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Abstract: Brain tumors account for 1% of all cancers diagnosed de novo. Due to the specificity
of the anatomical area in which they grow, they can cause significant neurological disorders and
lead to poor functional status and disability. Regardless of the results of biochemical markers of
intracranial neoplasms, they are currently of no diagnostic significance. The aim of the study was
to use LC-ESI-MS/MS in conjunction with multivariate statistical analyses to examine changes in
amino acid metabolic profiles between patients with glioblastoma, meningioma, and a group of
patients treated for osteoarthritis of the spine as a control group. Comparative analysis of amino
acids between patients with glioblastoma, meningioma, and the control group allowed for the
identification of statistically significant differences in the amino acid profile, including both exogenous
and endogenous amino acids. The amino acids that showed statistically significant differences (lysine,
histidine, α-aminoadipic acid, phenylalanine) were evaluated for diagnostic usefulness based on
the ROC curve. The best results were obtained for phenylalanine. Classification trees were used
to build a model allowing for the correct classification of patients into the study group (patients
with glioblastoma multiforme) and the control group, in which cysteine turned out to be the most
important amino acid in the decision-making algorithm. Our results indicate amino acids that may
prove valuable, used alone or in combination, toward improving the diagnosis of patients with
glioma and meningioma. To better assess the potential utility of these markers, their performance
requires further validation in a larger cohort of samples.

Keywords: glioblastoma; meningioma; amino acid; biomarkers; LC-MS

1. Introduction

Intracranial neoplasms account for 2% of cancers, and deaths during these cancers
account for 3% of all cancer deaths worldwide. Gliomas are among the most common CNS
neoplasms and the most common primary malignant tumors. From a practical point of
view, glial tumors are divided into low-grade gliomas (LGGs) and high-grade gliomas
(HGGs) [1–5]. LGGs are diagnosed in the younger age group and grow slowly, but usually
infiltratively. They are most often located within the temporal and frontal lobes and within
the insula. The median survival time from diagnosis is seven years [6–8]. An HGG, in turn,
is much more common in older people who are most often diagnosed with GBM (grade 4
according to the WHO). GBM is an aggressive tumor that grows dynamically and leads to
a progressive decline in neurological performance. The average survival of patients with
an HGG is 16 to 36 months [4,5,9].
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Meningiomas are the most common primary intracranial neoplasms. Most often,
meningiomas are solitary intracranial tumors that arise without obvious risk factors. How-
ever, possible factors contributing to the development of meningiomas include radiation
therapy, inflammation, intracranial trauma, and hormonal disorders [10–12].

Clinical symptoms of intracranial tumors have a twofold pathophysiological basis.
Firstly, they result from increased intracranial pressure (ICP) and are non-specific, and
secondly, they are related to the location of the lesion and depend on the neural centers and
tracts occupied or compressed by the tumor. The most common symptom of all intracranial
tumors is progressive neurological deficit [13,14].

The emergence and development of intracranial tumors are conditioned by genetic,
molecular, cellular, and biochemical mechanisms. As in the case of any carcinogenesis,
including CNS tumors, their growth is a multi-stage process underpinned by genetic
mutations [15].

Imaging tests (MRI, CT) are the basic method of monitoring the course and treatment
of brain tumors, while biochemical markers determined in urine and body fluids have
limited use so far. Previous studies indicate the possibility of using various compounds
as potential biomarkers in CNS tumors, such as interleukins [16,17], the S100 Protein
Superfamily [18–22], proteins reacting in the acute phase and other markers of inflammatory
proteins [19,22–25], and panels of peptides and proteins [24,26,27]. Despite many studies,
none of the biomarkers are ready for direct clinical implementation. A key criterion for the
potential clinical value of a candidate cancer biomarker is the consistency and strength of
the association between the biomarker and the treatment outcome or disease of interest
and the extent to which this represents a diagnostic improvement over methods already
in use. The intensity of work on potential biomarkers of CNS tumors is reflected in the
number of scientific works, the summary and critical analysis of which can be found in
review works [28–30].

Metabolomics is a complementary approach to genomics and proteomics focused
on the comprehensive profiling of all small molecular weight metabolites in biofluids,
tissues, and cells. Metabolomics approaches can be targeted or non-targeted. Untargeted
metabolomics focuses on the unbiased, hypothesis-free analysis of all detectable metabolites
from a biological sample. Although this approach allows for the identification of a large
pool of potentially relevant metabolites, the approach often represents a trade-off between
specificity, selectivity, and analysis time. Targeted metabolomics refers to the quantitative
measurement of a select group of metabolites (e.g., amino acids) in order to investigate
specific metabolic pathways or validate biomarkers identified using non-targeted metabolic
profiling. Once a potentially relevant metabolic pathway has been identified using an
untargeted approach, targeted metabolic profiling appears advisable to increase the number
of metabolites associated with that particular pathway [31,32].

A wide range of analytical techniques are available for the qualitative and quantitative
determination of metabolites; however, the most commonly used analytical techniques in
cancer metabolomics are MS and NMR spectroscopy.

NMR spectroscopy is a quantitative, high-throughput technology that provides both
qualitative and quantitative information, making it a useful tool in metabolomics research.
Despite the many advantages of NMR spectroscopy, due to its relatively low sensitivity
and poor dynamic range, it is not suitable for the detection of metabolites present in trace
amounts. Most metabolomics studies of brain tumors are based on NMR spectroscopy,
which allows for the observation of changes in metabolism related to tumor development
and differentiation of the degree of malignancy [31–35].

Mass spectrometry (MS) provides a valuable analytical platform for metabolomics due
to its high sensitivity and wide dynamic range. With the dissemination of this technology
to routine medical laboratories, it has become possible to measure low molecular weight
metabolites for diagnostic purposes. The use of LC-MS/MS methods for small molecules
in biological fluids is becoming increasingly preferred because they have higher sensitivity
and better reliability in complex biological fluids. Recent studies have shown that the use
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of metabolomic analysis with mass spectrometry detection allowed the identification of
biomarkers differentiating patients with CNS tumors from healthy people or enabling the
differentiation of low- and high-grade tumors [34,36–41].

There are several ways to assess changes in the metabolome in patients with CNS
tumors: through the metabolome of plasma collected from an antecubital vein or the
metabolomic analysis of blood collected from resected tumor tissue or cerebrospinal
fluid [31,32,38–40,42]. Griffin et al.’s review summarizes progress in the field of human
brain tumor metabolomics research using tissue sections using both ex vivo and in vivo
approaches [43]. Another approach to assessing changes in metabolism was presented in
the work of Xiong et al., who used the method of collecting intraoperative blood samples
from the artery located directly above the brain tumor and the vein located directly behind
the brain tumor [44].

Amino acids (AAs) are the building blocks of various biomacromolecules, as well
as functional regulators of various metabolic processes. The altered metabolism of AAs
promotes the proliferation of tumors and contribute to their immune escape and resistance
to treatment. From a clinical point of view, it is estimated that changes in amino acid
concentrations observed in specific body fluids provide the opportunity to develop new
diagnostic and prognostic markers [45,46]. Early diagnostic blood markers are biomarkers
that can be used to predict the development of cancer in an individual, many years before
clinical or radiological signs are noticed. These markers can be useful for screening patients
at risk. A prognostic biomarker is defined as a clinical or biological characteristic that
provides information on the most probable patient health outcome irrespective of the
treatment [29].

The aim of the study is to evaluate the potential of targeted dual-control serum amino
acid metabolomics analysis in the diagnosis of patients with glioma and meningioma. In
pilot studies, other groups have explored the use of a metabolomics approach to distinguish
patients with glioblastoma and meningioma from healthy controls. However, to the best
of our knowledge, no metabolomics study based on targeted amino acid analysis has
attempted to remove the confounding effects of common pathophysiology, such as a
generalized immune response.

The present study used high-performance liquid chromatography–mass spectrometry
(HPLC-MS) coupled with multivariate statistical analyses to accurately identify unique
changes in amino acid metabolomic profiles that distinguish glioma patients from menin-
gioma patients and other diseases that may be associated with overall inflammation, e.g.,
degenerative spine disease.

2. Results
2.1. Comparison of the Control Group and Cancer Patients

The first stage of the study was to compare amino acid concentrations between patients
diagnosed with glioblastoma and the control group. A comparative analysis of the analyzed
AAs between patients with glioblastoma and the control group allowed the identification
of statistically significant differences between the study groups. Statistically significant
differences were observed both among endogenous (Figure 1) and exogenous (Figure 2)
amino acids.

Among endogenous AAs, statistically significant differences concerned SER (p = 0.002245),
ARG (p = 0.009292), CIT (p = 0.000000), ASN (p = 0.000939), GLY (p = 0.017846), GABA
(p = 0.000000), SAR (p = 0.019362), ABA (p = 0.001831), ORN (p = 0.000012), and ASP
(p = 0.000214).

In the case of exogenous amino acids, statistically significant differences were observed
for THR (p = 0.000032), MET (p = 0.000190), LYS (p = 0.000000), HIS (p = 0.000011), AAA
(p = 0.000021), LEU (p = 0.036077), PHE (p = 0.000001), ILE (p = 0.000728), C-C (p = 0.000037),
and TYR (p = 0.000007).
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In the case of endogenous amino acids, significant differences were found for GLN
(p = 0.001167), CIT (p = 0.000028), GABA (p = 0.000145), ORN (p = 0.005893), and ASP
(p = 0.049001). A comparison of the group of patients with glioma and the control group
also allowed for the confirmation of statistically significant differences for such exogenous
amino acids such as THR (p = 0.005100), MET (p = 0.000003), LYS (p = 0.000019), AAA
(p = 0.007040), PHE (p = 0.007552), C-C (p = 0.000000), and TYR (p = 0.000349).
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To eliminate the influence of the variability related to the sex of the studied groups on
the observed differences in amino acid concentrations, a comparison was made taking into
account the division by sex. The obtained results made it possible to isolate those amino
acids for which statistically significant differences were found between the study group of
cancer patients and the control group, both in the group of women and men.

When comparing the group of patients with glioblastoma with the control group,
statistically significant differences after post hoc analysis were observed for lysine, histidine,
α-aminoadipic acid, and phenylalanine (Table 1). In the case of meningioma patients,
compared to the control group, statistically significant differences in the group of women
and men were observed only for lysine (women p-value = 0.0032; men p-value = 0.0120).
Figures 5–8 illustrate the observed differences for amino acids with statistically significant
differences, both in the group of men and women.

Table 1. Statistically significant differences between cancer group glioblastoma and the control in
with regard to sex.

Compounds Women
p-Value Men p-Value

lysine 0.0059 0.0000
histidine 0.0250 0.0004

α-aminoadipic acid 0.0026 0.0060
phenylalanine 0.0088 0.0001

In Figure 5, the highest lysine concentration can be observed in glioma patients
compared to the controls and meningioma patients. Similar relationships of amino acid
concentrations (i.e., the highest in patients with glioma and the lowest in the control
group) between the studied groups can be observed in the case of histidine (Figure 6) and
phenylalanine (Figure 7).

Only in the case of α-aminoadipic acid was the concentration of this amino acid higher
in the group of men in patients with meningioma compared to the group with glioma and
the control group (Figure 8).
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2.2. Classification Analysis
2.2.1. Receiver Operating Characteristic Curves

The next part of the analysis started to build a classification model that will classify
patients as healthy or suffering from glioblastoma of the CNS with the highest efficiency.
Receiver operating characteristic (ROC) analysis is a useful tool for evaluating the accuracy
of a model’s prediction by plotting the sensitivity versus (1-specificity) a classification
test. The model of the classification of patients into the group with glioblastoma and the
control group included those AAs in which statistically significant differences were found
between the study group and the control group, both in the group of women and men.
Visualizations of the obtained results are presented in Figure 9.
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Then, the accuracy of the model was assessed in relation to the concentration of the
analyzed amino acids. The obtained results are illustrated in Figure 10.
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The obtained cut-off, accuracy, sensitivity, and specificity values of the tested amino
acids obtained using the ROC curve are summarized in Table 2.

Table 2. Classification parameters of a model based on the ROC.

Cut-off
(nmol/mL) Accuracy (%) Sensitivity (%) Specificity (%)

Lysine 230.00 77.7 63.0 91.8
Histidine 103.00 73.7 60.0 89.8

α-aminoadipic acid 1.09 73.2 50.0 91.8
Phenylalanine 101.00 79.5 66.7 95.9

2.2.2. Decision Trees

The analysis was aimed at showing which amino acids would allow for a better
classification of patients into a group with glioblastoma and a control group of healthy
people. Classification trees are used to build predictive models (predicting subsequent data
based on the model based on previously provided information) and descriptive models.
The significance plot of the model variables based on standardized data primarily indicates
the concentration of cysteine, citrulline, and glutamine (Figure 11).

Importantly, the use of a model based on the above parameters gives a much better
chance of correctly diagnosing a person with glioblastoma than diagnosing the same cancer
in a healthy person (Figure 12).
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3. Discussion

Many research projects focus on finding prognostic or diagnostic biomarkers for central
nervous system tumors, including meningiomas and gliomas. Currently, classical metabolic
pathways such as the citric acid cycle (TCA), glycolysis, and arachidonic acid/inflammatory
pathway have been well-studied in glioma. However, in recent years, attention has also
been paid to understanding new metabolic changes in glioma cells, such as metabolic
changes in IDH mutant cells, amino acid metabolism, or nucleotide metabolism. Many
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characteristic metabolites have been discovered in glioma, such as 2-HG, fumaric acid,
succinic acid, sarcosine, glycine, glutamine, aspartic acid, choline, serine, glucose, lactic
acid, and polyamines, which suggest the dysregulation of multiple metabolic pathways
(e.g., glycolysis, TCA, glutaminolysis, pentose phosphate pathway, fatty acid metabolism,
amino acid metabolism) [34,36,37,47–51].

This study was designed to evaluate changes in amino acid profiles between patients
with glioblastoma, meningioma, and the control group. Available studies indicate that dys-
regulated AA metabolism is not characteristic of a given type of cancer. The selection of the
study groups (glioblastoma vs. meninges vs. a group of patients treated for osteoarthritis
of the spine as a control group) was aimed at capturing possible differences in the profiles
of the tested amino acids, depending on the type of cancer.

The conducted analysis allowed the observation of statistically significant differences
between the study groups. When we compare the changes in the amino acid profiles of the
glioblastoma and meningioma patients to the controls, we can see a group of amino acids
that differ in both cases. This applies to endogenous amino acids (CIT, GABA, ORN, ASP)
and exogenous (THR, MET, LYS, AAA, PHE, C-C, and TYR). In the case of glioblastoma,
we observe additional amino acids differentiating the study group and the control group,
including SER, ARG, ASN, GLY, SAR, and ABA. This points to a more altered amino
acid metabolism in the glioblastoma group. In the case of meningioma, attention is paid
to glutamine, whose elevated concentration is observed in comparison with the control
group. In patients with glioblastoma, these differences are not statistically significant. In
most cases, we observe a higher concentration of amino acids in groups of cancer patients
compared to the control group. Lower concentrations were observed with cysteine, the
concentration of which is statistically significantly lower in patients with glioblastoma
compared to the control group. In turn, the concentration of cysteine is reduced in both
glioblastoma and meningioma patients compared to the control group.

The biomarker should be resistant to inter- and intra-individual factors, such as gender.
Therefore, in the proposed study, the study groups of both cancer patients and the control
group were divided by gender. Among the compounds that showed statistically significant
differences, only lysine, histidine, α-aminoadipic acid, and phenylalanine differentiated
patients with glioblastoma from healthy ones both in the group of men and women.
In patients with meningioma, differences in the group of men and women concerned
only lysine.

The AAs that showed statistically significant differences were evaluated for diagnostic
usefulness. The diagnostic usefulness of AAs determined in the identification of glioblas-
toma was assessed based on the ROC curve with the proposed cut-off point and area under
the AUC curve. Sensitivity, specificity, and accuracy are given for the designated cut-off
points. The best results were obtained for phenylalanine. The ROC graph for phenylalanine
showed a sensitivity of 66.7%, a specificity of 95.9%, and an accuracy of 79.5% for the
proposed cut-off of 101.00 nmol/mL. The other analyzed amino acids were characterized
by similar parameters of lysine (cut-off point 230 nmol/mL, sensitivity 77.7%, specificity
63%, accuracy 91.8%), histidine (cut-off point 103 nmol/mL, sensitivity 73.7%, specificity
60%, accuracy 89.8%), and α-aminoadipic acid (cut-off 1.09 nmol/mL, sensitivity 73.2%,
specificity 50%, accuracy 91.8%).

In the next stage of the research, classification trees were used, which allowed us to
build a model allowing for the correct classification of patients into the study group (patients
with glioblastoma) and the control group (healthy individuals) (Figure 11). Cysteine turned
out to be the most important amino acid in the decision-making algorithm, followed by a
group of three amino acids (citrulline, glutamine, γ-aminobutyric acid).

Analyzing the results of our research, it seems that the most important amino acids in
terms of diagnostic decisions are lysine, aminoadipic acid, histidine, and phenylalanine.
The higher concentration of lysine observed in our study in patients with glioma and
meningioma, considering the division by gender, was also observed in patients with head
and neck cancers and sarcoma [52–54]. Toklu et al. found high levels of serum lysine in
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high-grade glioma patients [55]. Mören et al. observed that serum lysine levels of high-
grade glioma patients decreased during radiotherapy when the disease is indolent [56]. It
is worth noting that in patients with glioblastoma, we also found statistically significantly
higher concentrations of aminoadipic acid, which is a poorly characterized product of
lysine degradation and may appear in the circulation because of the degradation of whole
tissue or plasma proteins. The ε-amino group of lysine residues in proteins can undergo
deamination to form an intermediate lysine, which during subsequent oxidation forms
aminoadipic acid. Available data indicate that plasma aminoadipic acid plays a role in the
modulation of glucose levels through a compensatory response to hyperglycemia, resulting
in increased insulin secretion in early insulin resistance [57]. Cadoni et al. noted a high
level of aminoadipic acid in the serum of patients with a reduced risk of advanced head
and neck cancer [54]. Toklu et al. did not observe statistically significant differences in
aminoadipic acid between high-grade glioma and the control group determined in serum
and brain tissue [55].

We found high levels of serum histidine in glioblastoma patients compared to the con-
trols. This was parallel with the result of Toklu et al., where histidine levels were elevated in
patients with high-grade glioblastoma [55]. Previous studies found that low plasma levels
of histidine were observed in patients with shorter overall survival in glioblastoma patients.
The potential role of histidine in the neoplastic process is not clear. It is believed that some
AAs seemingly unrelated to the cancer process are used to increase the rate of uptake of
other AAs. The upregulation of amino acid transporters in cancer maintains amino acid
pools at levels that support its malignant characteristics. This can be highlighted by several
examples: the export of glutamine to drive leucine uptake, asparagine for serine, arginine,
and histidine, and glutamate for cystine [58].

The results of our study indicate an altered metabolism of phenylalanine in both
glioblastoma and meningioma patients. In addition, we showed the statistical signifi-
cance of phenylalanine differentiating patients with glioblastoma and the control group,
considering a division by gender. Phenylalanine was also characterized by the best diag-
nostic values in the case of patients with glioblastoma. Phenylalanine is the precursor of
tyrosine, an important AA for the biosynthesis of neurotransmitters like L-DOPA (L-3,4-
dihydroxyphenylalanine) and catecholamines dopamine, epinephrine, and norepinephrine.
Available research results indicate an increased concentration of phenylalanine in cancer,
which reflects increased muscle proteolysis. For example, elevated levels of phenylalanine
have been observed in squamous cell carcinoma of the head and neck [54] and hepatocellu-
lar carcinoma [59]. In a study comparing metabolites produced and consumed by glioma,
Xiong et al. indicated phenylalanine as one of the metabolites intensively consumed by
glioma cells [44]. The reason for the increase in phenylalanine levels in cancer is not fully
understood. It is believed to be related to inflammation, the activation of the immune
system, and increased levels of markers of immune activation, including tumor necrosis
factor (STNF R75) and neopterin [60]. Phenylalanine is required to produce tyrosine. This
conversion is catalyzed by the enzyme phenylalanine hydroxylase (EC 1.14.16.1), which
functions primarily in the liver but has been shown to be active in other tissues of the body,
including the brain. It has also been observed that phenylalanine hydroxylase activity may
be sensitive to inflammation or cancer [61,62].

4. Materials and Methods
4.1. Subjects and Serum Samples

This study included 54 patients treated surgically for intracranial tumors in the Depart-
ment of Neurosurgery, Neurotraumatology, and Paediatric Neurosurgery at the University
Hospital No. 1, Collegium Medicum of the Nicolaus Copernicus University. The histologi-
cal types of tumors in the examined patients were glial tumors and meningiomas. Table 3
shows the clinical and demographic characteristics of the study group.
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Table 3. Clinical and demographic characteristics of the study group.

CNS Tumor Glioma (n = 30) Meningioma (n = 24)

Age 62.5 59.6

Sex
– Female 11 (36.67%) 17 (70.83%)

– Male 19 (63.33%) 7 (29.17%)

WHO Classification

– HGG (4. WHO) 30

– Meningothelial meningiomas (1. WHO) 13

– Transitional meningiomas (1. WHO) 3

– Fibroblastic meningiomas (1. WHO) 3

– Atypical meningiomas (2. WHO) 5

The control group consisted of 49 people (29 men, 20 women) treated for osteoarthritis
of the spine. The exclusion criteria for the control group were past or current neoplastic
disease and (similarly to the study group) a surgical procedure performed less than 30 days
ago. This study was conducted in accordance with all internationally approved human
testing guidelines and was in accordance with the Declaration of Helsinki. The Ethics
Committee of the Nicolaus Copernicus University in Toruń and Collegium Medicum in
Bydgoszcz approved this study (consent number KB 499/2021).

4.2. Sample Preparation

Antecubital whole-blood samples were drawn from a peripheral vein in the morning
hours (always between 7 and 8 a.m.). Overnight fasting and 15 min of rest before the blood
test were obligatory. Blood collected in the tube was kept for 30 min. Serum from the
blood after clotting was separated, centrifuged, and frozen at −80 ◦C until analysis was
performed. The EZ:faast amino acid analysis kit was utilized for serum sample preparation.

The EZ:faast amino acid analysis procedure consists of a solid phase extraction step
followed by derivatization and a liquid/liquid extraction. The solid phase extraction is
performed via a sorbent-packed tip that binds amino acids while allowing interfering
compounds to flow through. Amino acids on sorbent are then extruded into the sample
vial and quickly derivatized with a reagent at room temperature in an aqueous solution.
Derivatized amino acids concomitantly migrate to the organic layer for additional sepa-
ration from interfering compounds. The organic layer is then removed, evaporated, and
re-dissolved in an aqueous mobile phase and analyzed on an LC-MS system.

4.3. Instrumentation and Conditions

The quantitative and qualitative analyses of samples were performed using High-
Performance Liquid Chromatograph Nexera XR LC-20 AD pump (Shimadzu, Kyoto, Japan)
and a Nexera XR SIL-20AC autosampler (Shimadzu, Kyoto, Japan) coupled with a mass
spectrometer equipped with an electrospray ion source (ESI), an LCMS-8045 Mass Spec-
trometer (Shimadzu, Kyoto, Japan). The instrument was controlled, and recorded data
were processed using LabSolutions LCMS Ver.5.6 software.

Chromatographic separation was carried on the EZ:faast amino acid analysis–mass
spectrometry column (250 × 3.0 mm, 4 µm) at a column temperature of 35 ◦C with the
corresponding binary mobile phase. Solvent A was 10 mM ammonium formate in water
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and solvent B was 10 mM ammonium formate in methanol. The mobile phase flow was
0.25 mL/min and took place in a gradient system: 68% B–83% B in 13 min. The injection
volume was 1 µL. The mass spectrometry (MS) data were acquired in positive ion mode.
Multiple reacting monitoring was used for quantification by monitoring the ion transition
of amino acids.

Selected mass spectrometry parameters are summarized in Table 4.

Table 4. Amino acids, AA abbreviated name, retention time (min.), transitions chosen for each
compound.

Compound Name Abbreviated Name tR (min) Quantification Transition

Serine SER 3.885 233.9 > 146.00
Glutamine GLN 3.468 275.1 > 172.00
Arginine ARG 3.557 303.1 > 69.00
Citrulline CIT 3.549 304.1 > 156.00

Homoarginine HARG (IS) 3.753 317.10 > 84.00
Asparagine ASN 3.985 243.10 > 157.00

1-Methyl-L-histidine 1MHIS 4.201 298.1 > 96.00
3-Methyl-L-histidine 3MHIS 4.235 298.1 > 210.00

4-Hydroxyproline HYP 4.183 260.1 > 172.1
Glycine GLY 4.423 203.9 > 144.00

Threonine THR 4.482 248.10 > 160.00
Alanine ALA 5.347 218.00 > 130.00

Gamma-aminobutyric acid GABA 5.739 232.00 > 172.00
Sarcosine SAR 5.948 217.90 > 88.00

Beta-aminoisobutyric acid BAIB 6.202 232.00 > 172.00
α-Aminobutyric acid ABA 6.567 232.00 > 172.00

Ornithine ORN 6.795 347.00 > 287.00
Methionine MET 7.085 227.9 > 190.10

Methionine-d3 Met-d3 (IS) 7.030 281.1 > 193.00
Proline PRO 7.130 244.00 > 156.00
Lysine LYS 7.743 361.00 > 301.10

Aspartic acid ASP 7.753 304.00 > 216.10
Histidine HIS 7.826 370.10 > 196.00

Valine VAL 8.116 246.00 > 158.00
Glutamic acid GLU 8.223 317.50 > 172.10
Tryptophan TRP 8.468 333.10 > 245.10

α-Aminoadipic acid AAA 9.202 332.00 > 244.10
Leucine LEU 9.593 260.00 > 172.10

Phenylalanine PHE 9.679 294.10 > 206.10
Isoleucine ILE 9.997 260.00 > 172.10

Homophenylalanine HPHE (IS) 11.224 308.00 > 220.00
Cystine C-C 11.402 497.00 > 248.00
Tyrosine TYR 11.999 395.90 > 136.00

4.4. Reagents and Solvents

The EZ:faastTM amino acid analysis kit was obtained from Phenomenex, Inc. (Torrance,
CA, USA). HPLC grade methanol was obtained from Merck (Darmstadt, Germany). Ammo-
nium acetate and formic acid of analytical grade were purchased from Sigma-Aldrich Co.
(St. Louis, MO, USA) with purity greater than 99%. Water was deionized and purified using
a Milli-Q system (Millipore, Bedford, MA, USA) and used to prepare all aqueous solutions.

Calibration curves for each AA were constructed in a range from 0.01 to 75 nmol/mL.
Calculation and calibration are based on an internal standard method. The kit contains as
an internal standard an AA mixture of homoarginine (HARG), methionine-d3 (Met-d3),
and homophenylalanine (HPHE).
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4.5. Statistical Analysis

The statistical analysis was performed using Statistica 13.1 (StatSoft) and Excel 365
(Microsoft). The type of distribution was examined using the Shapiro–Wilk test. The Levene
test was used to test the homogeneity of variance. The Kruskal–Wallis test and multiple
comparisons of mean ranks for all trials were used to assess differences between more
than two groups. Relationships between variables were described using the Spearman
coefficient in the event of statistically significant differences. The data were visualized
using a box plot. Principal component analysis (PCA) was used to classify correlation
coefficients. The correlation matrix was used as the input. To isolate the number of principal
components, Cattella’s and Kaiser’s criteria were used.

The receiver operating characteristic (ROC) curves were prepared using the concentra-
tion values of amino acid compounds. Sensitivity (SEN), specificity (SPE), and accuracy
(Acc) were used to evaluate the model. The general models of regression and classification
trees were used to build the classification model. The collected data were divided by a 4:1
ratio into a learning and testing group. Cross-validation was used to verify the effectiveness
of the models. All analyses were performed at a significance level of 5% (α = 0.05).

5. Conclusions

A comparative analysis of AAs between patients with glioblastoma, meningioma,
and the control group allowed for the identification of statistically significant differences
between the study groups.

A comparison of the amino acid profile between patients with glioma and the control
group allowed for the identification of differences in both endogenous amino acids (SER,
ARG, CIT, ASN, GLY, GABA, SAR, ABA, ORN, ASP) and exogenous amino acids (THR,
MET, LYS, HIS, AAA, LEU, PHE, ILE, CC, TYR). Similarly, when comparing the amino
acid profiles of patients with meningioma to the control group, the differences observed
concerned endogenous amino acids (GLN, CIT, GABA, ORN, ASP) and exogenous amino
acids (THR, MET, LYS, AAA, PHE, C-C, TYR). When comparing the amino acid profile by
gender, only lysine showed statistically significantly higher concentrations in the group
of patients with glioma and in the group of patients with meningioma compared to the
control group. In the group of glioma patients, differences in amino acid profiles by
gender also concerned histidine, α-aminoadipic acid, and phenylalanine. However, no
statistically significant differences were observed when comparing amino acid profiles
between the groups of patients with glioma and meningioma. The AAs that showed
statistically significant differences were evaluated for diagnostic usefulness. The best
results were obtained for phenylalanine.

This study showed that amino acids may be involved in the mechanisms underlying
the pathogenesis of glioblastoma and meningioma and may also be considered potential
indicators of some pathways altered in CNS neoplastic diseases. However, given the
multifactorial, heterogeneous, and complex nature of these diseases, further work with
a larger study group is needed to correlate the results of previous studies with possible
other malignancies to see if the amino acid profile of meningiomas and gliomas can be
considered characteristic of these diseases.
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