least-squares on F2 was carried
out using SHELXL program (Sheldrick, 2015) on the complete set of reflections. All non-
hydrogen atoms were refined with anisotropic displacement parameters, whereas H-atoms
were treated in a riding mode [29–31]. It is noted that structures 8(2:1) and 6(1:1) lie on
special positions (Wyckoff sites 8f and 2i, respectively).

4.2.3. Solid-State UV-Vis Absorption Spectra

Solid-state UV-Vis absorption spectra were obtained from the sample dispersed be-
tween two quartz plates on a Varian Cary 300 Bio UV-Vis spectrophotometer (sourced from
Agilent Technologies Inc., Santa Clara, CA, USA) at 293 K.

4.2.4. Solid-State UV-Vis Photoluminescence Spectra

Solid-state UV-Vis emission and excitation spectra were obtained at 293 K from the
sample enclosed in a borosilicate glass capillary on a FLS980 (Edinburgh Instruments)
equipped with single monochromators sourced from Edinburgh Instruments Ltd., Kirkton,
Scotland, UK. Spectra at 77 K were acquired in the same manner, but the capillaries were
immersed in a liquid nitrogen-filled dewar equipped with a transparent tip. All spectra
were corrected for instrument response.

4.2.5. Solid-State UV-Vis Photoluminescence Lifetime Measurements

Solid-state UV-Vis photoluminescence lifetimes were measured at 293 K and 77 K on
a FLS980 (Edinburgh Instruments) equipped with either a µs-“flash” pulsed lamp or a
nano-LED laser (λex = 378 nm; 15 mW; full width at half-maximum (FWHM) = 120 ps).
Measurements were treated using the time-correlated single-photon counting (TCSPC)
method, and data were treated by multiexponential deconvolution analysis. All values
have an uncertainty of ±10% based on multiple measurements.
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4.2.6. Quantum Yield Measurements

Solid-state emission quantum yields were recorded using a Quanta-ϕ F-3029 integra-
tion sphere from Horiba plugged into a Horiba Fluorolog III, sourced from Horiba Ltd.,
Kyoto, Japan.

4.2.7. Temperature-Dependent Photoluminescence Measurements

Steady-state emission spectra and luminescence quantum yield measurements were
recorded on a Horiba Jobin-Yvon (HJY) Fluorolog-3 (FL3-2iHR550) fluorescence spectroflu-
orometer equipped with an IR R928P PMT/HJY FL-1073 detector and with an integrating
sphere sourced from HORIBA Europe Research Center, Palaiseau 91120, France. Low
temperature measurements were allowed by using an OptistatCF (Oxford Inst.) in the
range of 77 K to 300 K sourced from Oxford Instruments, Abingdon OX13 5QX, United
Kingdom. Excited-state lifetimes in the range of 80 K to 300 K were measured with a delta
hub (TCSPC: Time-Correlated Single-Photon Counting) + delta diode system, allowing us
to measure excited-state lifetimes between 500 ps and 10 µsand, and with a pulsed xenon
source (FL-1035), allowing us to measure excited-state lifetimes longer than 10 µs. Solid
samples were placed in a quartz sample holder inside the cryostat and maintained at the
desired temperature until equilibrium was reached before recording the spectrum. The
experimental data were then fitted according to equation 1 where τobs, τS1, τT1, kB, T, and
∆EST represent the observed lifetime, singlet state decay lifetime, triplet state decay lifetime,
Boltzmann constant, temperature, and singlet-triplet energy difference, respectively [32].

5. Conclusions

This systematic investigation has tackled the very challenging topic of anticipating
the nature of the coordination products between a soft metal halide, in this case CuI, and
a soft ditopic ligand, in this case diphosphine of the type Ph2P(CH2)mPPh2 (1 ≤ m ≤ 8).
We have found a strong stoichiometric dependence, where ligand-poor mixtures form
globular complexes preferentially, and vice-versa. We have also found that short-bite
ligands form globular SBUs preferentially. Moreover, there is a marked preference for all
reaction mixtures used towards 0D complexes. Finally, a prediction tool using emission
and excited state lifetimes as markers has been developed for the prediction of globular vs.
quasi-planar motifs in unidentified CuI-diphosphine complexes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28237781/s1, Figures S1–S177: supplementary data;
Table S1: PL decay lifetimes for all compounds. Crystal structures can be accessed from the Cambridge
crystallographic database: www.ccdc.cam.ac.uk/structures/ [accessed on 24 November 2023] under
accession codes 2304966; 2304967; 2304968; 2304969.
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