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Abstract: Cistanche deserticola residues are by-products of the industrial production of Cistanche
deserticola, which are currently often discarded, resulting in the waste of resources. In order to achieve
the efficient utilization of Cistanche deserticola, dietary fiber from Cistanche deserticola residues was
extracted chemically and the optimization of the extraction conditions was performed, using the
response surface methodology to study the effects of the NaOH concentration, extraction temper-
ature, extraction time, and solid–liquid ratio on the yield of water-soluble dietary fiber (SDF). The
structural, physicochemical, and functional properties of the dietary fiber were also investigated. The
results showed that the optimal conditions were as follows: NaOH concentration of 3.7%, extraction
temperature of 71.7 ◦C, extraction time of 89.5 min, and solid–liquid ratio of 1:34. The average yield
of SDF was 19.56%, which was close to the predicted value of 19.66%. The two dietary fiber types
had typical polysaccharide absorption peaks and typical type I cellulose crystal structures, and the
surface microstructures of the two dietary fiber types were different, with the surface of SDF being
looser and more porous. Both dietary fiber types had good functional properties, with SDF having
the strongest water-holding capacity and the strongest adsorption capacity for nitrite, cholesterol,
sodium cholate, and glucose, while IDF had a better oil-holding capacity. These results suggest that
Cistanche deserticola residues are a good source of dietary fiber and have promising applications in the
functional food processing industry.

Keywords: Cistanche deserticola; waste utilization; dietary fiber; response surface methodology

1. Introduction

Cistanche deserticola is a traditional and valuable Chinese herbal medicine with high ed-
ible value that grows mainly in the desert areas of Northwest China [1]. Cistanche deserticola
contains phenylethanol glycosides, polysaccharides, and flavonoids [2–4], giving it anti-
inflammatory and antioxidant functions, improved immunity, and other pharmacological
effects [5,6]. In recent years, as individuals’ concerns for their health have increased, more
products derived from Cistanche cistannii have been developed, such as Cistanche cistannii
wine and Cistanche cistannii beverages, and the production of Cistanche cistannii products
has increased annually [7–9]. In industrial production, large amounts of Cistanche deserticola
residues are generated, which are usually discarded, but these residues are rich in dietary
fiber, thus representing a considerable waste of resources if discarded. Making full use
of these residues can increase the added value of Cistanchis resources and improve the
economic benefits.

Dietary fiber (DF) is a class of carbohydrate that is not digested and absorbed by
endogenous enzymes in the human body [10]. In recent years, studies have shown that
the adequate intake of dietary fiber can help to reduce the risk of obesity, diabetes mellitus,
cardiovascular and cerebral vascular diseases, gastric and intestinal cancers, and other
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chronic diseases [11–13]. DF is classified into water-soluble dietary fiber (SDF) and water-
insoluble dietary fiber (IDF) according to its solubility and its different physiological
functions, based on its composition and structure [14]. SDF is composed of non-cellulosic
polysaccharides, including β-glucan, pectin, guar gum, arabinoxylan, inulin, etc. [15]. It
has the effects of lowering blood lipids, lowering blood glucose, and preventing gastric
cancer, etc. [16]. IDF is mainly composed of cellulose, hemicellulose, chitosan, lignin, and
other components of the plant cell wall [17], and it can increase the volume of fecal matter
and accelerate the speed of intestinal transport [18]. DF is increasingly widely used in the
food industry due to its unique physicochemical properties and functional properties, such
as its water-holding capacity (WHC), oil-holding capacity (OHC), and other properties that
contribute to its role in improving the organoleptic properties and processing characteristics
of foods after it is added as an additive or nutrient fortification agent [19]. At present,
dietary fiber is mainly used in foods such as pasta products, dairy products, meat products,
and beverages [20].

Typically, SDF has higher value than IDF because of its better functional properties.
Raw materials with SDF content comprising more than 10% of the DF can be considered
high-quality sources of dietary fiber. Much of the DF currently used in the food industry
has relatively low SDF content, so researchers are seeking high-quality sources of dietary
fiber [21]. The chemical method of obtaining DF includes drying and crushing the raw ma-
terials, using acidic and alkaline reagents, and obtaining DF under suitable conditions [22].
The principle is to remove the proteins and fats in the raw materials using acidic and
alkaline reagents so that the glycosidic bond breaks to produce a new reducing end, reduc-
ing the polymerization of fiber macromolecules, and converting them into non-digestible
soluble polysaccharides. This method is suitable for large-scale application due to its simple
operation and low cost [23].

Currently, there are no reports on the study of dietary fiber in Cistanchis dregs. The
objective of this study is to optimize the process conditions for the chemical extraction
of SDF from Cistanchis dregs using response surface optimization. By determining the
structural characteristics and physicochemical and functional properties of SDF, IDF, and
the raw residue of Cistanchis dregs, a theoretical basis for the utilization of Cistanchis
resources and the application of dietary fiber in the food industry is provided.

2. Results
2.1. Response Surface Optimization Results
2.1.1. Optimization of SDF Extraction

In this study, we chose to use the chemical method to extract SDF from Cistanche
deserticola residues in order to optimize the extraction conditions to obtain more SDF,
studying the NaOH concentration, extraction temperature, extraction time, and solid–
liquid ratio as independent variables to optimize the extraction conditions. The design of
the experimental factor levels is shown in Table 1.

Table 1. Box–Behnken design of test factor levels and coding.

Level

X1
NaOH

Concentration
(%)

X2
Extraction

Temperature
(◦C)

X3
Extraction

Time
(min)

X4
Solid–Liquid

Ratio

−1 3 60 80 1:30
0 4 70 90 1:35
1 5 80 100 1:40
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A total of 29 sets of tests were conducted, and the results are shown in Table 2. The
data in Table 2 were analyzed by multiple regression to obtain the regression equations
between the SDF yield and the test factors:

Y = 19.40 − 1.28X1 + 0.63X2 − 0.37X3 − 0.34X4 − 0.57X1X2 − 0.42X1X3−
0.13X1X4 + 0.55X2X3 − 0.35X2X4 − 0.25X3X4 − 2.55X2

1 − 2.34X2
2 − 1.12X2

3−
1.07X2

4

(1)

Table 2. Box–Behnken design test results.

Run X1 X2 X3 X4 Yield (%)

1 4 70 90 35 19.57
2 4 70 100 40 16.12
3 3 80 90 35 16.94
4 4 70 80 30 17.89
5 5 70 90 30 14.65
6 4 80 80 35 15.63
7 4 70 90 35 19.27
8 4 60 80 35 16.31
9 4 70 90 35 18.95
10 4 80 90 30 17.71
11 3 70 90 30 17.15
12 5 70 80 35 15.36
13 3 70 90 40 16.62
14 4 60 90 30 15.12
15 4 80 90 40 16.61
16 4 60 90 40 15.43
17 3 60 90 35 14.31
18 3 70 80 35 17.28
19 4 70 90 35 19.6
20 4 80 100 35 16.13
21 3 70 100 35 17.41
22 4 60 100 35 14.61
23 4 70 90 35 19.62
24 5 80 90 35 13.65
25 5 70 100 35 13.82
26 5 70 90 40 13.62
27 4 70 80 40 17.51
28 5 60 90 35 13.31
29 4 70 100 30 17.48

The ANOVA results are shown in Table 3. The results show that the correlation
coefficient of the model, R2 = 0.9709, was close to that of the R2adj of 0.9419, and both
were close to 1, indicating that this model was well fitted. The p-value was <0.0001, the
coefficient of variation (C.V.%) of the model was 2.78% (<5%), and the out-of-fit term was
0.1445, indicating that the model could predict the SDF yield accurately. The results of
the significance analysis of the coefficients of the regression model in Table 3 show that
the primary coefficients X1, X2, X3, and X4; the interaction term coefficients X1 X2 and
X2 X3; and the quadratic coefficients X1

2, X2
2, X3

2, and X4
2 had a significant effect on the

SDF yield.

2.1.2. Response Surface Analysis

The 3D response surface plots generated by the model are shown in Figure 1A–F. The
response surface allowed us to examine the degree of influence of each factor on the SDF
yield. The different slopes of the response surfaces indicate that the interaction terms had
different effects on the SDF yield of Cistanche deserticola residues; the greater the slope of
the interaction surface, the higher the degree of its effect. The response surface and the
ANOVA of the regression model showed that the order of the four factors by effect on
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the SDF yield was as follows: NaOH concentration > extraction temperature > extraction
time > solid–liquid ratio. In addition, there was a significant correlation between the
NaOH concentration and extraction temperature and a significant interaction between the
extraction temperature and extraction time.

Table 3. Response surface test ANOVA.

Source Sum of
Squares Df Mean

Square F-Value p-Value Significance

Model 97.93 14 7.00 33.40 <0.0001 **
A-X1 19.51 1 19.51 93.13 <0.0001 **
B-X2 4.79 1 4.79 22.86 0.0003 **
C-X3 1.62 1 1.62 7.74 0.0147 *
D-X4 1.39 1 1.39 6.66 0.0218 *
AB 1.31 1 1.31 6.26 0.0254 *
AC 0.70 1 0.70 3.33 0.0895
AD 0.063 1 0.063 0.30 0.5935
BC 1.21 1 1.21 5.78 0.0307 *
BD 0.50 1 0.50 2.37 0.1458
CD 0.24 1 0.24 1.15 0.3024
A2 42.09 1 42.09 200.93 <0.0001
B2 35.59 1 35.59 169.89 <0.0001
C2 8.11 1 8.11 38.74 <0.0001
D2 7.48 1 7.48 35.69 <0.0001

Residual 2.93 14 0.21
Lack of Fit 2.60 10 0.26 3.08 0.1445 Not significant
Pure Error 0.34 4 0.084
Cor Total 100.87 28

R-Squared 0.9709
Adj R-Squared 0.9419
Adeq Precision 18.908

C.V. % 2.78
* Significant at p < 0.05. ** Significant at p < 0.01.

2.1.3. Optimization of Parameters and Verification of the Model

According to the results of the response surface analysis, the optimal extraction
conditions for SDF were as follows: NaOH concentration of 3.7%, extraction temperature
of 71.7 ◦C, extraction time of 89.5 min, and solid–liquid ratio of 1:34. Under these optimal
conditions, the maximum predicted value of the SDF yield was 19.66%. Thus, a validation
experiment was conducted with these conditions and the experiment was repeated three
times, resulting in an average SDF yield of 19.56%, which was not significantly different
from the predicted value. This showed that the response surface optimization experiment
was effective and the established regression equation model was reasonable, being suitable
for predicting the extraction rate of MI-SDF.

2.2. SEM

As can be seen from Figure 2A–F, the surface microstructures of the Cistanche deserticola
residues for the control check (CK), IDF, and SDF were quite different. The surface of the
CK was relatively smooth compared to the IDF and SDF, and it was partially wrinkled
and presented a denser structure. The folds and cracks on the surface of the IDF were
increased compared to the CK, with the structure fragmented and collapsed and more
small pores appearing. It also showed an increase in the ratio of the specific surface area,
and the surface had particles attached, which may have been residual impurities such as
protein [24]. The SDF changed from the original pleated furrow shape to a honeycomb pore-
like structure formed by the agglomeration of multiple fine particles together. Further, the
specific surface area and total pore volume of the particles increased, which increased their
adsorption sites, and this structure gave the SDF a large specific surface area, providing it
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with good adsorption performance [25]. The reason for this structural change might be that
the acid and alkali treatment during the extraction process broke the glycosidic bonds of the
fibrous polysaccharides and decreased the polymerization of the fibrous macromolecules,
which destroyed the original dense structure. This structural difference may affect the
physicochemical and functional properties, such as the adsorption capacity for NO2

−,
cholesterol, and glucose [26].
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Figure 1. Response surface diagram. Effect of NaOH concentration and extraction temperature on
SDF yield (A); effect of NaOH concentration and extraction time on SDF yield (B); effect of NaOH
concentration and solid–liquid ratio on SDF yield (C); effect of extraction temperature and extraction
time on SDF yield (D); effect of extraction temperature and solid–liquid ratio on SDF yield (E); effect
of extraction time and solid–liquid ratio on SDF yield (F).
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Figure 2. SEM images of CK (A,D), IDF (B,E), and SDF (C,F) ((A–C): ×2000; (D–F): ×5000).

2.3. FTIR

The FTIR profiles of the CK, IDF, and SDF are shown in Figure 3. A broad absorption
peak at 3300 cm−1 for each sample was caused by the -O H stretching vibration of cellulose
and hemicellulose. The weak absorption peak near 2929 cm−1 resulted from the contraction
vibration of the polysaccharide methyls and methylene group C-H, which is typical of the
hemicellulose structure [27]. The peak at 1609 cm−1 was due to the contraction vibration of
C=O in the polysaccharide structure, indicating the presence of glyoxalate in the sample [28].
The absorption peak at 1394 cm−1 was related to the contraction vibration of O-H and
the bending vibration of C-H. The strong absorption peaks near 900~1200 cm−1 were due
to the contraction vibration of C-O, which might have been due to -C H O and C-O-C in
glucose and xyloglucan. The absorption peak at 573 cm−1 could be attributed to the β-type
C-H variable angle vibrations [29].
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2.4. XRD

XRD is an analytical method that reflects the crystalline properties and crystallinity of
a substance through crystal diffraction phenomena. The crystallinity of DF directly affects
its physical and chemical properties, such as water retention, oil retention, and swelling.
The X-ray diffraction patterns of the CK, IDF, and SDF are shown in Figure 4. All three
exhibited a gentle and broad crystalline peak near 2θ = 20◦, which indicates that they had
a predominantly amorphous structure in the crystalline region, which is typical of type I
cellulose [30]. They displayed the typical crystal structure of type I cellulose. At 2θ = 27◦,
31◦, and 45◦, the peak intensity of the IDF was significantly higher than that of the SDF,
indicating that the crystal structure of the IDF was more ordered and the crystallinity was
higher than that of the SDF [31]. The low crystallinity of the SDF indicated that the original
crystalline region of the molecule had been destroyed, the degree of polymerization had
been reduced, and the surface structure was looser, which explained the high adsorption
capacity of the SDF from the side [32].
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2.5. Composition of Monosaccharides

The monosaccharide compositions of the SDF and the IDF from Cistanche deserticola
residues are shown in Table 4, with seven monosaccharides detected in SDF and eight in
IDF. The most prominent monosaccharide in both dietary fiber types was glucose, which is
mainly derived from cellulose in the cell wall. The glucose content of the IDF was higher
than that of the SDF, which could be attributed to the alkaline conditions that promoted
the hydrolysis of cellulose in the cell wall to glucose, as well as glucose oligosaccharides
and dextrins, which were composed of glucose units. Meanwhile, the SDF contained
more arabinose, galactose, and rhamnose than the IDF, which suggested the presence of
pectin substances and soluble polysaccharides produced by the hydrolysis of cellulose
or hemicellulose in the SDF. Some studies have shown that polysaccharides containing
arabinose and rhamnose could lower blood glucose levels and regulate lipid metabolism
and other physiological activities, so SDF may have better hypoglycemic and hypolipidemic
properties than IDF [33,34].
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Table 4. The monosaccharide compositions of IDF and SDF.

Monosaccharide Composition% IDF SDF

Fucose, Fuc 0.30% 0.00%
Rhamnose, Rha 1.22% 3.83%
Arabinose, Ara 9.61% 23.02%
Galactose, Gal 3.97% 7.03%
Glucose, Glc 68.47% 63.28%
Xylose, Xyl 6.80% 1.10%

Mannose, Man 1.52% 0.00%
Galacturonic Acid, Gal-UA 8.10% 1.20%
Glucuronic Acid, Glc-UA 0.00% 0.53%

2.6. Physicochemical Properties

WHC and OHC

The WHC and OHC of the CK, IDF, and SDF are shown in Table 5. The high water-
holding capacity of DF allows it to be added to food as a functional ingredient to prevent
dehydration and change the viscosity, for example. The results showed that the WHC of
the SDF was slightly higher than that of the IDF, which was probably due to the fact that
the surface of the SDF was looser, which was favorable for the infiltration of more water.
In addition, the WHC was related to the amount of hydrophilic groups exposed—the
more hydrophilic groups that were exposed, the higher the water absorption was [34].
Meanwhile, the OHC of the IDF was higher than that of the SDF. This was because the
OHC of DF is positively correlated with the lignin content, which was higher in the IDF. In
addition, the surface characteristics, the total charge density, and the hydrophobicity also
increased the OHC of the IDF [35]. A good OHC helps to maintain the stability of high-fat
food products, and it has a positive effect by enhancing the product texture [34].

Table 5. Physicochemical properties of CK, IDF, and SDF.

WHC (g/g) OHC (g/g)

CK 3.68 ± 0.07 a 2.68 ± 0.11 c

IDF 1.78 ± 0.09 c 4.84 ± 0.08 a

SDF 2.56 ± 0.12 b 3.26 ± 0.09 b

Different letters (a, b, c) in the same column indicate significantly different means at p < 0.05.

2.7. Functional Properties
2.7.1. NIAC

Nitrite was chemically reacted with secondary amines and amides to form carcinogens
(N-nitroso compounds) under acidic conditions. The results of this study are shown in
Figure 5A, according to which the adsorption amount of all samples at pH = 2 was much
larger than that at pH = 7. This was because, under acidic conditions, NO2

− could combine
with H+ to produce nitrogen oxides such as HNO2 and N2O3, and these nitrogen oxides
could combine with the negatively charged oxygen atoms in the phenolic acid groups of the
dietary fibers to undergo chemisorption [36]. The highest adsorption under the simulated
stomach conditions was found in SDF (970.58 µg/g), followed by IDF (861.55 µg/g), and
the lowest was found in the CK (805.99 µg/g) due to its structure. The sparser the structure
of the sample is, the larger the specific surface area is, and more binding sites and adsorption
sites lead to the better adsorption of NO2

− [36].

2.7.2. CAC

In this experiment, the adsorption effect of the CK, IDF, and SDF on cholesterol in a
gastrointestinal environment was simulated by measuring the decrease in yolk cholesterol
content under different pH conditions. As shown in Figure 5B, the three samples all
reduced the content of cholesterol in the egg yolk to varying degrees, and the adsorption
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effect was different under different pH conditions. The adsorption effect at pH = 7 was
stronger than that at pH = 2, indicating that the adsorption of cholesterol in the small
intestine environment is better than that in gastric juice [37]. This is due to the presence of
a large amount of H+ in the acidic environment, and DF and cholesterol themselves have
positively charged groups, which would have a repulsive effect and reduce the adsorption
of cholesterol [36]. Under the condition of pH = 7, SDF had the strongest ability to adsorb
cholesterol (9.63 mg/g), followed by IDF (8.07 mg/g) and CK (4.16 mg/g). Under the
condition of pH = 2, SDF had the best adsorption effect on cholesterol (2.6 mg/g), followed
by IDF (1.82 mg/g) and CK (1.3 mg/g).

Molecules 2023, 28, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 5. NIAC (A), CAC (B), SAC (C), and GAC (D) for CK, IDF, and SDF. The different letters 
indicate significant differences within groups ((A,B,D), p < 0.05). 

2.7.2. CAC 
In this experiment, the adsorption effect of the CK, IDF, and SDF on cholesterol in a 

gastrointestinal environment was simulated by measuring the decrease in yolk cholesterol 
content under different pH conditions. As shown in Figure 5B, the three samples all re-
duced the content of cholesterol in the egg yolk to varying degrees, and the adsorption 
effect was different under different pH conditions. The adsorption effect at pH = 7 was 
stronger than that at pH = 2, indicating that the adsorption of cholesterol in the small in-
testine environment is better than that in gastric juice [37]. This is due to the presence of a 
large amount of H+ in the acidic environment, and DF and cholesterol themselves have 
positively charged groups, which would have a repulsive effect and reduce the adsorption 
of cholesterol [36]. Under the condition of pH = 7, SDF had the strongest ability to adsorb 
cholesterol (9.63 mg/g), followed by IDF (8.07 mg/g) and CK (4.16 mg/g). Under the con-
dition of pH = 2, SDF had the best adsorption effect on cholesterol (2.6 mg/g), followed by 
IDF (1.82 mg/g) and CK (1.3 mg/g). 

2.7.3. SAC 
Bile acids are normally stored in the gallbladder and enter the small intestine after a 

person has eaten, to participate in hepatic and intestinal circulation and regulate the me-
tabolism of cholesterol in the human body. Most bile acids are in the form of sodium cho-
late, and the ability of a sample to bind with sodium cholate is also an important indicator 

Figure 5. NIAC (A), CAC (B), SAC (C), and GAC (D) for CK, IDF, and SDF. The different letters
indicate significant differences within groups ((A,B,D), p < 0.05).

2.7.3. SAC

Bile acids are normally stored in the gallbladder and enter the small intestine after
a person has eaten, to participate in hepatic and intestinal circulation and regulate the
metabolism of cholesterol in the human body. Most bile acids are in the form of sodium
cholate, and the ability of a sample to bind with sodium cholate is also an important
indicator in evaluating its cholesterol-lowering ability [38]. As shown in Figure 5C, the
sodium cholate adsorption level of all samples increased gradually with time and began to
stabilize after 120 min, but the adsorption capacity of SDF was much larger than that of
IDF and CK because of its large specific surface area. Some other studies have shown that
an increase in the ability to form a gel would enhance the ability to adsorb sodium cholate,
and this may also be the reason for the higher adsorption capacity of SDF [39].
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2.7.4. GAC

The adsorption of glucose by DF can reduce the absorption of glucose by the human
body to a certain extent, which is important in reducing the elevation in blood glucose after
meals [40]. As shown in Figure 5D, the CK, IDF, and SDF adsorbed glucose in the solution
to a certain extent, and this was positively correlated with the concentration of glucose.
The GAC of the SDF was the highest, reaching 4.446 mmol/g when the concentration of
glucose was 100 mmol/L. The GAC of the IDF was slightly lower than that of the SDF, and
the GAC of the CK was significantly lower than that of the SDF and IDF. The reason that
the GAC of the SDF was higher than that of the IDF and CK was due to its loose surface,
with a larger surface area and more pores, which facilitated the entry of molecules and the
adsorption and retention of glucose [24].

3. Materials and Methods
3.1. Reagents and Chemicals

Cistanche deserticola residues were provided by Gansu Rudan Pharmaceutical Co.,
Ltd. (Lanzhou, China). The monosaccharide standards were HPLC-grade. HCL, H2SO4,
and cholesterol were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai,
China). Sodium cholate and o-phthalaldehyde were purchased from Shanghai Yuanye
Bio-Technology Co., Ltd. (Shanghai, China). NaOH and sodium nitrite were purchased
from Tianjin Baishi Chemical industry Co., Ltd. (Tianjin, China). Furfural was pur-
chased from Tianjin Damao Chemical Reagent Factory (Tianjin, China). Anhydrous glu-
cose and N-1-naphthylethylenediamine dihydrochloride were purchased from Tianjin
Guangfu Fine Chemical Research Institute (Tianjin, China). Acetic acid and anhydrous
ethanol were purchased from Chengdu Chron Chemicals Co., Ltd. (Chengdu, China).
4-Aminobenzenesulfonic acid was purchased from Yantai Shuangshuang Chemical Co.,
Ltd. (Yantai, China). DNS reagent was purchased from Phygene Biotechnology Co., Ltd.
(Fuzhou, China).

3.2. Extraction of SDF and IDF
3.2.1. Extraction of Dietary Fiber

Dietary fiber was extracted according to the method of Wang et al. [35] with slight
modifications. Five grams of powder was mixed with NaOH at a certain solid–liquid
ratio, and the water bath was heated for a certain time. Then, the extract was centrifuged
(6000 RPM, 15 min) to separate the precipitate from the supernatant, and the precipitate
was washed with distilled water and anhydrous ethanol in turn until neutral and placed
in an oven for drying to obtain the IDF. To obtain the SDF, 10% HCl was added to the
supernatant, the pH was adjusted to 3.8, and it was placed into a refrigerated environment
at 4 ◦C to precipitate for 12 h. Then, the extract was centrifuged to collect the supernatant,
four times the volume of anhydrous ethanol (95%) was added to the supernatant, and it
was left to stand at room temperature for 12 h. After this, the mixture was centrifuged to
obtain the precipitate, which was washed with anhydrous ethanol repeatedly until neutral
and then placed into an oven (40 ◦C) to dry.

The yield of dietary fiber (%) =
Weight of extracted fiber

Sample weight
× 100

3.2.2. Optimization of Extraction Conditions

Based on the previous one-factor test, the NaOH concentration, extraction temperature,
extraction time, and solid–liquid ratio were determined as independent variables, recorded
as X1, X2, X3, and X4, respectively. A response surface test was carried out by using
the Box–Behnken central combination experimental design, with the SDF yield as the
response value, and the design of the experimental factor levels is shown in Table 1. The
results of the response surface analysis with the Box–Behnken test were analyzed using the
Design-Expert 8.0.6 software, and the test results are shown in Table 2.
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3.3. Scanning Electron Microscopy (SEM)

The ground and sieved sample powder was placed on a carrier stage with a con-
ductive adhesive. The excess sample was carefully blown off with a wash ball and then
removed after the surface was gold-plated using ion sputtering coating, and the sam-
ple was then placed under a scanning electron microscope (JSM-6701F, JEOL, JPN) for
scanning observation.

3.4. Fourier Transform Infrared Spectrometry (FTIR)

Referring to Ma et al. [41], the dried samples were separately mixed with dried
potassium bromide powder in a mortar, ground through a sieve, and pressed into thin
slices, and the Nicolet™ iS50 FTIR spectrometer (Nicolet iS50u, Thermo Fisher Scientific,
Madison, WI, USA) was used to scan for near-infrared spectra between 400 and 4000 cm−1.

3.5. X-ray Diffraction (XRD)

Referring to Song et al. [42], the samples were placed into a specialized sample tank,
compacted with a glass plate, and then transferred to a diffractometer (XD-3, Beijing
General Analytical Instrument Co., Ltd., Beijing, China) to analyze the crystal structure of
the samples by X-ray diffraction analysis. The voltage of the instrument was adjusted to
40 kV and the current to 40 mA, and the target type of Cu-Kα was used with an angular
step of 0.02◦ and a scanning range of 10–60◦.

3.6. Composition of Monosaccharides

The sample extracts were analyzed by high-performance anion-exchange chromatog-
raphy (HPAEC) on a CarboPac PA-20 anion-exchange column (3 by 150 mm; Dionex) using
a pulsed amperometric detector (PAD; Dionex ICS 5000+ system, Thermo Fisher Scientific,
USA). The settings were as follows: flow rate, 0.5 mL/min; injection volume, 5 µL; solvent
system A, ddH2O; solvent system B, 0.1 M NaOH; solvent system C, 0.1 M NaOH, 0.2 M
NaAc. The gradient program was as follows: volume ratio of solutions A, B, and C was
95:5:0 at 0 min, 85:5:10 at 26 min, 85:5:10 at 42 min, 60:0:40 at 42.1 min, 60:40:0 at 52 min,
95:5:0 at 52.1 min, and 95:5:0 at 60 min [43]. The standard monosaccharides, including
fucose, rhamnose, arabinose, galactose, glucose, xylose, mannose, galacturonic acid, and
glucuronic acid, were analyzed in the hydrolyzed samples.

3.7. Physicochemical Properties
3.7.1. Water-Holding Capacity (WHC)

The WHC was determined referring to the method of Yang et al. [44], with slight
modifications. Initially, 1.00 g (m1) of the sample was accurately weighed, to which 10 mL
of water was added; this was then mixed well and left at a constant temperature of 37 ◦C
for 24 h. The sample was then freeze-centrifuged at 4800 rpm for 10 min, the residue was
immediately extracted, and the weight was measured (m2). Finally, the WHC of the sample
was calculated according to the following equation:

WHC(g/g) =
m2 − m1

m1

where m1 and m2 are the mass of the sample before and after adsorption, respectively.

3.7.2. Oil-Holding Capacity (OHC)

The OHC was determined referring to the method of Zhang et al. [45], with slight
modifications. Here, 1.00 g of sample (m1) was weighed and placed in a centrifuge tube, to
which 25 mL of soybean oil was added. This was then placed at a constant temperature
of 37 ◦C for 2 h, the precipitate was taken after centrifugation at 4800 r/min for 20 min,
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and the weight (m2) was determined immediately. The OHC of the sample was calculated
according to the following equation:

OHC(g/g) =
m2 − m1

m1

where m1 and m2 are the mass of the sample before and after adsorption, respectively.

3.8. Functional Properties
3.8.1. Nitrite Ion Adsorption Capacity (NIAC)

The NIAC was determined referring to the method of Luo et al. [46], with slight
modifications. Briefly, 0.1 g of dried sample was added to 5 mL of 20 µg/mL NaNO2
solution, and the pH was adjusted to 7.0 and 2.0 to simulate the small intestine and stomach
environments, respectively. Then, it was allowed to stand at room temperature for 2 h.
The sample was centrifuged at 4800 rpm for 10 min and then centrifuged again to remove
0.4 mL of the supernatant in 10 mL colorimetric tubes. The content of sodium nitrite in
the supernatant was determined using N-(1-naphthyl)-ethylenediamine dihydrochloride
spectrophotometry. The standard curve was plotted using standard NaNO2 solution. The
NIAC of the sample was calculated according to the following equation:

NIAC(µg/g) =
(C1 − C2)V

W

where C1 and C2 are the concentration of NaNO2 in the supernatant before and after ad-
sorption, respectively; W is the mass of the sample; and V is the volume of NaNO2 solution.

3.8.2. Cholesterol Adsorption Capacity (CAC)

The CAC was determined with reference to the method of Deng et al., with minor
modifications [47]. Fresh eggs were taken, and the yolks were mixed well with ultrapure
water at 1:9 to determine the mass of cholesterol in the diluted yolk solution using the
o-phthalaldehyde method, noted as W1. Here, 1 g of the sample and 40 mL of the yolk
dilution were placed in a centrifuge tube, mixed well, adjusted to pH = 2.0 and pH = 7.0 to
simulate the gastrointestinal environment, shaken at 37 ◦C for 4 h, and then centrifuged
for 15 min using a refrigerated centrifuge. The mass of cholesterol was determined and
recorded as W2. The CAC of the sample was calculated according to the following equation:

CAC(mg/g) =
W1 − W2

m

where W1 and W2 are the mass of cholesterol before and after adsorption, respectively, and
m is the mass of the sample.

3.8.3. Sodium Cholate Adsorption Capacity (SAC)

The SAC was determined with reference to the method of Benitez et al., with minor
modifications [48]. First, 0.25 g of sample and 0.05 g of sodium cholate were taken and
mixed with 25 mL of NaCl (0.15 mol/L) solution and then shaken in the middle at 37 °C.
Next, the appropriate amount of solution was removed from the system at 30, 60, 90, 120,
150, and 180 min and centrifuged for 10 min, and the content of sodium cholate in the
supernatant was determined by the furfural colorimetric method. The standard curve was
plotted using standard sodium cholate solution. The SAC of the sample was calculated
according to the following equation:

SAC(mg/g) =
W1 − W2

m

where W1 and W2 are the mass of sodium cholate before and after adsorption, respectively,
and m is the mass of the sample.
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3.8.4. Glucose Adsorption Capacity (GAC)

The GAC was determined with reference to the method of Ma et al., with minor
modifications [49]. First, 100 mg of the sample was accurately weighed and poured
into a centrifuge tube. Next, 10 mL of glucose solution (10, 50, 100 mmol/L) was taken
and transferred into the above centrifuge tube, which was oscillated at 37 ◦C for 6 h
and then centrifuged in a high-speed freezer centrifuge. Lastly, the glucose content in
the supernatant was determined by the DNS method. The standard curve was plotted
using standard glucose solution. The GAC of the sample was calculated according to the
following equation:

GAC(µmol/g) =
(C1 − C2)V

m
where C1 and C2 are the glucose content before and after adsorption, respectively; V is the
supernatant volume; and m is the sample mass.

3.9. Statistical Analysis

All experiments were repeated 3 times, and the data were processed by SPSS 25.0. The
final experimental results are expressed as the mean ± standard deviation, and p < 0.05
was considered significant.

4. Conclusions

In this study, dietary fiber was extracted from Cistanche deserticola residues using the
chemical method, and the response surface methodology was used to optimize the yield of
SDF. The optimal conditions were as follows: NaOH concentration of 3.7%, extraction tem-
perature of 71.7 ◦C, extraction time of 89.5 min, and solid–liquid ratio of 1:34. The average
yield of SDF was 19.56%. The structure and adsorption properties of the dietary fiber were
also investigated. Both dietary fiber types studied had typical polysaccharide absorption
peaks and a typical cellulose crystal structure of type I. The surface microstructures of the
SDF and IDF were different, with the surface of the SDF being looser and more porous.
The two dietary fiber types had different monosaccharide compositions, with glucose
being the main component in both. The SDF’s water-holding capacity, the adsorption of
nitrite and cholesterol under acidic conditions, and the adsorption of sodium cholate and
glucose were stronger than those of the CK and IDF. The oil-holding capacity of the IDF
was the highest. In summary, the dietary fiber in Cistanche deserticola residues has good
water-holding capacity, oil-holding capacity, and adsorption capacity, and it has application
prospects in the functional food processing industry. On this basis, functional foods with
hypolipidemic and hypoglycemic effects could be developed, such as chewable tablets.
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