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Abstract: Advances in nanotechnology have brought innovations to cancer therapy. Nanoparticle-
based anticancer drugs have achieved great success from bench to bedside. However, insufficient
therapy efficacy due to various physiological barriers in the body remains a key challenge. To
overcome these biological barriers and improve the therapeutic efficacy of cancers, multistage self-
assembled nanomaterials with advantages of stimuli-responsiveness, programmable delivery, and
immune modulations provide great opportunities. In this review, we describe the typical biological
barriers for nanomedicines, discuss the recent achievements of multistage self-assembled nanomate-
rials for stimuli-responsive drug delivery, highlighting the programmable delivery nanomaterials,
in situ transformable self-assembled nanomaterials, and immune-reprogramming nanomaterials.
Ultimately, we perspective the future opportunities and challenges of multistage self-assembled
nanomaterials for cancer immunotherapy.

Keywords: cancer immunotherapy; in vivo self-assembly; drug delivery; multistage; stimuli–response;
tumor microenvironment

1. Introduction

Cancer immunotherapy is an advanced therapeutic strategy for cancers that boosts the
body’s own immune system to fight cancer cells and has gradually changed the paradigm
of cancer therapy in clinics [1–3]. In cancer patients, the tumor and its microenviron-
ment usually suppress the host immune response by suppressing signaling pathways and
metabolisms to escape the eliminations by immune cells such as T cells and natural killer
(NK) cells [4–6]. Multiple defensive mechanisms, including defects in immune checkpoint
expression, upregulations of immune-suppressive pathways, recruitments of immune-
suppressive cells, etc., are involved in the immune surveillance of cancer cells. Different
approaches have been developed for cancer immunotherapy, including immune checkpoint
inhibitors, adoptive cell transfer, cancer vaccines, oncolytic viruses, lymphocyte-activating
cytokines, etc. [7–10]. Currently, immune checkpoint inhibitors are one of the most success-
ful therapeutics in cancer immunotherapy [11]. Since Ipilimumab, a monoclonal antibody
that blocks cytotoxic T lymphocyte-associated protein 4 (CTLA-4), was first approved
by the U.S. Food and Drug Administration (FDA) in 2011 [12], more than 20 immune
checkpoint inhibitors have been marketed in the US, Asia, and Europe. Targets of these
immune checkpoint inhibitors include CTLA-4, programmed cell death 1/programmed
death ligand 1 (PD-1/PD-L1), and lymphocyte activation gene 3. Despite great successes,
low responsive rates and immune-related adverse effects are still the main hurdles to cancer
immunotherapy in the clinic [13,14].
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Progresses in nanotechnology have promoted nanocarriers as a promising drug de-
livery approach for efficient cancer therapy [15–23] due to their advantages of targeted
and controlled drug release in tumor sites, rational design in the size, structure, and mor-
phology, spatiotemporal control in multi-functions, easy modification of biology-active
moieties on the surface for recognizing tumoral biomarkers, reduction in side effects, flex-
ibility to combine other synergistic therapies, etc. Various nanoformulations have been
applied to improve the effectiveness of cancer, including polymeric nanoparticles [24–28],
lipid-like nanoparticles [29–34], peptides and proteins [35–39], nucleic acids [40–42], den-
drimers [43–47], inorganic nanomaterials [48–56], and biological membrane-based nanopar-
ticles [57–65]. Up to now, significant successes have been made in the clinical translation of
nanomedicines for cancer chemotherapy [66–69]. Several nanoparticle-based anticancer
drugs have been marketed (Table 1) [70–73], including the liposomal formulations of
doxorubicin (DOX) (e.g., Doxil), the albumin-bond paclitaxel (Abraxane), the polymeric
micelles of paclitaxel (Genexol-PM), the small molecular micelles of paclitaxel (Paclical), etc.
Recently, nanomedicines have also demonstrated promising potential to improve cancer
immunotherapy. Some excellent reviews have highlighted these advances [74–91].

Table 1. Currently marketed anticancer nanomedicines in the clinic.

Generic Name Formulations Active Pharmaceutical
Ingredients Cancer Type Approved Year

Doxil Pegylated liposome Doxorubicin
HIV-related Kaposi sarcoma,
ovarian cancer, and multiple

myeloma
1995

DaunoXome Liposome Daunorubicin HIV-related Kaposi sarcoma 1996
Myocet Liposome Doxorubicin Metastatic breast cancer 2000 (Europe)

Lipusu Liposome Paclitaxel Breast cancer and
non-small-cell lung cancer 2003 (China)

Mepact Liposome
Muramyl tripeptide

phos-
phatidylethanolamine

Nonmetastatic, resectable
osteosarcoma 2009 (Europe)

Marqibo Liposome Vincristine sulfate Acute lymphoblastic
leukemia 2012

Onivyde Pegylated liposome Irinotecan Post-gemcitabine metastatic
pancreatic cancer 2015

Liporaxel Lipid nanoparticle
(oral) Paclitaxel Gastric cancer 2016 (Korea)

Vyxeos Liposome Daunorubicin and
cytarabine

Secondary acute myeloid
leukemia 2017

Abraxane Albumin-bond
nanoparticles Paclitaxel Breast, lung, and pancreatic

cancer 2005

SMANCS Polymer conjugate Neocarzinostatin Liver and renal cancer 1993 (Japan)

Genexol-PM Polymeric micelle Paclitaxel Breast cancer and non-small
cell lung cancer 2007 (Korea)

PICN Polymeric nanoparticle Paclitaxel Breast cancer 2014 (India)

Apealea/Paclical Small molecular
(XR-17) micelle Paclitaxel Ovarian cancer 2015 (Russia)/2018

(Europe)

NanoTherm Inorganic nanoparticle
Iron oxide

nanoparticle-induced
hyperthermia

Glioblastoma 2010 (Europe)

NBTXR3 Inorganic nanoparticle Hafnium oxide
nanoparticles

Locally advanced squamous
cell carcinoma

Fast track designation
in 2020

HIV: human immunodeficiency virus.

Nanomedicines are believed to accumulate in tumor regions via the hyperpermeable
tumoral vasculature and dynamic leakage sites on the tumoral vessel wall, as well as
the immature lymphatic drainage from tumor tissues, which is known as the enhanced
permeability and retention (EPR) effect [92–95]. With a deeper understanding of the
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pharmacokinetics of nanomedicines and tumor microenvironments, nanomedicines have
been developed from passive targeting systems to active targeting systems. However, due
to the high heterogeneity of the EPR effect in the clinic [96–98] and various physiological
barriers in human bodies, nanocarriers still encounter low delivery efficacy and poor
therapeutic effect on tumors [99–101]. Thus, new strategies to overcome sophisticated
physiological barriers are still urgent to improve the delivery efficacy of nanomedicines.

One strategy is to rational design and construct nanomaterials to deliver drugs in a
multistage process to overcome multiple physiological barriers, thus achieving enhanced tu-
mor accumulation and improved immunomodulation for cancer therapy [102–105]. These
multistage nanomaterials can hierarchically change features, including size, morphology,
surface modification, and core formation, upon external or internal stimuli, adapting to
upcoming physiological environments like regional blood flow, tumor microenvironments,
and intra/intercellular environments. Compared with conventional nanocarriers, these
multistage nanomaterials are more likely accommodated to tumors in sophisticated physio-
logical environments. In the following sections, we describe the typical biological barriers
for nanomedicines, summarize the recent progress of multistage self-assembled nanomate-
rials for stimuli-responsive drug delivery, particularly in situ self-assembled nanomaterials
and immune-reprograming nanomaterials, and perspective the future opportunities and
challenges for multistage self-assembled nanomaterials for cancer immunotherapy.

2. Physiological Barriers for Nanomedicines

The pharmacokinetics of nanomedicines are strongly affected by administration routes
and their physicochemical properties, including composition, size, shape, charge, surface
modification, etc. [106,107]. Conventionally, an optimized nanocarrier for systemic drug
delivery usually possesses several parameters [108–111], including (i) a proper size within
10–100 nm, (ii) a stealth shell such as a poly(ethylene glycol) (PEG) corona, (iii) tumor-
targeting ligands on the surface, and (iv) a core for loading therapeutic cargos. Compared
with small molecular drugs, these nano-scaled drugs present unique pharmacokinetics
after systemic administration. They can circulate long in the blood flow and are more likely
to escape from excreting through the kidney and being captured by the reticuloendothelial
system (RES) in the liver, lung, and spleen, resulting in enhanced tumor accumulation.
Some reviews have discussed the pharmacokinetics of nanoparticles after systemic ad-
ministration in detail [112–117]. However, conventional nanomedicines still encounter the
problems of low delivery efficacy and unsatisfied therapeutic outcomes due to the various
physiological barriers in the body [118].

2.1. Physiological Barriers for Nanomedicines

Upon systemic administration, nanomedicines encounter a series of sequential bar-
berries before successfully arriving at the tumor sites (Figure 1) [119–121]. The rapid
clearance in blood flow and uptake by the RES are the first obstacles to nanomedicines
after administration, which, on average, contributes to more than 99% loss of injected
nanomedicines [122,123]. The major challenges of nanomedicines during blood circulation
are the degradation by enzymes, uptake by the RES and mononuclear phagocyte system,
and excretion by the kidney. Of note, nanomedicines in the bloodstream face the problem
of the formation of protein coronas due to the coverage by serum proteins [124–127], which
inactivates the targeting ability of the ligand and facilitates the uptake by macrophages in
the mononuclear phagocyte system, resulting in the non-specific accumulation and side
effect to health organs such as liver, spleen, and lung. In addition, the blood flow also
influences the stability of nanocarriers and usually causes burst release of the payloads.
Another substantial barrier to nanocarriers is the high intratumoral pressure, which is
associated with interrupted blood vessels, aggressive tumor cell proliferation, stroma cells,
tumor-associated fibroblasts, and the extracellular matrix, impeding the convection of
nanocarriers from tumoral vessels to tumor tissues and the deep penetration of nanocarri-
ers within tumors [128–130]. Upon arrival at the tumor cells, cellular internalization and
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endosome escape are demonstrated as essential barriers for nanomedicines to approach
therapeutic effects. Unfortunately, most nanomedicines possessing long blood circulation
properties encounter the problem of poor uptake by the targeted cells, known as the “PEG
dilemma” [131]. Meanwhile, nanomedicines installed with active-targeting ligands also
face the risk of off-target effects caused by the formation of protein coronas [132,133]. In
addition, drug resistance due to the drug efflux pumps has also proved to be a considerable
obstacle for nanomedicines [134,135]. These biological barriers strongly hamper the clinical
translation of nanomedicines from bench to bedside.
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2.2. Passive and Active Targeting

The proposal of the EPR effect by Maeda in the 1980s established the base of
nanomedicines [92]. Passive targeting nanocarriers refer to those that rely on the EPR
effect to accumulate in tumors. These nanocarriers have been developed as the first genera-
tion of nano-scaled drug delivery systems. The equipment of stealth shells, such as PEGs
and zwitterionic polymers [136], as well as the precise control of size in 10–100 nm, are
two important features for designing this generation of nanocarriers. Some works have
especially highlighted the advantages of sub-50 nm nanoparticles for deep penetration in
thick fibrotic tumor models and metastatic tumor models [137–140]. Until now, passive tar-
geting nanocarriers have achieved great success in clinical translations. Current marketed
nanoparticle-based anticancer drugs all rely on passive targeting pathways to accumulate
in tumors. However, evidence has pointed out that the liposomal DOX failed to show
improvements in the objective response, overall survival, and progression-free survival
rates via a meta-analysis in a total of 2589 patients in the clinic [141]. The unsatisfied
performances of nanomedicines in the clinic are possibly due to the unspecific delivery
and the highly heterogeneous EPR effect in patients [142–145]. Different patients, cancer
types, and even different tumoral lesions in the same patient represent different responses
to the EPR effect. To improve anticancer efficacy, ligand-installed nanocarriers for the active
targeting of tumors have been developed as the second generation of nano-scale drug
delivery systems. These active targeting nanocarriers rely on both the EPR effect to arrive
at the tumor sites and the strong bind affinity to the specific biomarkers on targeted cancer
cells and tumor vascular epithelial cells [146–150]. Up to now, different small molecules
and biomolecules have been developed as targeting ligands [151–153], including folic
acid [154–156], glucose [157–160], galactose [161], transferrin [162], antibodies [163–165],
peptides [166,167], aptamers [168–173], etc. Notably, glucosylated nanocarriers have also
been developed to cross the blood–brain barrier for drug delivery to the brain. For instance,
Kataoka and coworkers reported a strategy for delivering glucosylated nanocarriers to the
brain using glycemic control [174–176]. They conjugated the PD-L1 antibody with multiple
PEG chains equipped with glucose via the C6 position, leaving the OH groups at positions
C1, C3, and C4 to bind with the glucose transporter-1 overexpressed in brain capillaries.
The PEG chains could detach in the tumor microenvironment to reinvigorate the potency of
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the antibody. In the orthotopic glioblastoma tumor-bearing mouse model, the glucosylated
antibody achieved ~20-fold improvement in tumor accumulation compared with native
antibody, resulting in potent antitumor immune response and immunological memory.
Besides blood–brain barrier crossing, the same group also achieved the delivery of small
interfering RNA (siRNA) to cancer stem cells (CSCs) using glucose-installed nanoparti-
cles [177]. The glucose ligands on the sub-50 nm unimer polyion complex–assembled gold
nanoparticle [178,179] specifically recognized the glucose transporter-1 overexpressed on
the cell membranes of CSCs, resulting in a 2-fold higher delivery efficacy of siRNA to
the orthotopic breast tumor model and 2.4-fold enhanced elimination of CSCs in tumor
tissues compared with non-targeted nanoparticles. Up to now, at least 15 formulations
of nanomedicines based on ligand-installed nanocarriers have been enrolled in clinical
trials, including nine liposomal formulations (MM-302, C225-ILSDOX, anti-EGFR-IL-dox,
SGT-53, SGT-94, Lipovaxin-MM, MCC-465, 2B3-101, and MBP-426), two bacterial-derived
minicells (TargomiRs and EGFR(V)-EDV-Dox), two polymeric nanoparticles (BIND-014
and CALAA-01), one retroviral vector (Rexin-G), and one nanoparticle-based vaccine for
smoking cessation (SEL-068). However, compared with the great success of antibody–drug
conjugates in the clinic [180–184], the clinical translation of ligand-installed nanomedicines
still encounters the hurdle of poor therapeutic outcomes in clinical trials. For instance,
the BIND-014 was terminated in the phase II study due to its unsatisfactory therapeutic
outcomes [185]. One reason is the heterogeneity of prostate-specific membrane antigen
expression in each individual patient. To facilitate successful clinical translations of active
targeting nanomedicines, it is important to establish proper and reliable models more
closely to human tumoral environments and to develop non-invasion companion nano-
diagnostic systems to monitor the therapeutic outcomes.

2.3. Cold Tumors and Hot Tumors

Besides the physiological barriers for nano delivery systems, the immunosuppressive
microenvironment is also a critical hurdle for cancer immunotherapy, resulting in low
response rates [186]. The immune checkpoint inhibitors-mediated antitumor response
relies on the infiltration of T cells that recognize and kill tumor cells. However, immune
checkpoint inhibitors are ineffective against cold tumors with little or no immune infil-
tration around cancer cells, leaving the immune system unable to attack and obliterate
them effectively. This type of cancer is usually not sensitive to immunotherapy. In con-
trast, hot tumors have a large number of immune infiltrates around the cancer cells, and
the cancer cells release signaling substances that attract immune cells and activate the
immune response. This type of cancer is usually sensitive to immunotherapy. Current
obstacles to treating cold tumors include the lack of effective antigens which provide
targets for immunotherapy. In patients with cold tumors, there are few or no antigens
on the surface of cancer cells, making it difficult for immune cells to identify and attack
the cancer effectively. Therefore, it is necessary to further study the mechanism of tumor
immune microenvironment in cold tumors to improve the outcomes of patients with cold
tumors [187]. Tuning cold tumors into hot tumors is promising to improve the therapeu-
tic effect of immune checkpoint inhibitors [188,189]. To this end, several strategies have
been reported, such as promoting T cell priming and activation by increasing the antigen
processing and presentation, enhancing T cell expansion by increasing the numbers of
antigen-specific T cells, and augmenting T cell trafficking and infiltration by remodeling
the tumor immune microenvironment, etc. [190]. Nanomedicines can contribute to these
processes by targeting the cancer cells, tumor immune microenvironments, and periph-
eral immune system [191,192], providing assessments to overcome the barrier of tumor
immunosuppressive microenvironment [193,194].

3. Stimuli-Responsive Nanomedicines for Cancer Immunotherapy

Increasing knowledge in tumor biophysics and biochemistry, especially tumor mi-
croenvironments, has promoted the development of stimuli-responsive nanocarriers for
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precise and specific drug release [195–200]. Triggered by internal stimuli such as tumoral
acid [201–208], redox [209–225], hypoxia [226–231], and enzymes [232–239], or external
stimuli like near-infrared (NIR) light and ultrasound [240–250], these nanocarriers are
expected to specifically deliver and release drugs in the tumor site in a controlled manner.

3.1. Tumor Microenvironment-Responsive Nanomedicines

Tumor microenvironments refer to the surrounding environments in tumor regions,
including the abnormal vasculature, acid, hypoxia, tumor-associated enzymes, redox,
the extracellular matrix, stroma, intratumoral pressure, cancer stem cells, immune cells,
etc. [251,252], which provide hotbeds for tumor proliferation, immune evasion, metastasis,
and recurrence [253–256]. It has been recognized that the normalizing and remodeling of
tumor microenvironments using antiangiogenic agents and antifibrosis drugs is a promis-
ing strategy to improve the therapeutic efficacy of cancers [257–260]. Advances in this
topic are reviewed in detail elsewhere [260–263]. Additionally, stimuli-responsive nano-
materials targeting tumor microenvironments have attracted increasing attention in recent
decades [264–268]. We summarized recent examples of stimuli-responsive nanosystems
for cancer therapy in Table 2. These nanomaterials not only improve the efficacy of cancer
therapeutics [269–273] but also provide opportunities for in situ monitoring of the levels
and heterogeneities of contents in the tumor microenvironment [274,275]. For instance,
Gao and coworkers reported a pH-responsive PEGylated polymer bearing a heptatomic
ring with a tertiary amine (PC7A) that could simulate the stimulator of interferon genes
(STING) pathway to enhance the cancer immunotherapy (Figure 2a) [276]. They showed
that innate immunity was activated via the formation of STING-PC7A biomolecular con-
densates [277]. The polymer bound to a non-competitive pocket that differed from the
natural STING ligand, resulting in a prolonged activation of the pathway. Besides the
pathway activation, Liu et al. reported a pH-ultrasensitive transistor-like nanodetergent for
selective cancer therapy via membranolysis [204]. This membranolytic block copolymer
comprised a PEG shell, a pH-responsive segment with ionizable tertiary amines, and a
hydrophobic segment. It achieved a >32-fold change in cytotoxicity with a 0.1 pH change.
To monitor the tiny differences in endosome maturation pathway, Chen et al. engineered
a library of pH-ultrasensitive polymeric nanophotosensitizer with a pH transition from
6.9 to 5.3. These nanophotosensitizers divided the endosome maturation into ten endocytic
regions with a pH interval of 0.2, allowing the adjustment of pyroptosis-inducing activ-
ity by the targeted introduction of photodynamic oxidative stress into each region [278].
Besides pH-responsive polymers, pH-low insertion peptides (pHLIP) have also garnered
much interest in cancer theranostics due to their unique ability to selectively target tumor
acid and transform into transmembrane α-helix within tumor cell membranes [279–283].
For instance, Chu et al. reported a fusion protein of pHLIP and interleukin-2 (IL-2) for
antitumor immunotherapy [284]. This protein was created by fusing the N-terminus of
pHLIP with the C-terminus of IL-2, allowing for selective delivery to the acidic tumor
microenvironment due to the low pH insertion property of pHLIP, thereby reducing the
side effects. The presence of IL2 in tumor tissues promoted the proliferation of the CD8+ T
and NK cells to suppress tumor growth, resulting in a 68% tumor inhibitory rate in a sub-
cutaneous 4T1 tumor-bearing mouse model. In addition to tumor acid, Hu et al. reported a
ROS-responsive delivery system for codelivery of anti-PD-L1 peptide and paclitaxel [285].
The peptides were modified on the nanoparticle’s surface, which could bind to the PD-L1
and induce its lysosomal degradation. The encapsulated chemodrugs were released un-
der the overexpressed ROS in tumor cells for chemotherapy. This synergetic nanosystem
promoted T cell infiltration and improved the anticancer potency for triple-negative breast
cancers. Besides the single-responsive ones, multi-responsive nanosystems can further
improve the specificity. For instance, Xia et al. reported a pH/enzyme-responsive nanopar-
ticle for selective delivery of Toll-like receptor (TLR) agonists to active TLR7/8 receptor
signaling at the endosomal membrane in dendritic cells (Figure 2b) [286]. They synthesized
a pH-sensitive PEGylated polymer in which the TLR7/8 agonist imidazoquinoline was
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conjugated onto the side chain via a cathepsin B-cleavable GFLG peptide linkage. This
nanosystem could release imidazoquinoline under the acidic environment and cathepsin B
in the endosome and activate the TLR7/8 signaling, resulting in dendritic cell maturation
and antigen presentation for immunotherapy.

Table 2. Recent examples of stimuli-responsive nanosystems for cancer immunotherapy.

Stimulus Delivery Formulation Responsive
Module Therapeutic Agents Tumor Model Ref.

pH

Albumin nanoparticles containing
Cu2(OH)2CO3 nanocrystals

Cu2(OH)2CO3
nanocrystals

Cu2+, disulfiram, and
anti-PD-L1 antibody

Orthotopic 4T1
tumor [287]

Polymeric nanoparticles composed of
PCL-b-PEG Hydrazone bond HCP antigen and CpG ODN Subcutaneous EMT6

and 4T1 tumors [288]

CaCO3 nanoparticles CaCO3
CpG ODN, INCB24360 (IDO

inhibitor), and Ca2+
Subcutaneous
4T1-Luc tumor [289]

Polymeric nanoparticles composed of
PEG-b-PDPA

4-Acetoxybenzyl ester
bond

DMXAA (STING agonist),
neoantigens, and anti-PD-L1

antibody

Subcutaneous 4T1
tumor [290]

Polymeric nanoparticles composed of
RGD-PEG-b-PGA-g-(TETA-DTC-

PHis)

Benzoic-imine
bond and histidine

moiety

Resiquimod (R848, TLR 7/8
agonist) Metastatic 4T1 tumor [291]

Cocktail polymeric nanoparticles,
including DOX-loaded PLG-g-PEG

nanoparticles and nanoparticles
composed of RNA-loaded

OHC-PEG-CHO, PLG, and PEI

Glutamic acid residue
and Schiff bases formed
between amino groups
and aldehyde groups

DOX and small hairpin RNA
of PD-L and hyaluronidase

Subcutaneous
B16F10, 4T1, and

CT26 tumors
[292]

Antibody-pH low insertion peptide
conjugate (peptide sequence:

Ac-ACEQNPIYWARYADWLFTT
PLLLLDLALLVDADEGT)

pH low insertion peptide
Anti-CD20 antibody

(activator for NK
cell-mediated cytotoxicity)

Subcutaneous B16
F10 and 4T1 tumors,
and metastasis 4T1

tumor

[293]

ROS

Albumin–antibody complex
2,2′-[Propane-2,2-

diylbis(thio)]diacetic
acid

Anti-CD47 antibody and
anti-PD-1 antibody

Subcutaneous
B16F10-Luc tumor [294]

Peptide-based gel depot L-methionine residues Anti-PD-1 antibody and
D-1MT (IDO inhibitor)

Subcutaneous
B16F10-tumor [295]

Polymeric nanoparticles composed of
aspirin-dextran conjugates

4-Formylbenzeneboronic
acid pinacol ester

Aspirin (COX-2 inhibitor) and
anti-PD-1 antibody

Subcutaneous CT26
tumor [296]

Polymeric nanoparticles composed of
chitosan modified with PEG-T7

peptide (peptide sequence:
HAIYPRH)

4-Nitrophenyl-4-(4,4,5,5-
tetramethyl-1,3,2-

dioxaborolan-2-yl) benzyl
carbonate

DOX and siRNA-PD-L1 Subcutaneous 4T1
tumor [297]

Nanoparticles composed of
pemetrexed and β-seleno ester β-Seleno ester Pemetrexed and β-seleno

ester
Subcutaneous A549

tumor [298]

Diselenide-bridged organosilica
nanoparticles Diselenide-bond Annexin A5

Orthotopic 4T1-Luc
tumor, and

subcutaneous
B16F10-Luc and

CT-26 tumors

[219]

Enzyme

Polymeric nanoparticles composed of
PEG-peptide-IDO inhibiter conjugates

MMP-2 responsive
peptide (sequence:

PVGLIG)

Epacadostat (IDO inhibitor)
and ICG (photosensitizer)

Subcutaneous
B16-F10 tumor [299]

Triglycerol monostearate
nanoparticles containing Pd

nanoparticles and DOX

MMP-2 responsive
triglycerol monostearate

DOX and Pd nanoparticles
(photothermal agents)

Subcutaneous CT26
tumor [300]

Polymeric nanoparticles composed of
PLL-1-mt and HA-Ce6

Hyaluronidase-
responsive hyaluronic

acid

Anti-PD-L1 antibody,
1-methyl tryptophan (IDO

inhibitor), and Ce6
(photosensitizer)

Subcutaneous and
metastatic B16-F10

tumors
[301]

Nanoparticles composed of
TPT-conjugated PLLA as core and

HA-DOX as shell

Hyaluronidase-
responsive hyaluronic

acid

Anti-PD-L1 antibody and
DOX

Subcutaneous
4T1-Luc tumor [302]

Peptide-based nanoparticles
MMP-2 responsive
peptide (sequence:

PLGLAG)

Anti-PD-L1 peptide and
IR780 (photosensitizer)

Subcutaneous
B16-F10 tumor [303]

Nanoparticles composed of
PEG-GALGLPG-PPa, DPPC, and
lipid-mimetic NLG919 prodrug

MMP-2 responsive
peptide (sequence:

PLGLAG)

Pyropheophorbide-a
(photosensitizer) and NLG919

(IDO-1 inhibitor)

Subcutaneous CT26
and 4T1 tumors [304]
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Table 2. Cont.

Stimulus Delivery Formulation Responsive
Module Therapeutic Agents Tumor Model Ref.

Hypoxia

Mesoporous silica nanoparticles Azobenzene linker Ce6 and CpG ODN Subcutaneous B16.F1
tumor [305]

Nanovesicles composed of manganese
ferrite nanoparticles grafted with

hypoxia-responsive PEG-b-PNIHM
2-Nitroimidazoles

Anti-PD-L1 antibody, DOX,
and manganese ferrite

nanoparticles (converting
H2O2 to O2)

Subcutaneous 4T1
tumor [306]

IFN-poly(N-oxide) conjugates Poly(N-oxide) moiety IFN Subcutaneous C8161
tumor [307]

Nanoparticles composed of AIEgen,
hypoxia-responsive paclitaxel

prodrug, Pluronic F127, and M1
macrophage cell membrane as shell

4-Nitrobenzyl
carbonate moiety

AIEgen (photodynamic
therapy) and paclitaxel

Subcutaneous 4T1
tumor [308]

Polymeric nanoparticles composed of
PEG-b-P(Asp-g-NIDH), OTS964, and

Ce6
2-Nitroimidazole

OTS964 (TOPK inhibitor) and
Ce6 Subcutaneous KYSE

150 tumor [226]

NIR

Nanoparticles composed of PD-L1
aptamer-functionalized MOF Porphyrinic Zr6 MOF Zr6 MOF, PD-L1 aptamer, and

oxaliplatin
Subcutaneous Mc38

tumor [309]

Biosynthesized gold nanoparticles
(Ausome) Ausome

Ausome (generating
hyperthermia under laser

irradiation, improving tissue
blood perfusion, and

contributing to enhanced
infiltration of

immunostimulatory
modules)

Orthotopic 4T1
tumor [310]

Hydrogels composed of Pd SAzyme,
camptothecin, and agarose Pd SAzyme

Camptothecin and Pd
SAzyme (converting light to

heat and H2O2 to •OH)

Subcutaneous CT26
tumor [311]

Photothermal conjugated polymeric
nanoparticles

Diketopyrrolopyrrole
units in conjugated

polymers

Conjugated polymers and
heat-activated IFN-γ plasmid 4T1 cancer cells [312]

Upconversion nanoparticles ICG

Anti-CTLA-4 antibody, ICG
(light absorber), rose Bengal

(photosensitizer), and
DSPE-PEG-maleimide

(antigen-capturing agent)

Orthotopic 4T1
tumor [313]

Ultrasound

TiO2@CaP core–shell nanoparticles

Acid-responsive CaP
shell and

sonosensitizer TiO2
nanoparticle

Anti-PD-1 antibody and TiO2
nanoparticle

Subcutaneous 4T1
tumor [314]

Semiconducting polymeric
nanoparticles

Semiconducting
polymer

Semiconducting polymer
(generateing 1O2 under
ultrasound irradiation),

NLG919, and anti-PD-L1
antibody

Subcutaneous Panc02
tumor and orthotopic

rabbit pancreatic
tumor model using

VX2 tumor cells

[315]

Crosslinked nanoparticles composed
of hematoporphyrin, adenosine

deaminase, anti-PD-L1 antibody, and
bovine serum albumin

Sonosensitizer
hematoporphyrin,

acid-cleavable imine
bond, and

ROS-cleavable
thioketal bonds

Hematoporphyrin
(generating 1O2 under
ultrasound irradiation),

anti-PD-L1 antibody, and
adenosine deaminase

Subcutaneous 4T1
and CT26 tumors [316]

Self-healing hydrogel

Hydrogel
polymerized from

OEGMA as monomer
and inorganic clay as

cross-linker

OVA, imiquimod (R837,
immune adjuvant), and

anti-PD-L1 antibody

Subcutaneous
B16-OVA and

orthotopic 4T1-Luc
tumors

[317]

Engineered bacteria
Focused ultrasound
to generate heat in

tumor tissue

Engineered bacteria with a
temperature-actuated genetic

state switch to produce
anti-CTLA-4 and anti-PD-L1

antibodies

Subcutaneous A20
tumor [318]

Engineered bacteria
Focused ultrasound
to generate heat in

tumor tissue

Engineered bacteria with a
temperature-actuated genetic
state switch to produce IFN-γ

Subcutaneous 4T1
tumor [319]
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Table 2. Cont.

Stimulus Delivery Formulation Responsive
Module Therapeutic Agents Tumor Model Ref.

Radiation

Cancer cell membrane-coated
mesoporous organosilica

nanoparticles
Diselenide bond DOX and anti-PD-L1

antibody
Orthotopic 4T1

tumor [320]

Nanoparticles prepared from
pemetrexed and cytosine-containing

diselenide
Diselenide bond Pemetrexed and

diselenide species
Subcutaneous

MDA-MB-231 tumor [321]

Polymeric nanoparticles prepared
from selenium-containing polymer Diselenide bond DOX and diselenide

species
Subcutaneous

MDA-MB-231 tumor [322]

Se/Te nanochaperone Se/Te
nano-heterojunctions Se/Te nanochaperone Subcutaneous 4T1

tumor [323]

HCP: heat shock protein 70 (HSP70)-chaperoned polypeptides; PCL-b-PEG: poly(ε-caprolactone)-b-
poly(ethylene glycol); CpG ODN: CpG oligodeoxynucleotide; IDO: indoleamine-2,3-dioxygenase; DMXAA:
5,6-dimethylxanthenone-4-acetic acid; PEG-b-PDPA: PEG-b-poly(2-(diisopropanol amino) ethyl methacrylate);
RGD-PEG-b-PGA-g-(TETA-DTC-PHis): RGD-PEG-b-PGA-g-(triethylenetetramine-bis(dithiocarbamate)-poly-
L-histidine; TLR: Toll-like receptor; PLG-g-PEG: poly(L-glutamic acid)-g-PEG; OHC-PEG-CHO: aldehyde-
modified polyethylene glycol; PEI: polyethylenimine; D-1MT: dextro-1-methyl tryptophan; MMP-2: matrix
metalloproteinase-2; COX-2: cyclooxygenase-2; ICG: indocyanine green; PLL-1-mt: dextro-1-methyl tryptophan-
conjugated poly(L-lysine); HA-Ce6: Chlorin e6 (Ce6)-conjugated hyaluronic acid; TPT: triphenylphosphine;
PLLA: poly(L-lactic acid); HA-DOX: DOX decorated hyaluronic acid; PEG-GALGLPG-PPa: PEG-GALGLPG-
pyropheophorbide-a conjugates; DPPC: 1,2-dipalmitoyl-sn-glycero-3-phosphocholine; PEG-b-PNIHM: PEG-b-
poly(6-(2-nitroimidazol-1-yl)hexyl methacrylate; IFN: interferon alpha; AIEgen: aggregation-induced emission
luminogen; TOPK: T-lymphokine-activated killer cell-originated protein kinase; PEG-b-P(Asp-g-NIDH): PEG-b-
poly[aspartic acid-graft-6-(2-nitroimidazole)hexylamine]; MOF: metal-organic framework; SAzyme: single-atom
nanozyme; DSPE-PEG-maleimide: 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-PEG-maleimide; OVA:
ovalbumin; OEGMA: oligo (ethylene glycol) methacrylate. 4T1 and EMT6: murine breast tumor cell lines; B16F10,
B16.F1, and B16-OVA: murine melanoma cell lines; CT26: murine colorectal tumor cell line; C8161: human
melanoma cell line; KYSE 150: human esophageal squamous cell carcinoma cell line; Mc38: murine colon ade-
nocarcinoma cell line; Panc02: murine pancreatic tumor cell line; VX2: rabbit liver tumor cell line; A20: murine
lymphoma tumor cell line; MDA-MB-231: human breast tumor cell line; A549: human non-small cell lung cancer
cell line.
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Figure 2. Tumor microenvironment-responsive nanomaterials for cancer immunotherapy. (a) PH-
sensitive block copolymers formed biomolecular condensates with STING for prolonged cancer
immunotherapy. Figure adapted with permission from Ref. [277] under the Creative Commons CC
BY license. Copyright 2021, Springer Nature. (b) PH/enzyme-responsive nanoparticle for selective
delivery of TLR agonists to active TLR7/8 receptor signaling at the endosomal membrane in dendritic
cells. Data are shown as mean ± s.d., n.s.: not significant, **** p < 0.0001. Figure adapted with
permission from Ref. [286]. Copyright 2022, American Chemical Society.
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3.2. External Stimuli-Responsive Nanomedicines

Triggering via external stimuli is also a promising strategy for approaching the site-
specific delivery of therapeutic agents to tumors. The near-infrared (NIR) light (700–900 nm)
is widely investigated in controlled drug delivery due to its relatively low scattering and
tumor selectivity by local irradiation [324,325]. Currently, two NIR dyes, including the
indocyanine green and the methylene blue, have been approved by the FDA for tumor diag-
nosis and image-guided surgeries. Compared with NIR light, NIR-II light (1000–1700 nm)
has recently attracted increasing attention due to its reduced photon scattering and tissue
autofluorescence [326,327]. For instance, Jiang et al. reported a NIR-II light activatable poly-
meric pronanoagonist for photothermal immunotherapy (Figure 3a) [328]. They construct
the pronanoagonist by conjugating an immunostimulant onto an NIR-II semiconducting
transducer using a thermo-responsive linker. Upon NIR-II irradiation, the photothermal ef-
fect of the pronanoagonist led to tumor ablation and immunogenic cell death, as well as the
cleavage of a thermo-responsive linker to release the agonist for in situ immune activation
in deep solid tumor (8 mm). Chen et al. developed a gold nano-adjuvant for the NIR-II
light-triggered in situ tumor vaccine [329]. The nano-adjuvant comprised a multi-branched
gold nanoparticle core with a localized surface plasmon resonance peak at 1032 nm and a
shell containing hyaluronidases and CpG oligodeoxynucleotides. The hyaluronidases loos-
ened the dense extracellular matrix of tumors by degrading the hyaluronic acids to make
the nano-adjuvant penetrate the tumor tissue deeply, whereas CpG oligodeoxynucleotides
bound the endosomal Toll-like receptor 9 to activate the antigen presentation cells. After
penetrating deeply into the tumor, the nano-adjuvant induced the immunogenic cell death
(ICD) effect under the irradiation of NIR-II light, thereby inhibiting tumor growth. Besides
NIR and NIR-II lights, ultrasounds are also widely used in the diagnoses and treatments
of many types of diseases in the clinic due to their advantages of deep tissue penetration,
thermal effects, cavitation, and acoustic radiation forces [330,331]. Ultrasounds have been
demonstrated to facilitate the release of drugs from liposomes, polymeric micelles, and
micro/nanobubbles, improving the therapeutic efficacy [332–335]. However, the clinical
translation of ultrasound-assisted nanomaterials is bumpy. A phase III clinical trial of Ther-
moDox, a thermosensitive liposomal DOX, combined with the high-intensity focused ultra-
sound for treating liver metastases tumors, did not meet the primary outcome. A post hoc
analysis showed that ThermoDox was safe but invalid to increase the progression-free sur-
vival and the overall survival for the radiofrequency ablation [336]. An improvement in the
overall survival was observed in a subgroup of 285 patients (41% of total) who underwent
ultrasound treatments for 45 min or more, suggesting an opportunity for increasing efficacy.
Combining immunotherapy provides new possibilities for ultrasound-assisted nanosys-
tems. Li et al. reported a microbubble-assisted ultrasound-guided nanoplatform for cancer
immunotherapy [337]. This platform was composed of a microbubbles core and a shell con-
taining the spermine-modified dextran, 2′3′-cyclic guanosine monophosphate-adenosine
monophosphate (cGAMP), and anti-CD11b antibodies. The decorated anti-CD11b anti-
bodies enabled the nanocomplex to target antigen-presenting cells and efficiently deliver
cGAMP under sonoporation, activating STING-mediated antitumor immunity. In another
example, Jiang et al. reported a sono-activated semiconducting polymeric nanoagonist
for immunotherapy of head and neck squamous cell carcinoma [338]. The sonodynamic
semiconducting polymer was conjugated with a STING agonist MSA-2 via a singlet oxy-
gen cleavable linker. The nanoagonist could generate singlet oxygen under ultrasound,
resulting in the tumor cell death for triggering the ICD effect and the release of conjugated
STING agonists for in situ activation of the STING pathway in synergy. Radiofrequency
ablation is a commonly used thermal therapy in clinics. Zhang et al. recently reported a
bi-valent gold nanocluster with a precise Au(I) ion/Au(0) ratio for cancer immunotherapy
by inducing pyroptosis via radiofrequency (Figure 3b) [339]. The nanoclusters were synthe-
sized by sequential reduction by a weak reducer lipoic acid and a strong reducer NaBH4
with the further modification of temperature-sensitive block poly(N-isopropylacrylamide-
b-acrylic acid). Under radiofrequency, the nanoclusters induced pyroptosis of tumor cells
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and further elicited an ICD effect, resulting in an improved antitumor efficacy of αPD-1
immunotherapy to 4T1 tumor-bearing mouse model with synergy of decitabine.
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4. Multistage Self-Assembled Nanomaterials for Cancer Immunotherapy

Compared with conventional active targeting nanocarriers that rely on the EPR effect
and the ligand–receptor interaction, multistage self-assembled nanomaterials provide more
chances to overcome the multiple biological barriers for cancer therapeutics. These barriers
include but are not limited to the rapid clearance by the bloodstream and RES, off-target
effect on tumors, intratumoral pressure, insufficient drug release, and immune-suppressive
tumor microenvironment [340–342]. The advantages of multistage self-assembled nanoma-
terials include (1) they are flexible for changing the formulation to improve the ability to
overcome the multiple biological barriers; (2) they can enhance the targeting efficiency and
retention via programmable response or in situ self-assembly, thereby reducing the side
effects; and (3) they can improve the immune response by modulating or reprogramming
the tumor immune environment in a synergetic manner. An early example of multi-stage
nanomaterials for cancer therapy was the mesoporous Si nanovector developed by Ferrari
and coworkers [343–349]. These multistage nanocarriers were composed of nano-scaled
pores and small therapeutic or diagnostic nanoparticles inside the pores, which could
release out triggered by stimuli like acids. Recently, programmable nanomaterials that
transform or self-assemble in situ have attracted increasing attention (Table 3) [350–352].
These nanomaterials enhance therapeutic efficacy by increasing the targeting affinity, pen-
etrating ability, tumor retention, cell uptake, etc. In this section, we discuss the design
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and construction strategies for multistage self-assembled nanomaterials reported recently
(Figure 4).

Table 3. Recent examples of multistage self-assembled nanocarriers for cancer immunotherapy.

Strategy Nanomaterial
Formulation

Therapeutic
Agent Delivering Stages Tumor

Model Ref.

Programmable
delivery

Nanoparticles
composed of

Fe3O4-Au as core
with mesoporous

silica shell and
surface

modification of
enzyme cleavable

therapeutic
peptides

Methylene blue
(photosensitizer)

and PD-L1
blocking peptide

PDPPA-1

Initial: nanoparticles (~220 nm);
in tumor tissues: the peptide
corona is cleaved by MMP-2

enzyme and GSH, resulting in
the release of PD-L1 blocking

peptide, shrinkage of
nanoparticle size (to less than
100 nm), and surface charge
conversion to improve cell

uptake; in the cytoplasm: the
methylene blue is released to
produce ROS under 660 nm

laser irradiation.

Subcutaneous
EMT6 tumor [353]

Polymeric
nanoparticles

composed of Pt(IV)
prodrug-

conjugated
PEG-b-PHEP,

TK-PPE, Ce6, and
BLZ-945

Ce6 (producing
ROS under laser

irradiation to
cleave thioketal
bond), BLZ-945

(CSF1R inhibitor),
and Pt(IV) drug

Initial: nanoparticles (~280 nm);
in tumor tissues under 660 nm
laser: the nanoparticle size is
shrunk to ~70 nm due to the

cleavage of thioketal bond for
deep penetration to kill tumor
cells. Meanwhile, BLZ-945 is
released for depleting TAMs.

Subcutaneous 4T1
and CT26 tumors [354]

Semiconducting
polymeric

nanoparticles
decorated

enzyme-cleavable
PROTAC peptides

Semiconducting
polymer

(generating 1O2)
under NIR

irradiation) and
IDO-targeting

PROTAC peptide

Initial: nanoparticles (~30 nm);
in tumor tissues and cells under
808 nm laser: semiconducting

polymer generates 1O2 to
eradicate tumor cells for

inducing ICD; In tumor cells:
IDO-targeting PROTAC
peptides are cleaved by

cathepsin B enzymes to degrade
IDO and promote
immunotherapy.

Subcutaneous 4T1
tumor [355]

Nanoparticles
composed of

DiPt-TK-PEG and
NLG919-disulfide

linker-PPa

PPa (generating
ROS under NIR

light), oxaliplatin,
NLG919

Initial: nanoparticles (~112 nm);
in tumor tissues under the first

wave of laser (671 nm)
irradiation: PPa generates ROS

to cleave thioketal linker for
PEG corona detachment,

promoting tumor retention and
deep penetration; in tumor cells:
nanoparticles are decomposed

triggered by GSH to release PPa,
NLG919, and oxaliplatin. Under

the second wave of laser
irradiation, PPa produce

produces ROS in combination
with oxaliplatin to induce ICD.
Meanwhile, NLG919 reverses

the immunosuppressive tumor
microenvironment by

suppressing IDO-1-mediated
tryptophan degradation and

cytotoxic T lymphocyte
exhaustion.

Subcutaneous and
metastatic 4T1

tumors.
[356]
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Table 3. Cont.

Strategy Nanomaterial
Formulation

Therapeutic
Agent Delivering Stages Tumor

Model Ref.

In vivo
self-assembled
nanomaterials

Self-assembled
bispecific peptide

(sequence:
AKMGEGGWGANDY-
GNNQQNY-RGD)

Integrin-targeting
peptide (RDG) and

CD3-targeting
peptide

(AKMGEGGW-
GANDY)

Initial: isolated peptides; in
tumor tissues: receptor-induced

clustering of self-assembled
peptides occurs in situ to active

T cells.

MCF-7 cancer cells [357]

Polymer-peptide
conjugates

Antigenic peptide
and anti-PD-L1

antibody

Initial: nanospheres (~100 nm);
in the acidic endosomal

environment: nanoparticles
transform into nanosheets

(several micrometers in length
or width), enhancing delivery
efficacy of antigenic peptides.

Subcutaneous
B16F10-OVA and

HPV-E6/E7
tumors

[206]

In situ-formed
hydrogel

composed of PVA
crosslinked by

ROS-labile linker
TSPBA

Gemcitabine and
anti-PD-L1
antibody

Initial: injectable solution; in
tumor tissues: peptide form

hydrogel formation in situ and
sustained release encapsulated

gemcitabine to enhance an
immunogenic tumor phenotype

and anti-PD-L1 antibody to
promote therapeutic immune

response.

Subcutaneous
B16F10 and 4T1

tumors
[358]

Self-assembled
modular peptide

(sequence:
SSGGPLGVRGK-

LVFFCAWSATWS-
NYWRH)

CD47 blocking
peptide

(CAWSATWSNY-
WRH) and
anti-PD-L1
antibody

Initial: isolated peptides; in
tumor tissues: peptides target

CD47 on tumor cell membranes
and are cleaved by MMP-2

enzymes to form nanofibers in
situ to block CD47, promoting

the activation of TAMs.

Subcutaneous LLC
tumor [359]

Phthalocyanine
derivative (PcN4)

PcN4, AQ4N
(hypoxia-activated
cytotoxin prodrug),

and anti-PD-L1
antibody

Initial: isolated PcN4; in
bloodstream: PcN4 interacts
with endogenous albumin

dimers and forms
supramolecular complexes; in

primary tumor tissues:
concomitant delivery of AQ4N

ameliorates the limitation of
hypoxia in photodynamic

therapy of PcN4 complexes,
promoting anticancer efficacy
and activation of CD8+ T cells;
in distance tumor: additional

combination therapy using the
anti-PD-L1 antibody.

Orthotopic 4T1
tumor [360]
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Table 3. Cont.

Strategy Nanomaterial
Formulation

Therapeutic
Agent Delivering Stages Tumor

Model Ref.

Immune-
reprogramming
nanomaterials

DNA
nanostructures

with spatial
precision in

immune
stimulating ligand

CD3Eantibodies,
CD28 antibodies,

and T cells

In vitro: T cells are activated
and expanded by DNA origami

with CD3Eantibodies that
stimulate TCR ligands and

CD28 antibodies that simulate
co-stimulatory ligands, with

inter-ligand spacing from ∼95
to ∼16 nm. A space of ∼38 nm

between TCR ligands and
co-stimulatory ligands is

appropriate for efficient T cell
activation; in vivo: T cell

adaptive transfer for
immunotherapy.

Subcutaneous
B16-OVA tumor [361]

DNA-engineered
red blood

cells-based
artificial

antigen-presenting
cells

Engineered red
blood cells

modified with
pMHC and
anti-CD28

antibody, as well
as splenocytes

from OT-1 mice

In vitro: surface engineering of
red blood cells by modification

with lipid-DNA, clustered
distributed pMHC, and

anti-CD28 antibody
sequentially; in vivo: reinfusion

of the resultant artificial
antigen-presenting cells for

tumor immunotherapy together
with OT-1 splenocytes.

Subcutaneous
B16-OVA tumor [362]

DNA-engineered
lymphocyte-based

artificial
antigen-presenting

cells

Engineered
lymphocytes

modified with
pMHC and
anti-CD28

antibody, as well as
anti-PD-1 antibody

In vitro: surface engineering of
lymphocytes collected from

peripheral blood by
modification with lipid-DNA,
clustered distributed pMHC,

and anti-CD28 antibody
sequentially; in vivo: reinfusion

of the resultant artificial
antigen-presenting cells for

tumor immunotherapy together
with anti-PD-1 antibody.

Subcutaneous
B16-OVA and
Mc38 tumors

[363]

GSH: glutathione; PEG-b-PHEP: PEG-b-poly (2-hexoxy-2-oxo-1,3,2-dioxaphospholane); TK-PPE: poly(thioketal
phosphoester); CSF1R: colony-stimulating factor 1 receptor; TAMs: tumor-associated macrophages; PROTAC:
proteolysis targeting chimera; ICD: immunogenic cell death; DiPt-TK-PEG: PEG-thioketal linker-oxaliplatin; PPa:
pheophorbide A; MCF-7: human breast cancer cell line; HPV: human papilloma virus; PVA: poly(vinyl alcohol);
TSPBA: N1-(4-boronobenzyl)-N3-(4-boronophenyl)-N1,N1,N3,N3-tetramethylpropane-1,3-diaminium; TCR: T cell
receptor; pMHC: peptide–major histocompatibility complex. LLC: murine Lewis lung carcinoma cell line.
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4.1. Programmable Delivery Systems

To overcome the biological hurdles of nanomedicine, strategies such as PEGylation
and crown detachment to increase blood circulation and tumor accumulation [364–366],
installation of activable tumor-targeting ligands to increase tumor accumulation and cel-
lular uptake [367–369], size-reduce to enhance tumor penetration [370–377], prodrug
to reduce side effects [378–383], etc. have shown great potentials. One advantage of
multistage programmable delivery systems is to integrate these individual strategies se-
quentially, corresponding to the sequential barriers after administration. For instance,
Zhang et al. developed a programmable nanomedicine as an in situ cancer vaccine for
cancer immunotherapy (Figure 5a) [384]. The nanomedicine had a core composed of
poly-[(N-2-hydroxyethyl)-aspartamide]-Pt(IV)/β-cyclodextrin and a shell composed of
CpG/polyamidoamine-thioketal-adamantane (CpG/PAMAM-TK-Ad) and PEG-thioketal-
adamantane (PEG-TK-Ad). The CpG/PAMAM-TK-Ad and PEG-TK-Ad were attached
to the core via host–guest interactions between β-cyclodextrin and adamantane. After
administration, the PEG on the surface enabled long circulation in the blood, resulting
in enhanced tumor accumulation. In tumor tissue, the high level of ROS triggered the
detachments of PEG and CpG/PAMAM for improved cellular internalization of the core
nanoparticles, which led to cell death and antigen release. The released antigen was further
captured by the CpG/PAMAM, reached the tumor-draining lymph nodes, and internalized
by dendritic cells. The activated dendritic cells presented antigens to T cells. The tumor
antigen-specific effector T cells returned to tumor tissue to kill cancer cells. In a murine
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colorectal CT26 tumor model, this nanomedicine achieved a high growth-inhibitory activity
of 73%. The further combination with anti-PD-L1 antibody resulted in a growth-inhibitory
activity of 95%. Notably, 40% of the tumor-bearing mice were completely cured. In addi-
tion, the programmable nanosystem is also favorable for delivering combined drugs in
different stages. For instance, Feng et al. reported an albumin nanoparticle for delivering
PD-L1 inhibitor BMS-202 to the tumor microenvironment and cyclooxygenase-2 inhibitor
celecoxib inside cells in a programmed manner [385]. The nanoparticle was composed
of PEGylated human serum albumin derivatives that contained pH-responsive hexam-
ethyleneimino groups, BMS-202, and celecoxib-poly(ethyleneimine) conjugates linked by
reduction-responsive disulfide linkers. Via programmed delivery, the nanosystem achieved
3.1-fold in the infiltration of CD8+ T cells to tumors and almost complete inhiation in
tumor growth in subcutaneous 4T1-bearing mice. In addition, to improve the tumor
penetration and synergistic effect of the nanocarriers, Wei et al. developed a bioactive
selenopeptide nanomedicine for enhanced tumor chemoimmunotherapy (Figure 5b) [386].
The selenopeptide was modularly designed with a tumor-targeting motif (RGD), a matrix
metalloproteinase-2 (MMP-2) enzyme-cleavable linker (PLGVR), and a ROS-responsive
seleno-amino acid tail. The selenopeptide was amphiphilic with a micelle structure in
solution, which could encapsulate chemotherapeutics such as DOX. After systemic ad-
ministration, the selenopeptide nanomedicine sequentially recognized αvβ3 integrins on
the tumor cell surface for improving tumor accumulation, reduced the size induced by
MMP-2 enzyme for enhancing the tumor penetration, released DOX payload quickly in
tumor cells under the high level of ROS, and activated the NK cells by the oxidative
metabolites of selenopeptide for immunotherapy. Due to the programmable delivery and
synergistic effect, the selenopeptide nanomedicine achieved a tumor growth inhibition
efficacy of 86% in an orthotopic human breast MDA-MB-231 tumor-bearing mouse model,
compared with 48% for DOX solely. To make more programmable biomaterials, intro-
ducing logic gates into nanomedicine design has attracted much attention [387–389]. For
instance, Zhang et al. induced the concept of logic gates to construct a programmable
polymer library [199]. Different stimuli-responsive units (e.g., light-, ROS-, glutathione-,
acid-, esterase-, phosphates-responses) were integrated into these polymers with logic
gates and hierarchical organizations, allowing to receive disease biomarkers as inputs and
site-specifically release therapeutics (e.g., kinase inhibitors, drugs, and siRNA) as outputs.

4.2. In Vivo Self-Assembled Nanomaterials

In vivo self-assembled nanomaterials can transform or self-assemble in tumor tissues
in situ triggered by internal or external stimuli. The self-assembly process is governed
by both thermodynamics and kinetics, which provide different assembled structures and
new biological functions. Via the rational design of building blocks and control of ther-
modynamics and kinetics, in vivo self-assembled nanomaterials have advantages such
as enhanced tumor accumulation and retention, improved tumor penetration, increased
cellular internalization, etc., enabling improved immunotherapy outcomes. For instance, by
tuning the self-assembly properties and kinetics of peptide building blocks, either retention
in the cell membrane or rapid cell entry was achieved, resulting in different biological
activities [390,391]. To overcome the vaccine’s hurdles on poor lymph node delivery and
dendritic cell uptake, Wang et al. reported an in situ phase transitional polymeric vac-
cine [392]. The vaccine was composed of a thermoresponsive poly(N-isopropylacrylamide)
backbone modified with photothermal conversion cyanine and antigen peptide OVA257–264
(peptide sequence: SIINFEKL) on the side chains. The low critical solution temperature of
the polymer was tuned to be 40 ◦C. During lymph node draining, the polymers retained a
small size of 24 nm. Upon arrival at the lymph node, they transformed into 483 nm-sized
particles triggered by laser, resulting in improved endocytosis by lymph node-resident
dendritic cells. This laser-induced dynamic size modulation strategy induced a rapid
and robust immune response in the subcutaneous B16-F10-OVA melanoma tumor-bearing
mouse model. In addition to cancer vaccines, in vivo self-assembled systems have also
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shown promising potential to improve therapeutic efficacy. For instance, Wang et al. re-
ported an enzyme-instructed self-assembly (EISA) peptide to selectively degrade PD-L1 in
cancer cells for improved cancer therapy (Figure 6a) [393]. The peptide included a PD-L1-
targeting motif, an alkaline phosphatase (ALP)-responsive phosphorylated tyrosine, and a
self-assembly module containing phenylalanines and an adamantine (peptide sequence:
Ada-GGDFDFDNDYDSDKDPDTDDDRDQDYDHDF). After dephosphorylation by ALP and
binding to PD-L1 on tumor cell membranes, the peptide self-assembled into nanofibers
around PD-L1 in situ. The resulting peptide self-assemblies and PD-L1 were further inter-
nalized and degraded by the proteasome pathway in the cytoplasm. Interestingly, the in
situ self-assembly happened in ALP-overexpressed murine breast cancer 4T1 cells instead
of in normal human liver LO2 cells expressing low levels of ALP. Due to the selective degra-
dation of PD-L1, the self-assembled peptide resulted in a tumor volume decrease of 23.7%
in subcutaneous 4T1-bearing mice. In addition, the in situ self-assembled peptide can also
induce the aggregation of receptors to activate anticancer signaling pathways. For instance,
Li et al. reported an in situ self-assembled peptide system to facilitate the aggregation of
tumor-specific transmembrane Eph receptor A2 (EphA2) for converting cold tumors to
hot ones [394] (Figure 6b). The peptide concluded a central fluorophore 4,7-di(thiophen-
2-yl)-2,1,3-benzothiadiazole and two peripheral EphA2-targeted self-assembled peptides
(peptide sequence: FFGYSAYPDSVPMMS). The peptide bond specifically to EphA2 pro-
moted cancer malignancy and induced the aggregation of the receptors, resulting in the
activation of the antitumor pathway and visualization of EphA2 receptors in a fluorescence
turn-on manner. By inducing immunogenic death and recruiting massive tumor-infiltrating
T cells, the peptide also efficiently converted immunologically cold tumors to hot ones.
To further overcome the hurdles of poor infiltration of T cells and tumor penetration of
antibodies induced by ECM, Hu et al. reported an in situ self-assembled bispecific pep-
tide that targeted both C-X-C chemokine receptor type 4 (CXCR4) and PD-L1 (peptide
sequence: AMD070-DPGLGYLKLVFFGCVRARTR) [395] (Figure 6c). The rapid formation
of CXCR4/PD-L1-targeted nanoclusters on tumor cell surfaces in situ could enhance the
blockages of both CXCR4 and PD-L1, resulting in reductions in ECM component accu-
mulation and solid tumor stress (to 44%). By improving T cell activation and infiltration,
this in situ bispecific self-assembled system achieved a tumor growth inhibition efficacy of
74% compared with 24% for PD-L1 in the subcutaneous mouse urothelial carcinoma MB49
tumor-bearing mouse model. Of note, compared with antibodies, this nanosystem had the
advantages of rapid blood clearance (elimination half-life (t1/2β) = 1.4 h) and prolonged
tumor retention (t1/2β = 69.3 h), providing possibilities to overcome the potential systemic
side effect.

4.3. Immune-Reprogramming Nanomaterials

To boost the therapeutic effects of immunotherapy, reprogramming immune cells
demonstrated attractive potential. One of the most successful examples is the chimeric
antigen receptor T cell (CAR T) therapy [396]. In this therapeutic, one’s own immune
cells, mainly T cells and NK cells, are genetically engineered to express chimeric anti-
gen receptors, allowing the immune cells to recognize and kill tumor cells specifically.
Currently, six CAR T therapies have been approved for cancer therapy by the FDA since
the first approval in 2017. However, CAR T therapy still encounters limitations such as
patient dependence, clinical toxicities (e.g., cytokine release syndrome and neurotoxicity),
and resistance. Besides cell-based therapy, immune-reprogramming nanomaterials have
recently demonstrated genius in cancer immunotherapy. Unlike CAR T therapy, these
nanomaterials can reprogram immune cells in the body without the need to extract immune
cells. In addition, compared with direct delivery of drugs to tumors that encounter a high
risk of clearance by the immune system, the immune-reprogramming nanocarriers are
designed to target and re-activate immune cells. For instance, Nahmad et al. directly
engineered B cells in vivo to secrete neutralizing anti-HIV antibodies in mice [397]. They
prepared two adeno-associated viral vectors to encode Staphylococcus aureus Cas9 and
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broadly neutralizing antibody 3BNC117, respectively. Via the intravenous administrations
of two vectors, B cells in mice were engineered to express high levels of broadly neutralizing
antibodies at neutralizing titers of up to 6.8 µg ml−1. In addition to genetic engineering,
self-assembled nanomaterials that directly modify the surface of immune cells have recently
attracted much attention. For instance, Jiang et al. reported a type of immunomodulating
nano-adaptors to promote antibody-based cancer immunotherapy (Figure 7a) [398]. These
nano-adaptors comprised an anti-IgG (Fc specific)-modified polystyrene nanoparticle core
and a shell consisting of two monoclonal antibodies. These antibodies were conjugated on
the nanoparticle surface via Fc-specific noncovalent interactions. When conjugated with
anti-PD-1 antibodies and anti-PD-L1 antibodies, the resulting nano-adapters effectively
promoted T cell-tumor cell interactions and augmented the T cell-mediated immunotherapy
in subcutaneous B16-F10 melanoma tumor-bearing mice. The average tumor volume in the
nano-adapter group was 4.3-fold and 3.2-fold smaller than those receiving the mixture of
two antibodies and the mixture of two single antibody-conjugated nanoparticles, respec-
tively. Via conjugations of anti-killer-cell lectin-like receptor G1 antibodies and anti-PDL1
antibodies, the resulting nano-adapters enhanced the NK-cell mediated immunotherapy in
B16-F10 pulmonary metastatic tumor-bearing mice. The metastatic nodules in the lungs
of nano-adapter-treated mice (median, ~7) were much less than those of the mixture of
two antibodies-treated mice (median, ~34), the mixture of two single antibody-conjugated
nanoparticles-treated mice (median, ~27), and IgG control-treated mice (median, ~62),
respectively. In addition, the nano-adapters with anti-factor 1-receptor antibodies and
anti-CD47 antibodies could also improve macrophage-mediated immunotherapy by con-
verting tumor-supportive M2 macrophages to tumoricidal M1 macrophages and physically
connecting macrophages and tumor cells. Besides pre-assembled nanoparticles, Zhao et al.
also reported an in vivo self-assembled glycopeptide for reprogramming tumor-associated
macrophages (TAMs) to boost cancer immunotherapy (Figure 7b) [399]. The glycopeptide
consisted of a tumor-targeting motif, an MMP-2 cleavable linker, and a mannose moiety
for targeting mannose receptors on M2-like TAMs (peptide sequence: Mannose-alkyl-
PLGVRGRGD). After systemic administration, the precursor glycopeptide entered tumor
tissues via active targeting and was cleaved by MMP-2 enzymes. The resulting mannose
segment further self-assembled into nanoparticles with improved binding affinity to the
mannose receptors (411-fold decrease in the dissociation constant), leading to the switch of
M2-like microphases to M1-like ones and enhancement in tumor penetration. Owing to the
advantages of deep tumor penetration and enhanced hypoxic TAMs repolarization, this
glycopeptide with anti-PD-1 antibody achieved a 90.2% tumor inhibitory rate in the TAMs-
abundant 4T1-breast cancer model. Furthermore, to further improve the spatiotemporal
specificity for immunotherapy, An et al. reported a bispecific glycopeptide that targeted
CD206 on M2-like TAMs and CXCR4 receptors on tumor cells for inhibiting bladder cancer
recurrence (Figure 7c) [400]. The peptide consisted of 4 modules, including (i) a CD206-
targeting motif with (ii) an MMP-2 cleavable linker, (iii) a CXCR4-targeting motif, and (iv)
a self-assembly motif (peptide sequence: LGASWHRPDKK(PLGYLG-(man)3)LVFFAECG).
In the tumor microenvironment, the peptide repolarized M2-like TAMs to the M1 pheno-
type, promoting the recruitment of CD8+ T cells. Meanwhile, the peptide was cleaved by
MMP-2 enzymes and formed CXCR4-binding nanofibers in situ for the long-term arrest of
CXCR4 signaling, promoting T cell infiltration. Owing to the spatiotemporal regulation
of tumor microenvironment, this bispecific glycopeptide reduced the recurrent rate of
orthotopic bladder MB49-Luc tumor-bearing mice to 22% compared with 100% for saline
and plerixafor groups and 89% for the DOX group.
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Figure 5. Multistage programmable delivery systems. (a) Programmable nanomedicine as in situ can-
cer vaccine for cancer immunotherapy. Data are shown as mean± s.d., ** p < 0.01, *** p < 0.001. Figure
adapted with permission from Ref. [384]. Copyright 2021, Wiley-VCH GmbH. (b) Selenopeptide
nanoparticles improved the chemoimmunotherapy via the programmed delivery of DOX synergized
with the NK cell-mediated immunotherapy. Data are shown as mean ± s.d., * p < 0.05, *** p < 0.001.
Figure adapted with permission from Ref. [386]. Copyright 2022, Wiley-VCH GmbH.
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Figure 6. In vivo self-assembled nanomaterials for immunotherapy. (a) Degradation of PD-L1 in
tumor cells by enzyme-instructed self-assembly. Data are shown as mean ± s.d., * p < 0.05, ** p < 0.01,
*** p < 0.001. Figures adapted with permission from Ref. [393]. Copyright 2021, Wiley-VCH GmbH.
(b) Self-assembled peptide system to facilitate aggregation of tumor-specific transmembrane receptors
for converting cold tumors to hot ones. Data are shown as mean ± s.d., * p < 0.05, ** p < 0.01.
Figures adapted with permission from Ref. [394]. Copyright 2021, Wiley-VCH GmbH. (c) In vivo
self-assembled bispecific nano-blocker for improving tumor immunotherapy. Figures adapted with
permission from Ref. [395]. Copyright 2023, Wiley-VCH GmbH.
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Figure 7. Immune-reprogramming nanomaterials for immunotherapy. (a) Immunomodulating nano-
adaptors to promote antibody-based cancer immunotherapy. Figure adapted with permission from
Ref. [398] under the Creative Commons CC BY license. Copyright 2021, Springer Nature. (b) In vivo
self-assembled glycopeptide for reprogramming tumor-associated macrophages to boost cancer
immunotherapy. Figures adapted with permission from Ref. [399]. Copyright 2023, Wiley-VCH
GmbH. (c) Bispecific glycopeptide for spatiotemporal regulation of tumor microenvironment to
inhibit bladder cancer recurrence. Figure adapted with permission from Ref. [400] under the Creative
Commons CC BY license. Copyright 2023, American Association for the Advancement of Science.
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5. Conclusions and Perspective

In this review, we briefly presented recent progress on multistage self-assembled nano-
materials for cancer immunotherapy. The traditional “one size fits all” approach can hardly
confront the sophisticated physiological and tumoral environments. Therefore, nanoma-
terials that can overcome multiple biological barriers are highly desirable. Among them,
in situ self-assembled nanomaterials have attracted much attention, allowing precise and
on-demand self-assembly in disease sites triggered by internal and external stimuli. These
nanomaterials have displayed advantages such as prolonged blood circulation, enhanced
tumor accumulation and penetration, increased tumor cell internalization, controlled drug
release in specific sites, and improved immune responses. These features enable them
to achieve improved cancer therapeutics with reduced side effects. Despite significant
advancements in multistage self-assembled nano-delivery systems, key challenges asso-
ciated with nanomedicines persist. These include inadequate specific targeting, limited
delivery efficacy, and potential side effects. Several critical issues should be considered for
the clinical success of these smart nanomaterials.

First, the multistage nanocarriers involve multiple and programmed delivery proce-
dures in the body. Reliable and non-invasive monitoring techniques or multimode tracking
probes for evaluating the process and efficacy for each stage are highly desired. Second, for
many multistage nanocarriers, their architectures and constructions are highly complicated.
Concerns regarding reproducibility and high quality control in scale-up manufacturing
must be addressed. Third, the safety and side effects of the multistage nanocarriers should
be highly considered, particularly the immune-related side effects and long-term toxicity.
Fourth, human immune systems are quite different from experimental animal models. De-
veloping reliable humanized animal models and organs-on-chips with immune systems is
urgent. Fifth, a fundamental and deep understanding of the thermodynamics and kinetics
of in vivo self-assembly is critical to spatiotemporally control of the self-assembly process,
assembled structures, distribution, retention, and excretion in the body. Last but not least,
discovering novel biomaterials using artificial intelligence is the new research paradigm
in biomedical fields. High-throughput material library and screening are urgent to build
up the structure-activity relationships in biomaterialomics to guide the rational material
design of nanomaterials for immunotherapy driven by machine learning and data science.
Bridging together the cutting edges of nanotechnology, biotechnology, and data science,
multistage self-assembled nanomaterials are expected to prompt the advent of precise and
efficient cancer therapy in the near future.
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