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Abstract: Acidic deep eutectic solvents (DESs) have been considered desirable extractants and
catalysts for desulfurization. However, their hydrogen bond donors (HBDs) are usually sole organic
acids, which are not conducive to efficient green catalysis. Herein, a novel inorganic–organic dual-
acid DES (DADES) was reported for efficient extractive and oxidative desulfurization. Benefiting
from the physical interaction among the three components in a DADES, a transparent homogeneous
liquid can be obtained even though inorganic acid (boric acid, BA) and organic acid (acetic acid, AA)
can be immiscible. Furthermore, the dual-acid HBD can increase the acidity of the DADES and reduce
its viscosity, accelerating its mass transfer efficiency and enhancing its catalytic activity. With 1-butyl-
3-methylimidazolium chloride ([Bmim]Cl) as the hydrogen bond acceptor, [Bmim]Cl/BA/0.3AA
effectively activated hydrogen peroxide and achieved sulfur removal of 96.6% at 40 ◦C. Furthermore,
the universality of the synergistic effect in various DADESs was confirmed by the modulation of the
types of organic acids. This study not only motivates the construction of more intriguing novel DESs
based on the DADES concept but also highlights their potential in clean fuel production.

Keywords: dual-acid deep eutectic solvent; inorganic and organic acids; synergistic effect; oxidative
desulfurization; mechanism

1. Introduction

Under the trend of rapidly increasing energy consumption, the widespread burning of
S-containing compounds in fuels increases hazardous sulfur oxide (SOx) emissions, form-
ing acid rain and severely damaging the environmental equilibrium [1]. It directly leads
to vegetation destruction, industrial equipment corrosion, and respiratory diseases [2,3].
Consequently, global legislation was progressively tightened to reduce the S-content of
fossil fuels below 10 ppm [4,5]. Extensive research has concentrated on removing S-
containing compounds to produce low-sulfur fuel. Hydrogen desulfurization (HDS),
as a well-established desulfurization technology, remains the dominant technology for
industrial applications [6]. However, HDS is an energy-intensive process demanding high
temperatures (320–380 ◦C) and pressures (3–10 MPa) [7,8]. Moreover, several refractory
aromatic sulfides and derivatives are difficult to eliminate effectively by HDS technology
due to inefficient hydrogenation, which requires more stringent operating conditions [9,10].
Several targeted complementary technologies have emerged, including adsorptive desulfu-
rization [11], extractive desulfurization (EDS) [12], and oxidative desulfurization (ODS) [13]
etc. Extractive and oxidative desulfurization (EODS) technology is regarded as one of the
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most promising technologies due to its exceptional ability to remove aromatic thiophenes
under moderate operating conditions [14,15]. Hydrogen peroxide (H2O2) as an oxidant
has attracted wide attention since it is affordable, widely accessible, and has no hazardous
by-products [16]. It is noteworthy that the ODS process requires an effective catalyst to
ensure the sufficient oxidative activity of H2O2 [17]. In addition, for some solid catalytic sys-
tems, the oxidative product may be retained in its oil phase due to inadequate adsorption
capability, which requires the addition of an extra extractant to achieve desulfurization [18].
Hence, designing a suitable catalytic system with strong extraction/adsorption and cataly-
sis is a significant issue.

Defined as eutectic mixtures of two or three biocompatible and non-toxic substances,
DESs have a strong capability to form intermolecular hydrogen bonds, enabling almost
100% of raw material utilization [19]. Being analogues of ionic liquids (ILs), DESs exhibit
several additional advantages, like a low price, easy preparation, high atomic utiliza-
tion, biodegradability, and flexible adjustability [20,21]. Consequently, the emergence of
DESs has attracted considerable attention in many fields, including electrochemistry [22],
biochemistry [23], separation processes [24], and catalytic reactions [25]. Due to their des-
ignability and superior surface-active advantage, DESs offer a novel possibility to enhance
desulfurization. Initially, DESs were confirmed to have significant potential for EDS due
to their ability to form intermolecular interactions with sulfur compounds [12]. How-
ever, to meet the rigorous S-concentration standard, multistage extraction is required [26].
Subsequently, DESs were combined with other catalysts to achieve deep desulfurization
by the EODS process, with DESs acting as extractants [27]. Selecting suitable HBDs and
hydrogen bond acceptors (HBAs) of DESs is essential to advance the EODS process [28,29].
Several studies and theoretical calculations have confirmed the indispensability of acidic
groups for the ODS reaction, directly influencing their catalytic activity [30–32]. Moreover,
a new type of ternary DESs using inorganic acids as HBDs was reported to achieve deep
desulfurization by our group, which was formed by choline chloride, polyethylene glycol,
and boric acid [33]. Nevertheless, the weak acid and high viscosity of the ternary DES
ChCl/1.5BA/PEG limited its EODS performance.

Herein, boric acid (BA) was combined with several organic acids, such as acetic acid
(AA), propionic acid, and oxalic acid, respectively, as the HBDs to produce the DADES.
1-Butyl-3-methylimidazolium chloride ([Bmim]Cl) was chosen as the primary HBA to
promote efficient mass transfer [34,35]. Meanwhile, the presence of [Bmim]Cl was used
as a bridge to facilitate the mutual solubility of inorganic and organic acids. Through an
investigation of their structure–activity relationship, the optimal molar ratio of BA and AA
in [Bmim]Cl/BA/0.3AA was determined. Due to the decreased viscosity and enhanced
acidity by dual-acid HBDs, [Bmim]Cl/BA/0.3AA reached a sulfur removal of 96.6% within
90 min at 40 ◦C, exhibiting superior activity to the binary DESs, [Bmim]Cl/BA (75.0%)
and [Bmim]Cl/0.3AA (21.9%), containing a single inorganic or organic acid. Moreover,
the recyclability and stability of [Bmim]Cl/BA/0.3AA were confirmed, which could be
regenerated by diethyl ether washing. This work aims to realize the possibility of co-
activation of inorganic and organic acids using the DADES strategy, expanding thoughts
for the design of a novel DES.

2. Results and Discussion
2.1. Screening of DESs

Firstly, BA and AA were mixed and stirred in a round-bottomed flask at 60 ◦C, but they
did not dissolve in each other, illustrating the limited mutual solubility between the inor-
ganic and organic acids (Figure S1). Interestingly, the introduction of [Bmim]Cl allowed for
the preparation of homogeneous and transparent liquids, making it possible to synthesize
the inorganic–organic DADES system. The structure–activity relationship of the DADES
was then analyzed by regulating the AA content in the DADES, [Bmim]Cl/BA/nAA.
A series of [Bmim]Cl/BA/nAA DADESs was prepared at 60 ◦C. The state of the DADESs
after cooling to room temperature is displayed in Figure 1. [Bmim]Cl/BA/nAA with an
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AA molar ratio of 0.3 or less remained clear and transparent. However, white precipitates
were observed in the [Bmim]Cl/BA/nAA (n > 0.3). As the AA content increased, more
white solids precipitated over a short period. It is speculated that the addition of excess AA
competed with BA for the opportunity to form hydrogen bonds with [Bmim]Cl, resulting in
the above DADESs exhibiting poor stability. Therefore, due to the low mutual solubility of
BA and AA, the precipitated white solid could be further identified as BA. Notably, EODS
performance gradually decreased with the molar ratio of AA being higher than 0.3, which
is related to the reduced stability of DADESs. Consequently, [Bmim]Cl/BA/0.3AA was
finally selected for the subsequent investigations.
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Figure 1. Desulfurization efficiency of DADESs with various AA contents. Experimental conditions:
Model oil = 5 mL, O/S = 5, m (DES) = 1.5 g, t = 90 min, T = 40 ◦C.

According to the mutual solubility test, the FT-IR and 1H NMR spectra of the oil and
[Bmim]Cl/BA/0.3AA showed no significant changes before and after mixing, demonstrat-
ing that the DADES does not cause contamination (Figure S2). Thus, the prepared DADES
can be used as an extractant and catalyst for an EODS reaction. To evaluate its desulfur-
ization capability, the prepared DADES and individual components were mixed with the
sulfur-containing model oil, respectively. After reaching extraction equilibrium, a specified
amount of H2O2 was dissolved to initiate the EODS reaction (Figure S3). As listed in Table 1,
the desulfurization efficiencies of BA, AA, and [Bmim]Cl were 3.6%, 2.3%, and 13.1%, re-
spectively. With [Bmim]Cl/BA/0.3AA as the extractant and catalyst, the EDS and EODS
efficiencies increased significantly to 22.0% and 96.6%, respectively. Moreover, the desul-
furization performance of the binary DESs was also evaluated. [Bmim]Cl/BA achieved
extraction and oxidative desulfurization rates of 9.8% and 75.0%, respectively, while the
sulfur removal of [Bmim]Cl/AA was only 21.9%, demonstrating the superiority of BA as an
active catalytic center [33]. These results prove the advantage of the dual-acid synergistic
effect in the EODS process, which will be investigated in detail from the modification of
viscosity and acidity.

Table 1. Desulfurization performance of raw materials and various DESs.

Entry Sample Molar Ratio
Sulfur Removal (%)

EDS a EODS b

1 BA c – – 3.6
2 AA d – – 2.3
3 [Bmim]Cl e – 9.5 13.1
4 [Bmim]Cl/BA 1:1 9.8 75.0
5 [Bmim]Cl/AA 1:0.3 24.1 21.9
6 [Bmim]Cl/BA/AA 1:1:0.3 22.0 96.6
8 BA/AA 1:0.3 White solid

Experimental conditions: Model oil = 5 mL, O/S = 5, m (DES) = 1.5 g, a t = 15 min, b t = 90 min, T = 40 ◦C,
c m (BA) = 0.36 g, d m (AA) = 0.14 g, e m ([Bmim]Cl) = 1.0 g.
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Consequently, we hypothesized that the synergistic effect observed in the DADES
was closely related to its viscosity and acidity, which will be investigated in detail. The
acidity of the prepared DESs was determined by employing FT-IR spectra with pyridine as
a probe molecule. As shown in Figure 2a, the peak at 1437 cm-1 is related to the pure pyri-
dine. There were almost no new absorption peaks in the mixture of [Bmim]Cl/0.3AA and
pyridine, indicating slight Brønsted acidity due to its low acid content in [Bmim]Cl/0.3AA.
After [Bmim]Cl/BA was mixed with pyridine, a new characteristic peak at 1539 cm−1 was
observed, indicating it contained Brønsted acidity (Figure 2b) [36]. Of note is the charac-
teristic peak of Brønsted acidity in the [Bmim]Cl/BA/0.3AA blue shifted from 1539 cm−1

to 1542 cm−1, suggesting an increase in acidity [37]. Furthermore, the Hammett acidity
function method was employed for accurate quantitative analysis of acidity differences
in the DESs [38]. A UV–Vis spectrophotometer (Kyoto City, Japan) was used to detect the
changes in absorbance after mixing 4-nitroaniline aqueous solution (2.9 × 10−3 mol/L)
with different DESs, and the Hammett function (H0) was defined by Equation (1).

H0 = pK(In)aq + log

(
[In][

InH+
]) (1)

where pK(In)aq = (0.99) is the dissociation constant of the base indicator. [In] and [InH+]
represent the concentrations of the unprotonated and protonated indicators of the solution,
respectively. As shown in Figure 2b, the maximum absorption wavelength (λmax) of
4-nitroaniline is 380 nm, with an associated absorbance (Amax) of 1.323. Compared to
binary DESs, the Amax of the indicator decreased most distinctly after dissolution in the
[Bmim]Cl/BA/0.3AA, implying a higher acidity. Moreover, the lower the H0 value, the
stronger the acidic DES, as shown in Table 2. This acidity was followed by [Bmim]Cl/BA
(2.17) < [Bmim]Cl/0.3AA (2.11) < [Bmim]Cl/BA/0.3AA (1.97), which is in agreement with
the results of the FT-IR. Activation of H2O2 was facilitated by increasing the acidity of the
DADES, resulting in higher EODS performance. Figure 2c provides the analyzed viscosity
for all the DESs. The viscosity of [Bmim]Cl/BA/0.3AA (152.8 mPa·S) was distinctly lower
than [Bmim]Cl/BA (780.6 mPa·S) and [Bmim]Cl/0.3AA (658.6 mPa·S), which facilitated its
efficient mass transfer, providing a suitable environment for the EODS reaction.
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Figure 2. (a) FT-IR spectra of (II) [Bmim]Cl/BA, (III) [Bmim]Cl/0.3AA, and (IV) [Bmim]Cl/BA/0.3AA
with pyridine, and (b) UV–Vis of (I) 4-nitroaniline in (II) [Bmim]Cl/BA, (III) [Bmim]Cl/0.3AA, and
(IV) [Bmim]Cl/BA/0.3AA, respectively. (c) The viscosity of different DESs at 40 ◦C.
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Table 2. Hammett function values of indicator and different DESs.

Entry Simple Amax [In] (%) [InH+] (%) H0

I 4-nitroaniline 1.323 100 –
II [Bmim]Cl/BA 1.242 93.88 6.12 2.17
III [Bmim]Cl/0.3AA 1.230 92.97 7.03 2.11
IV [Bmim]Cl/BA/0.3AA 1.198 90.55 9.45 1.97

Furthermore, PEG and ACN were introduced to prepare ternary DESs for comparative
tests. In Figure 3a, sulfur removal of [Bmim]Cl/BA/0.3PEG and [Bmim]Cl/BA/0.3ACN was
80.9% and 81.5%, respectively. Despite the low viscosity of the two, they still exhibited lower
activity than [Bmim]Cl/BA/0.3AA, which might be attributed to the neutral and weakly
basic nature of PEG and ACN, respectively, demonstrating the advantages of dual-acid HBDs
in DADESs. To further confirm the universality of the DADES strategy, various carboxylic
acids, including PA, OA, and GA, were introduced as the second acid HBD. In comparison to
[Bmim]Cl/BA, with a sulfur removal of 75.0%, the desulfurization efficiency of all DADESs
was enhanced (Figure 3a). Although [Bmim]Cl/BA/0.3GA and [Bmim]Cl/BA/0.3OA showed
higher acidities than [Bmim]Cl/BA/0.3PA and [Bmim]Cl/BA/0.3AA (Figure 3b and Table S1),
the former DADESs showed lower sulfur removal than the latter, which was also related
to the influence of viscosity. Therefore, the development of a DADES with high catalytic
performance requires comprehensive considerations, including acidity and viscosity.
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Figure 3. (a) Sulfur removal of DESs with different compositions of molar ratios, (b) UV–Vis of
4-nitroaniline in various DADESs, and (c) viscosity of different DADESs at 40 ◦C. Experimental
conditions: Model oil = 5 mL, O/S = 5, m (DES) = 1.5 g, t = 60 min, T = 40 ◦C.

2.2. Characterization of the DADES [Bmim]Cl/BA/0.3AA

The chemical structure of raw materials and intermolecular interactions in [Bmim]Cl/
BA/0.3AA were investigated by FT-IR spectra. In Figure 4a, the bending vibration of
O–H in BA appeared at 1180 cm−1, which was hardly observed in the DADES. Mean-
while, the stretching vibration of the B–O red-shifted from 1440 cm−1 to 1420 cm−1 with
weaker intensity. Such an observation may be related to hydrogen bond interaction [33].
The characteristic peak at 2546 cm−1 of the red-shifted to 2571 cm−1, resulting in an in-
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crease in the dipole moment and a reduction in the force constant in the O–H bond in
AA [29]. Moreover, it is noteworthy that the stretching vibration of C=O at 1700 cm−1

and the C–O band at 1222 cm−1 exhibited a blue shift to 1716 cm−1 and 1234 cm−1, re-
spectively, indicating that the intermolecular force of AA could have been influenced by
H-bonding interaction. Furthermore, [Bmim]Cl revealed two peaks at 1566 cm−1 and
1171 cm−1, which correspond to the stretching vibration of C=N on the imidazole ring
and the in-plane bending vibration of C–H, respectively [39]. They shifted to 1574 cm−1

and 1168 cm−1, respectively, implying the possible complex H-bonding interaction in
[Bmim]Cl/BA/0.3AA.
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The nature of H-bonding interaction in [Bmim]Cl/BA/0.3AA was further explored
by the 1H NMR spectra. In Figure 4b, the hydrogen signals of BA and AA were detected
at 6.72 and 11.94 ppm, respectively. After the DADES was formed, the hydrogen signal
of BA upshifted to a high electric field at 6.24 ppm, and the intensity was broadened
and weakened more significantly than the [Bmim]Cl/BA (Figure S4). Simultaneously,
the hydrogen signal of AA at 11.94 ppm disappeared. In addition, the hydrogen signals of
[Bmim]Cl in the imidazole ring appeared at 9.74 ppm and 7.92 ppm [40], which downshifted
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to 9.41 ppm and 7.84 ppm, respectively. It could be speculated that stronger and more
complex H-bonding interactions exist in [Bmim]Cl/BA/0.3AA [41].

2.3. Evaluation of Desulfurization Performance

The reaction temperature is a critical parameter that is closely related to desulfur-
ization efficiency and energy consumption. As detected in Figure 5a, the desulfurization
efficiency increased from 87.5% to 96.6% after the temperature increased from 30 ◦C to
40 ◦C, mainly due to the increasing probability of effective molecular collisions. Simultane-
ously, the reduced viscosity of [Bmim]Cl/BA/0.3AA with increasing temperature resulted
in a high mass transfer efficiency to accelerate reaction efficiency (Figure S5). However,
the sulfur removal dropped slightly to 83.2% at 50 ◦C despite the rapidly accelerated initial
period. Except for the unproductive decomposition of H2O2 at excessive temperatures,
the reduced EDS efficiency (from 22.6% to 17.5%) also accounts for the decline in EODS
efficiency [42]. Consequently, 40 ◦C was identified as the optimal temperature.

The dosage of oxidant directly impacts the EODS performance of a DADES. Hence,
the effects of different O/S molar ratios (3, 4, 5, and 6) were analyzed. In Figure 5b, the
desulfurization efficiencies reached 87.8%, 93.5%, and 96.6% within 90 min at O/S of 3, 4,
and 5, respectively. The formation of much more active intermediates was responsible for
the progressive improvement in catalytic performance as the dosage increased. However,
the improvement in desulfurization capability was insufficient as the amount of H2O2
continued to increase. Thus, the O/S of 5 is considered the optimal choice.

Model oils containing alkyl-substituted dibenzothiophene compounds were used to
further explore the desulfurization capacity of [Bmim]Cl/BA/0.3AA. As illustrated in
Figure 5c, sulfur removal for DBT, 4-MDBT, and 4,6-DMDBT was 96.6%, 84.9%, and 62.6%,
respectively. Based on the electrophilic addition mechanism, the reactivity of sulfur com-
pounds would be boosted as the electron density of the S atoms increased [43]. However,
despite the electron cloud density observed in 4-DMDBT (5.759) and 4,6-DMDBT (5.760)
being higher than that of DBT (5.758) [44], the steric hindrance imposed by their methyl
substituents restricts the accessibility of S-atoms to their active sites [45]. Consequently,
the reactive ability of 4-MDBT and 4,6-DMDBT is reduced, increasing the difficulty of the
EODS process.

The desulfurization performance of [Bmim]Cl/BA/0.3AA for model oil with differ-
ent initial S-contents was evaluated. As shown in Figure 5d, deep desulfurization was
achieved for both initial S-contents of 200 mg kg−1 and 500 mg kg−1 within 90 min at
40 ◦C, demonstrating the excellent catalytic performance of [Bmim]Cl/BA/0.3AA. While
for the oil with an S-content of 1000 mg kg−1, the sulfur removal was 93.2% under the
same reaction conditions. This is presumably due to the fact that more H2O2 is used for a
1000 mg kg−1 model oil, resulting in more H2O being introduced into the system, which
might inhibit the desulfurization process. To confirm the above speculation, the EODS
reaction was implemented with different mass concentrations of H2O2 as an oxidant. As
shown in Figure S6, the EODS efficiency decreased slightly from 96.6% to 93.9%, with
the H2O2 content reducing from 30 wt.% to 15 wt.%. After adding 5 wt.% of H2O2 to the
reaction system, the desulfurization efficiency was sharply reduced to 45.7%. Owing to
the decreased concentration of H2O2, more water was introduced into the reaction system.
This not only weakened the extractive capacity of [Bmim]Cl/BA/0.3AA but also decreased
its acidity, reducing the final EODS efficiency. Therefore, a less aqueous environment is
more conducive to the desulfurization reaction using a DADES as a catalyst.
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Figure 5. Influence of different (a) reaction temperatures, (b) O/S molar ratios, (c) sulfur compounds,
(d) initial sulfur content, and (e) other compounds in real fuels. (f) Evaluation of recyclability of
[Bmim]Cl/BA/0.3AA. Experimental conditions: Model oil = 5 mL, T = 40 ◦C (except a), O/S = 5
(except b), m (DES) = 1.5 g, t = 90 min.

Furthermore, the other major components, aromatics and olefins, in actual diesel
fuel may interfere with the desulfurization process [18]. Therefore, toluene (10 wt.%),
paraxylene (10 wt.%), and cyclohexene (10 wt.%), as typical aromatic hydrocarbon and
olefin interferences, were distinctly dissolved in the reactor to explore the anti-interference
capability of the DADES (Figure 5e). The inclusion of toluene and paraxylene led to a
decrease in desulfurization efficiency from 96.6% to 86.0% and 81.2%, respectively, in-
dicating that the reaction system was resistant to aromatic hydrocarbons. Nevertheless,
desulfurization efficiency dropped dramatically to 19.7% with the addition of cyclohexene,
suggesting that olefins severely impact EODS performance. Such results are probably
due to competing oxidative reactions among sulfur substrates with the olefins. In con-
clusion, [Bmim]Cl/BA/0.3AA could show excellent EODS activity for fuel with a low
olefin hydrocarbon content. Moreover, the presence of nitrogen-containing substances
may inhibit the desulfurization process, thereby affecting clean fuel production and oil
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quality [46–49]. Hence, quinoline as a typical basic nitrogen compound and carbazole
and indole as representative neutral N-containing substrates were used to prepare model
oil with an S-content of 200 mg kg−1 and N-content of 100 mg kg−1. The EODS reaction
was then carried out using different oils to explore the selectivity of [Bmim]Cl/BA/0.3AA.
In Figure S7, sulfur removal was 96.4% and 96.6% after adding CBZ and QUI, respectively,
indicating that [Bmim]Cl/BA/0.3AA exhibited excellent selectivity for DBT in the above
oils. However, the sulfur removal decreased from 96.6% to 40.7% after the addition of
IND, which is attributed to the competing extractive and oxidative reactions of sulfur
substrates with it [50–54]. Furthermore, the EDS efficiency decreased from 22.6% to 2.2%
with the addition of CBZ, suggesting CBZ’s significant competitive extraction with sulfur
compounds. Therefore, [Bmim]Cl/BA/0.3AA could achieve deep desulfurization for oil
with a low IND.

For industrial applications, it is essential to consider the recyclability and stability
of catalysts. After the first reaction, the used [Bmim]Cl/BA/0.3AA could be recycled
via drying at 60 ◦C for 8 h for the next cycle. After being recycled three times without
treatment, the deep desulfurization was retained (Figure 5f) with a sulfur removal of 95.6%.
However, after four cycles, the sulfur removal decreased to 83.7%, which is attributed to the
accumulation of oxidative products in the DADES phase, leading to the shielding of active
sites. Additionally, the constant generation of H2O in the reaction system also impeded
the activity of [Bmim]Cl/BA/0.3AA. The used DADES was regenerated by washing with
diethyl ether to remove the accumulated oxidative products and then dried for a new run.
It is noteworthy that the regenerated DADES exhibited excellent desulfurization perfor-
mance. Furthermore, FT-IR and 1H NMR analysis of the fresh and regenerated DADES are
shown in Figure S8. The prominent characteristic peaks of [Bmim]Cl/BA/0.3AA displayed
no significant changes, demonstrating good structural stability. Moreover, compared to the
BA-based DES reported in the literature, deep desulfurization was achieved under milder
conditions and with a faster reaction rate owing to the synergistic effect of the dual-acid
HBDs in the DADES (Table S2).

2.4. Possible EODS Reaction Mechanism over [Bmim]Cl/BA/0.3AA

With the intention of investigating the EDS process mechanism, FT-IR was carried
out on the mixture of DBT and DADES (molar ratio of 1:0.5). Figure 6a shows that the
–COOH blue shifted from 1385 cm−1 to 1389 cm−1, and the in-plane bending vibration of
the C–H bond in the imidazole ring shifted from 1171 cm−1 to 1168 cm−1. This suggests
the presence of weak interactions, including H-bonding interaction and π–π interaction,
between the DADES and S-containing compounds [39,42,55]. The observed changes in
chemical shifts in the 1H NMR spectra further clarify the interaction between DBT and
DADES. Figure 6b shows three H signals in the DBT at 8.38, 8.04, and 7.52 ppm, which
were shifted to the up-field (8.36, 8.01, and 7.49 ppm) after being added into the DADES.
Such results can be attributed to an enhancement in the electron-donating ability of the S
atom, which reduced the electron density of H-signals in the benzene ring, improving the
accessibility of sulfur compounds to be extracted [55,56].

The natural mechanism of the ODS process is crucial for designing a novel DADES
with excellent desulfurization performance, which has been analyzed by various technolo-
gies. According to the active radical capturing experiment (Figure 7a), sulfur removal
was barely affected after adding TBA as the scavenger of hydroxyl radicals (•OH) [57,58].
Whereas its catalytic ability was entirely abolished by adding the BQ into the reaction
system, inferring that the superoxide (•O2

−) radical might have been the primary active
intermediate in the oxidative process [59]. To verify the above conjecture, ESR measure-
ments were conducted using the radical trapping reagent 5,5-dimethyl-1-pyrroline-N-
oxide (DMPO). It is notable that after 90 min of the ODS process in the presence of the
DADES, a distinctive six-fold peak signal corresponding to the DMPO–•O2

− was detected
(Figure S9) [33], which coincides with the free radical scavenging experiments. The GC-MS
chromatogram was analyzed to investigate the EODS process. In Figure 7b, the intensity of
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the DBT at a retention time of 10.2 min (m/z = 184) continued to decrease as the reaction
progressed [60]. After the reaction, it disappeared after the EODS reaction, which means
that sulfur compounds were converted. To deeply explore the oxidative products, diethyl
ether was used to extract them. The white solid was separated via a funnel with filter paper
and dried at 60 ◦C for further analysis. In Figure 7c, the characteristic peaks at 1288 cm−1

and 1166 cm−1 correspond to the S=O bond, which confirms that the oxidative product
was DBTO2 [61,62]. In combination with the GC-MS analysis (Figure 7d), the high polarity
product DBTO2 was extracted in the DADES phase, appearing at the retention time of
15.3 min (m/z = 216) [63]. In the meantime, there was no characteristic peak of the oxidative
product in the oil phase, revealing that it was maintained in the DADES phase due to the
EDS process. Consequently, it is reasonable to determine that S-containing substrates were
eliminated from the model oil after the EODS process.

Molecules 2023, 28, x FOR PEER REVIEW 10 of 16 
 

 

[Bmim]Cl/BA/0.3AA. Experimental conditions: Model oil = 5 mL, T = 40 °C (except a), O/S = 5 (except 
b), m (DES) = 1.5 g, t = 90 min. 

2.4. Possible EODS Reaction Mechanism over [Bmim]Cl/BA/0.3AA 
With the intention of investigating the EDS process mechanism, FT-IR was carried 

out on the mixture of DBT and DADES (molar ratio of 1:0.5). Figure 6a shows that the –
COOH blue shifted from 1385 cm−1 to 1389 cm−1, and the in-plane bending vibration of the 
C–H bond in the imidazole ring shifted from 1171 cm−1 to 1168 cm−1. This suggests the 
presence of weak interactions, including H-bonding interaction and π–π interaction, be-
tween the DADES and S-containing compounds [39,42,55]. The observed changes in 
chemical shifts in the 1H NMR spectra further clarify the interaction between DBT and 
DADES. Figure 6b shows three H signals in the DBT at 8.38, 8.04, and 7.52 ppm, which 
were shifted to the up-field (8.36, 8.01, and 7.49 ppm) after being added into the DADES. 
Such results can be attributed to an enhancement in the electron-donating ability of the S 
atom, which reduced the electron density of H-signals in the benzene ring, improving the 
accessibility of sulfur compounds to be extracted [55,56]. 

 
Figure 6. (a) FT-IR and (b) 1H NMR analysis of the interaction of DADES and DBT. 

The natural mechanism of the ODS process is crucial for designing a novel DADES 
with excellent desulfurization performance, which has been analyzed by various technol-
ogies. According to the active radical capturing experiment (Figure 7a), sulfur removal 
was barely affected after adding TBA as the scavenger of hydroxyl radicals (•OH) [57,58]. 

Figure 6. (a) FT-IR and (b) 1H NMR analysis of the interaction of DADES and DBT.

Based on the above analyses, a plausible reaction mechanism for the EODS process
with [Bmim]Cl/BA/0.3AA is proposed (Scheme 1). Firstly, sulfur compounds were ex-
tracted from the oil phase to the DADES phase through their interaction, which promoted
sufficient contact among sulfur compounds, oxidants, and active centers. H2O2 was then
dissolved in the DADES phase and catalyzed synergically by the dual-acid HBD, resulting
in the formation of •O2

− radicals with strong oxidizing activity. Subsequently, the S-atom
with lone pairs in sulfur compounds was attacked by •O2

− radicals to form the corre-
sponding sulfone. The oxidative product was then retained in the [Bmim]Cl/BA/0.3AA
phase with high solubility, which is convenient for producing clean low-sulfur oil since it is
easily separated.
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3. Experimental Section
3.1. Materials

1-Butyl-3-methylimidazolium chloride ([Bmim]Cl, 98%), boric acid (BA, AR), acetic
acid (AA, AR), propionic acid (PA, 99.5%), oxalic acid (OA, AR), acetonitrile (ACN, AR),
glycolic acid (GA, 98%), dodecane (C12H26, 98%), and hexadecane (C16H34, 98%) were
brought from Aladdin Industrial Corporation (Los Angels, CA, USA). Polyethylene gly-
col 200 (PEG-200, C.P.), hydrogen peroxide (H2O2, 30 wt.%), tetra-chloromethane (CCl4,
99.0%), pyridine (AR), methylbenzene (AR), p-xylene (AR), and cyclohexene (99%) were
purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Dibenzothio-
phene (DBT, 98%), 4-methyl dibenzothiophene (4-MDBT, 97%), 4,6-dimethyl dibenzothio-
phene (4,6-DMDBT, 97%), and ethyl ether (C4H10O, 98%) were bought from Sigma Aldrich
(Burlington, MA, USA). 4-Nitroaniline (99%), p-benzoquinone (BQ, 99.5%), and tert-butyl
alcohol (TBA, 99.5%) were purchased from Shanghai Maclin Biochemical Technology Co.,
Ltd. (Shanghai, China). All chemicals were at an analytical grade and used directly without
further purification.

3.2. Preparation of DESs

A series of new inorganic–organic dual-acid DESs have been fabricated, and the prepa-
ration procedure is shown in Scheme 2. Inorganic acid (BA) and different organic acids (AA,
PA, GA, OA) were employed as HBDs, and [Bmim]Cl was chosen as the HBA. In the stan-
dard procedure, [Bmim]Cl, BA, and AA were added in a round-bottomed flask with a molar
ratio of 1:1:n (n = 0.1, 0.2, 0.3, 0.4, 0.5, 1, 2) for 20 min at 40 ◦C with vigorous stirring. The
produced transparent and homogeneous solvent was designated as [Bmim]Cl/BA/nAA.
Similarly, [Bmim]Cl/BA/nPA, [Bmim]Cl/BA/nOA, and [Bmim]Cl/BA/nGA were also
synthesized using similar procedures. Additionally, to explore the influence of acidity and
viscosity on EODS performance, PEG and ACN were introduced as the third component to
prepare additional ternary DES.
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3.3. Miscibility of DES and Model Oil

To investigate the miscibility of the DES and model oil, the DES and n-dodecane
(with equal mass ratios) were mixed in a flask with continuous stirring for 60 min at room
temperature. Subsequently, the upper n-dodecane and the lower DADES were separated
and characterized by means of FT-IR and 1H NMR, respectively. Furthermore, the above
experiments were replicated three times to guarantee the accuracy of the data.



Molecules 2023, 28, 7743 13 of 16

3.4. Desulfurization Experiment

Model oils were prepared using various sulfur-containing substrates to simulate
the environment with different aromatic sulfur compounds in diesel fuel. For instance,
DBT was solubilized in n-dodecane to prepare the model oil containing an S-content of
200 mg kg−1, while hexadecane was used for the internal standard at a concentration of
4000 mg kg−1. Similarly, model fuels with various S-containing substances, including
4-MDBT and 4,6-DMDBT, were prepared using the same procedure. In a typical EODS
process, 1.5 g of DES and 5 mL of oil were added to a reactor equipped with a water
condenser. The efficiency of the extraction process was tested by stirring at 600 r/min for
15 min at a specified temperature. A specific amount of H2O2 was dissolved in the reactor
to initiate the ODS reaction. At regular periods, the S-content of oil was analyzed by gas
chromatography (GC), and the desulfurization capability was determined as Equation (2).

Sulfur removal (%) =
C0 − Ct

C0
× 100% (2)

4. Conclusions

In this work, the construction of DADESs enhanced the mutual solubility of or-
ganic and inorganic acids, enabling them to jointly promote the desulfurization process.
As expected, DADESs showed superior extraction and catalytic capacity due to the syn-
ergistic effect of their dual-acid HBDs, which increased the acidity of the reaction system
and reduced the viscosity. Detailed experiments demonstrated the universality of the
synergistic effect in different DADESs by adjusting the organic acids, all of which exhibited
higher desulfurization capacities than those of binary DES with a single acid HBD. Among
them, [Bmim]Cl/BA/0.3AA achieved the best sulfur removal of 96.6% at 40 ◦C. Moreover,
it could be regenerated by washing with diethyl ether, proving its potential for industrial
application. The dual-acid strategy created a favorable reaction environment, which in-
volved rationally controlling the acidity and viscosity of the reaction system, effectively
enhancing the EODS process.
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