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Abstract: Cancer is a major global public health problem with high morbidity. Depression is known
to be a high-frequency complication of cancer diseases that decreases patients’ life quality and
increases the mortality rate. Therefore, antidepressants are often used as a complementary treatment
during cancer therapy. During recent decades, various studies have shown that the combination of
antidepressants and anticancer drugs increases treatment efficiency. In recent years, further emerging
evidence has suggested that the modulation of autophagy serves as one of the primary anticancer
mechanisms for antidepressants to suppress tumor growth. In this review, we introduce the anticancer
potential of antidepressants, including tricyclic antidepressants (TCAs), tetracyclic antidepressants
(TeCAs), selective serotonin reuptake inhibitors (SSRIs), and serotonin-norepinephrine reuptake
inhibitors (SNRIs). In particular, we focus on their autophagy-modulating mechanisms for regulating
autophagosome formation and lysosomal degradation. We also discuss the prospect of repurposing
antidepressants as anticancer agents. It is promising to repurpose antidepressants for cancer therapy
in the future.

Keywords: antidepressants; cancer therapy; drug repurposing; autophagy; molecular mechanism

1. Antidepressants in Cancer Therapy

Cancer is a major global public health problem and the second leading cause of death
worldwide [1,2]. According to the most recent estimate from the International Agency for
Research on Cancer (IARC), there were 10.0 million cancer deaths and 19.3 million new
cases worldwide in 2020. By 2040, it is estimated that the number of new cancer patients
will increase to 30.2 million, which almost doubles the current level [1,2].

Depression is known to be an important complication of cancer diseases whose
prevalence in cancer patients is much higher in these patients than in the healthy pop-
ulation. The incidence of major depressive disorder in the overall population is 3.3%,
while in the cancer population, it increases approximately fourfold to 12.5% [3]. Cancer-
associated depression decreases patients’ quality of life [4] and compliance with anticancer
treatment [5] and increases physical distress [6] and the risk of suicide [7]. A meta-analysis
showed that depression could increase the mortality rate of cancer patients by 39%; even if
patients experienced only some depressive symptoms, their risk of death may increase by
26% [8]. Therefore, antidepressants are often used as a complementary treatment during
cancer therapy.
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Over the past 30 years, a series of studies have demonstrated, in vitro and in vivo, the
anticancer properties of antidepressants, whose underlying mechanisms include triggering
apoptosis, restricting cellular energy metabolism, exhibiting antioxidant activity, inhibiting
angiogenesis, regulating the immune system, and so on [9–11]. The anticancer antide-
pressants encompass tricyclic antidepressants (TCAs), tetracyclic antidepressants (TeCAs),
selective serotonin reuptake inhibitors (SSRIs), and serotonin-norepinephrine reuptake
inhibitors (SNRIs) [9–11]. Further studies also have shown that the combination of antide-
pressants and anticancer drugs affects the effectiveness of cancer treatment by enhancing
the antitumor cytotoxic effect and overcoming therapeutic resistance [9–11]. Based on the
existing findings, repurposing antidepressants represents a good strategy for anticancer
drug development. In recent years, emerging evidence has suggested that the modulation
of autophagy serves as one of the primary anticancer mechanisms for antidepressants to
suppress tumor growth, which attracts much attention from pharmacologists.

With the large demand for new effective anticancer therapeutics and the increasing cost
of novel drug development, repurposing antidepressants as anticancer drugs represents a
promising strategy. In this review, we introduce the anticancer potential of antidepressants,
specifically focusing on their autophagy-modulating mechanisms, and discuss the prospects
of repurposing antidepressants as anticancer drugs.

2. Autophagy in Cancer

Autophagy is a highly conserved cellular process that maintains cellular homeosta-
sis by degrading and recycling damaged, long-lived, or misfolded proteins, as well as
damaged or abnormal organelles [12–14]. Under basal conditions, autophagy functions
to eliminate damaged organelles and protein aggregates [9]. Autophagy also serves
as the energy source for cells under stress conditions such as starvation, hypoxia, and
infection [13]. In mammalian cells, several forms of autophagy have been described, includ-
ing macroautophagy, mitophagy, and chaperone-mediated autophagy [15]. To recognize
the importance of autophagy, the discovery of autophagy mechanism was awarded with
the Nobel Prize for Physiology or Medicine to Yoshinori Ohsumi in 2016.

Autophagy is a multi-step process of sequential events including initiation, the nu-
cleation of the autophagosome, the maturation and elongation of the autophagosome
membrane, and the fusion of the autophagosome with the lysosome, concluding with the
degradation and recycling of intravesicular products [16]. The execution of autophagy
depends on the control of autophagy-related genes (ATGs). By modulating nutrient, energy,
and stress-sensing signaling, ATGs regulate the autophagic process in cells [16]. Once
autophagy is activated, a series of ATG protein complexes coordinate to form double-
membrane vesicles called autophagosomes that capture “cargo” in the cytoplasm. These
“cargoes” usually are damaged or excess proteins, organelles, lipids, and glycogen, which
are tagged with ubiquitin and recognized by the autophagic receptor. Cargo receptors bind
cargo and the autophagosomal membrane component LC3-II to facilitate cargo seques-
tration. The fusion between the autophagosome and lysosome provides hydrolase that
degrades cargo. The produced amino acids, lipids, nucleosides, and carbohydrates are then
released into the cytoplasm for recirculation [17].

In regulating cancer development, autophagy plays different roles depending on
the type, stage, or genetic background of a tumor [18–22]. On the one hand, triggering
autophagy can restrict the accumulation of oncogenic mutations, limit chromosomal in-
stability, alleviate oxidative stress, and decrease local inflammation. This prevents tumor
initiation, proliferation, invasion, and metastasis [16]. In this context, autophagy acts as a
tumor-suppressive mechanism, especially in the early stages of tumorigenesis [23,24]. On
the other hand, once the tumor progresses to an advanced stage, autophagy activation can
work as a protective and defensive mechanism to maintain cellular mitochondrial function
and supports the metabolic demands of proliferating tumor cells and enhancing tumor
resistance to stress, thereby facilitating tumor progression and inducing resistance to thera-
peutic drugs [13]. Furthermore, autophagy can also contribute to cancer aggressiveness
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by promoting invasion and metastasis [25]. Under different circumstances, both appro-
priate pharmacological induction and inhibition can effectively suppress tumor growth
and metastasis.

3. Antidepressants Modulate Autophagy for Tumor Therapy
3.1. Tricyclic Antidepressants (TCAs)/Tetracyclic Antidepressants (TeCAs)

Tricyclic and tetracyclic antidepressants, also called cyclic antidepressants, are com-
posed of a central three-ring or four-ring molecular structure with a unique side chain.
Recently, in addition to their traditional use in the treatment of psychiatric disorders, TCAs
and TeCAs have been reported to exhibit great potential in cancer treatment through mod-
ulating autophagy. Studies have shown that imipramine, desipramine, and maprotiline
could induce autophagy to suppress cancer (Figure 1 and Table 1) while other studies have
demonstrated that amoxapine, clomipramine, desipramine, and nortriptyline are able to
inhibit autophagy to block tumor growth (Figure 2 and Table 2).
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Figure 1. Antidepressants play an anticancer role through inducing autophagy. In cancer cells,
imipramine, desipramine, and vortioxetine induce autophagy through inhibiting Akt/mTOR. Mapro-
tiline and fluoxetine enhance autophagy through regulating Ca2+ flux followed by AMPK phos-
phorylation and mTOR inhibition. Fluoxetine and sertraline induce autophagic flux by promoting
AMPK-mediated autophagy and inhibiting eEF2K. Escitalopram stimulates Beclin 1 to launch au-
tophagy induction. In addition, amitriptyline induces mitochondrial dysfunction and oxidative stress
induces mitophagy.
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Table 1. Antidepressants with anticancer activity through inducing autophagy.

Antidepressant
Types Cancer Types Cell Line Models Mechanism of Action Ref.

Imipramine Glioma U-87MG In vitro Inhibits Akt/mTOR
signaling [26]

Imipramine Glioma LN-229; LN-71;
LN-443

In vitro;
in vivo Increases cAMP levels [27]

Imipramine Glioblastoma
Primary

glioblastoma
cells

In vitro;
in vivo Induces autophagic flux [28]

Desipramine Glioma C6 In vitro

Inhibits Akt/mTOR
signaling; activates

PERK-eIF2α-ER stress
pathway

[29]

Maprotiline Burkitt’s
lymphoma DG-75 In vitro Increases Ca2+ influx [30]

Amitriptyline Hepatocellular
carcinoma HepG2 In vitro

Induces
Parkin-dependent

mitophagy
[31]

Fluoxetine Burkitt’s
lymphoma DG-75 In vitro Increases Ca2+ influx [30]

Fluoxetine Breast cancer SUM149PT In vitro

Activates AMPK and
inhibits Akt/mTOR
signaling; activates

PERK-eIF2α-ER stress
pathway

[32]

Fluoxetine Breast cancer MDA-MB-231;
MDA-MB-436 In vitro

Activates AMPK and
inhibits mTOR signaling;
inhibits eEF2K signaling

[33]

Fluoxetine Gastric cancer AGS In vitro Inhibits Akt/mTOR
signaling [34]

Fluoxetine Lung cancer H460; A549 In vitro Inhibits Akt/mTOR
signaling [35]

Escitalopram Glioblastoma GBM8401 In vitro;
in vivo Induces autophagy [36]

Escitalopram Hepatocellular
carcinoma HepG2; Huh-7 In vitro;

In vivo Induces autophagy [37]

Sertraline
Acute

myeloid
leukemia

NB4 In vitro Induces autophagy [38]

Sertraline Prostate
cancer

Prostate cancer
stem cells In vitro Induces autophagy [39]

Sertraline Lung cancer A549; H522;
PC9/R; H1975

In vitro;
in vivo

Activates AMPK and
inhibits mTOR/S6K

signaling
[40]

Vortioxetine Gastric cancer AGS In vitro Inhibits AKT/mTOR
signaling [41]
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lysosomal deacidification and destruction.

Table 2. Antidepressants with anticancer activity through blocking autophagic flux.

Antidepressant
Types

Cancer
Types Cell Line Models Mechanism of Action Ref.

Desipramine Melanoma UACC903 In vitro;
in vivo

Inhibits acid
sphingomyelinase

-mediated intracellular
cholesterol transport

[42]

Amitriptyline Lung cancer A549 In vitro
Inhibits autophagosome–

lysosomal
fusion

[43]

Nortriptyline Pineoblastoma
Primary pi-

neoblastoma
cells

In vitro;
in vivo

Inhibits autophagosome–
lysosomal

fusion
[44]

Clomipramine Prostate
cancer C4-2B In vitro;

in vivo

Inhibits autophagosome–
lysosomal

fusion
[45]

Norclomipramine Cervical
cancer HeLa In vitro Blocks autophagic cargo

degradation [46]

Sertraline Lung cancer A549 In vitro Inhibits AMPK
phosphorylation [47]

Paroxetine Lung cancer NCI-H1299;
NCI-H1651

In vitro;
in vivo

Inhibits lysosomal
acidification [48]

N-
methylparoxetine Lung cancer NCI-H1299;

NCI-H1650 In vitro

Inhibits lysosomal
acidification and

lysosomal cathepsins
maturation

[49]

Duloxetine Lung cancer A549 In vitro Inhibits AMPK
phosphorylation [50]
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3.1.1. Imipramine

In glioblastoma, imipramine could induce autophagy with the conversion of LC3-I
to LC3-II and the redistribution of LC3 to the autophagosome [26]. It is well known that
PI3K/Akt/mTOR signaling is one of the pivotal upstream pathways of autophagy and
mTOR plays a crucial role in negatively regulating autophagy by phosphorylating Atg13,
which is involved in the activation of the class III PI3K Vps34 [17,51,52]. Imipramine
was found to inhibit PI3K/Akt/mTOR pathways and downregulate mTOR phosphory-
lation to trigger autophagic cell death, but not apoptosis, in human U-87MG glioblas-
toma cells. Knockdown of Beclin-1 to disrupt the Beclin-1-Vps34 complex could abro-
gate the imipramine-induced autophagy and cell death [26]. Similar autophagy induc-
tion by imipramine was also confirmed by Justice et al. in primary human pulmonary
artery endothelial cells, in which the pharmacological autophagy-inducing mechanism
of imipramine occurred through the inhibition of acid sphingomyelinase and lysosomal
nutrient-sensing-complex-mediated mTOR phosphorylation [53]. In another study, Shchors
et al. found that imipramine activated adenylate cyclase and induced cAMP-mediated au-
tophagy, which resulted in autophagy-associated glioblastoma cell death and the prolonged
survival of glioma-bearing mice [27]. Combining imipramine with ticlopidine, a P2Y12
inhibitor, could coordinately upregulate intracellular cAMP levels to elicit hyper-activated
autophagy and consequent cell death in glioma [27]. Synergistic autophagy induction was
also shown by the combination of imipramine and anti-VEGF therapy. Chryplewicz et al.
found that the combination of imipramine and B20S, an anti-VEGF antibody, synergistically
enhanced the autophagy-dependent recruitment of CD8 and CD4 T cells to promote immu-
nity in glioma-bearing mice and effectively blocked tumor progression [28]. This survival
benefit generated from imipramine and anti-VEGF co-treatment could be abrogated by
silencing the expression of ATG3, a key regulator of autophagy that is associated with
reduced cytotoxic T cell infiltration, revealing the importance of induced autophagic flux
in immune cell recruitment [28].

3.1.2. Desipramine

Desipramine is the N-demethylated metabolite of imipramine and is reported to ex-
hibit a similar autophagy induction phenomenon during cancer therapy [29]. Ma et al.
demonstrated that desipramine could trigger autophagic glioma death characterized by
autophagosome formation, the increased autophagic protein level of Beclin-1, and the
cellular distribution of autophagic marker LC3-II. This desipramine-induced autophagy
induction was mediated by inhibiting the PI3K-AKT-mTOR pathway and activating the
PERK-eIF2α-ER stress pathway while the knockdown of PERK could significantly abol-
ish the autophagy initiated by desipramine, indicating the necessity of PERK-mediated
ER stress involvement [29]. As a major signal-transducing organelle, the endoplasmic
reticulum (ER) senses and responds to changes in homeostasis [54–56]. When the ER is
stressed, unfolded protein response (UPR) pathways are activated through the induction of
protein kinase RNA-like endoplasmic reticulum kinase (PERK). The α subunit of eukaryotic
initiation factor 2 (eIF2α) phosphorylation, which is activated by PERK, inhibits protein
synthesis. PERK-eIF2α promotes the induction of ER stress-induced apoptosis [54–56].
Interestingly, an inconsistent report was demonstrated by Kuzu et al., in which desipramine
acted as an acid sphingomyelinase inhibitor and could block autophagic flux in UACC903
metastatic melanoma cells by inhibiting intracellular cholesterol transport but still ef-
fectively restricted melanoma tumor growth [42]. This result was also contradictory to
the autophagy induction phenotype of acid sphingomyelinase inhibition mediated by
imipramine treatment [53]. However, these studies were conducted in different models,
whose heterogenous backgrounds might have contributed to the variations that occurred.

3.1.3. Maprotiline

It has been shown that maprotiline could inhibit glioma cell proliferation since the
1990s [57,58], but its underlying mechanism against cancer was not fully understood for
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a long time. In 2004, Hsu et al. found that maprotiline inhibited the proliferation of PC3
human prostate cancer cells by regulating intracellular Ca2+ influx and release [59]. The
anticancer mechanism of maprotiline was further explored by Cloonan and Williams in the
chemoresistant DG-75 Burkitt lymphoma cells, which are apoptosis-defective tumor cells
lacking the expression of the proapoptotic proteins Bax and Bak [30]. Maprotiline treatment
resulted in autophagic programmed cell death in DG-75 cells, which were associated
with increases in autophagic vesicles, autophagosome formation, and Beclin-1 expression
levels. Such maprotiline-induced pro-autophagic cell death could be rescued by autophagy
inhibitors, demonstrating that autophagy induction is primarily responsible for DG-75 cell
death treated with maprotiline [30].

3.1.4. Amitriptyline

There are controversial effects of amitriptyline on modulating autophagy among differ-
ent types of cancer [31,43]. In HepG2 hepatocellular carcinoma cells, amitriptyline induced
an early autophagic activation associated with mitochondria dysfunction and oxidative
stress and triggered Parkin-mediated mitophagy. Following persistent and extensive mi-
tochondria autophagic stress, amitriptyline subsequently led to mitochondrial toxicity
and apoptotic cell death [31]. Controversially, in A549 lung cancer cells, amitriptyline
upregulated the expression of both LC3-II and p62, indicating that there was the complete
formation of an autophagosome, but the fusion of the autophagosome with lysosome
was blocked in the late stage of autophagy flux. TRAIL (tumor necrosis factor-related
apoptosis-inducing ligand) is a cytokine that can induce apoptosis in cancer cells while
causing minimal toxicity to normal cells. As a consequence, cancer cells that are resistant to
TRAIL pose a major challenge for the development of cancer treatments, and to develop
drugs that enhance the effectiveness of TRAIL or overcome its resistance to cancer cells is
necessary [60]. The amitriptyline-induced autophagy blockage increased DR4 and DR5
expression, subsequently enhancing TRAIL-mediated apoptotic cell death [43].

3.1.5. Nortriptyline

Nortriptyline is an active metabolite of amitriptyline. It has been shown that nor-
triptyline suppresses autophagic flux, causing the aggregation of the autophagosome and
disruption of cancer cell cholesterol homoeostasis, and by inhibiting acid sphingomyelinase,
it consequently resulted in the inhibition of major oncogenic signaling cascades on which
cancer cells were reliant for survival. In the UACC903 melanoma tumor xenograft model,
nortriptyline at a concentration of 5 mg/mL was sufficient to inhibit tumor growth by
50% [42]. Consistently, Chung et al. showed that nortriptyline inhibited autophagic flux
by disrupting the lysosome and impeding autolysosome function, leading primarily to
non-apoptotic pineoblastoma cell death [44]. Gemcitabine previously was demonstrated
to induce autophagy as a protective mechanism for cancer cells, which was abolished by
autophagy inhibitors [61,62]. Nortriptyline as an autophagy inhibitor, was reported to
further synergize with gemcitabine to suppress pineoblastoma growth [44].

3.1.6. Clomipramine

The use of clomipramine as a clinical drug has lasted for over 40 years and provided
well-tolerated toxicity results in subjects of various medical conditions, even in cancer pa-
tients [63]. In recent years, clomipramine has been found to exhibit an anticancer property
by regulating autophagic fluxes against various types of cancer, including breast, prostate,
bladder, cervical, and lung cancer [45,46,64,65]. Among these studies, clomipramine func-
tioned as an autophagy inhibitor. Nguyen et al. reported that clomipramine arrested the
fusion of the autophagosome to the lysosome via suppressing AMPK activation and sensi-
tized enzalutamide response in castration-resistant prostate cancer in vitro and in vivo [45].
Furthermore, clomipramine also inhibited autophagy by blocking autophagolysomal fluxes
and thus potentiated the therapeutic responses of gemcitabine and mitomycin in a panel
of breast, prostate, bladder, and cervical cancer cell lines [65]. Similar observations were



Molecules 2023, 28, 7594 8 of 17

demonstrated with an active metabolite of clomipramine, named norclomipramine or
desmethylclomipramine, which interfered with autophagic flux by increasing LC3-II but
concomitantly blocking the degradation of autophagic cargo [46,64]. Norclomipramine was
able to enhance the cytotoxic effect of doxorubicin in Hela cancer cells and cisplatin, gemc-
itabine, and paclitaxel in lung cancer stem cells in an autophagy-dependent manner [46,64].

3.2. Selective Serotonin Reuptake Inhibitors (SSRIs)

The selective serotonin reuptake inhibitors, such as fluoxetine, escitalopram, sertraline,
vortioxetine, and paroxetine, are commonly used for the treatment of depression in patients
with cancer. It has been documented that SSRIs could induce tumor cell death in various
cancer models. In particular, SSRIs have been reported as autophagy modulators to sup-
press cancer growth in breast cancer, lung cancer, gastric cancer, hepatocellular carcinoma,
leukemia, prostate cancer, and many other cancer types (Figures 1 and 2; Tables 1 and 2).

3.2.1. Fluoxetine

Fluoxetine is the most reported SSRI with an autophagy-modulating property in
multiple types of cancer, including Burkitt’s lymphoma [30], breast cancer [32], gastric ade-
nocarcinoma, and lung cancer tumor cells. It was first reported by Cloonan and Williams in
2011, showing that fluoxetine induced Type II autophagic cell death in DG-75 Burkitt’s lym-
phoma cells [30]. Afterwards, a few further studies demonstrated that fluoxetine induced
cytotoxic cell death in triple-negative breast cancer by triggering persistent autophagy
via activating the AMPK/mTOR/ULK axis [32,33]. The eukaryotic elongation factor 2
kinase (eEF2K) was reported to play an essential role in the crosstalk between autophagy
and apoptosis [66,67], and the inhibition of eEF2K in fluoxetine-treated triple-negative
breast cancer was associated with AMPK/ULK-dependent autophagy to promote au-
tophagic and apoptotic cancer cell death simultaneously [33]. Fluoxetine inhibited eEF2K
activity by decreasing its phosphorylation at ser78 and ser398, subsequently inducing
the AMPK/mTOR/ULK complex pathway and autophagic cell death [33]. Meanwhile,
fluoxetine also was found to induce cellular ER stress by promoting the PERK/eIF2α/NF-
κB pathway, which was considered to be an important inducement of autophagic cell
death [32]. In gastric and lung cancer, fluoxetine significantly caused cancer cell death
associated with triggering autophagosome formation with a high accumulation of LC3-II;
however, the autophagic degradation process was blocked by fluoxetine as indicated by
continuous p62 increase [34,35]. These studies revealed that fluoxetine plays complex roles
in autophagic flux modulation among different cancer types; however, its anticancer effect
is consistently confirmed.

3.2.2. Escitalopram

Escitalopram is the S-enantiomer of citalopram and is currently used to treat major
depressive disorder and anxiety disorder. It has been shown with autophagy-inducing
activity in malignant gliomas cells. Obviously, an increased LC3-II/I ratio; the expression
of autophagy markers Beclin-1, ATG3, ATG5, and ATG7; and a declined p62 protein level
were observed in GBM8401 cells treated with escitalopram [36]. Consistent evidence was
further provided with hepatocellular carcinoma models by Chen et al., who demonstrated
that escitalopram significantly suppresses the proliferation of HepG2 and Huh-7 cells and
tumor growth of Huh-7 xenografts by activating autophagic flux [37]. More importantly,
according to the large-cohort epidemiology study investigating the association between
liver cancer risk and escitalopram, conducted by Chen et al., patients who used escitalopram
had a significantly decreased incidence of liver cancer than those who had never used
escitalopram [37].

3.2.3. Sertraline

Sertraline has shown discrepant effects on modulating autophagy in different types
of cells. On the one hand, sertraline has been reported to induce autophagic flux among
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acute myeloid leukemia cells [38], non-small lung cancer cells [40], and prostate cancer
stem cells [39]. On the other hand, sertraline has also inhibited autophagy in lung cancer
cells [47]. Sertraline can induce a significant increase in autophagic vacuoles with a double-
membrane structure, which further facilitates apoptosis in NB4 acute myeloid leukemia
cells. A similar observation has also been found in primary acute myeloid leukemia
cells [38]. Autophagy blockage partially attenuates sertraline-induced apoptosis and cancer
proliferation inhibition in acute myeloid leukemia cells [38]. Consistent results showing
sertraline-induced autophagy and apoptosis were demonstrated in prostate cancer stem
cells by Chinnapaka et al. [39]. Jiang et al. also confirmed the autophagy-induction and
growth-inhibition effects of sertraline; however, they found, differently, that sertraline
did not trigger caspase-mediated apoptosis except autophagic cell death in non-small
cell lung cancer [40]. Furthermore, they discovered the synergistic tumor-killing effect
of sertraline and erlotinib co-treatment in vitro and in vivo by reciprocally regulating the
AMPK/mTOR/S6K pathway to reinforce autophagy activation in non-small lung cancer
cells. While blocking autophagy, either sertraline alone or its combination with erlotinib
was less effective in combating cancer [40]. Interestingly, there have been contradictory
findings observed in TRAIL-resistant lung cancer cells. Zinnah et al. reported that sertraline
blocked autophagic flux and induced TRAIL-mediated apoptosis via the downregulation
of AMPK phosphorylation and upregulation of DR5 expression in lung cancer cells [47].

3.2.4. Vortioxetine

Vortioxetine has been shown to restrain cancer development in multiple aspects includ-
ing the inhibition of cancer cell proliferation, invasion, and migration. Its pharmacological
mechanism has been reported to be associated with simultaneous autophagy and apoptosis
induction [41]. In a study, vortioxetine increased the levels of pro-autophagic LC3-II, Beclin-
1, proapoptotic Bax, and active Caspase-3/9 and downregulated p62 and Bcl-2 in gastric
cancer cells, which was mediated by the suppression of the PI3K-AKT-mTOR pathway [41].

3.2.5. Paroxetine

Paroxetine and its structural derivative N-methylparoxetine were both found to block
autophagic flux at the late stage and simultaneously induce mitochondrial fragmentation
and ROS overproduction in non-small cell lung cancer cells [48,49]. Specifically, the au-
tophagy inhibition induced by paroxetine and N-methylparoxetine occurred by disrupting
lysosomal acidification and altering the maturation lysosomal cathepsins rather than in-
terfering with autophagosome–lysosome fusion. Consequently, the clearance of damaged
mitochondria and accumulated ROS by the autophagic process was blocked, which in
turn served to activate P38-MAPK and JNK-MAPK cascades and triggered mitochondria-
dependent apoptosis, leading to significant growth inhibition in non-small cell lung
cancer [48,49].

3.3. Serotonin-Norepinephrine Reuptake Inhibitors (SNRsI)

Duloxetine is a serotonin-norepinephrine reuptake inhibitor (SNRI) commonly used
for depression and anxiety therapy. Duloxetine is also frequently prescribed to cancer
patients associated with depression symptoms [68]. It was recently reported that duloxetine
could inhibit autophagic flux by downregulating AMPK phosphorylation in lung cancer
cells [50] (Figure 2 and Table 2). The duloxetine-induced autophagy inhibition upregulated
DR5 expression and enhanced TRAIL-mediated apoptosis, which indicated a promising
approach for the TRAIL-resistant cancer therapy [50].

4. Anticancer Antidepressants Investigated for Combinational Treatment and in
Clinical Trials

Antidepressants used alone have achieved much evidence in vitro and in vivo to
demonstrated their anticancer properties, and they encompass tricyclic antidepressants
(TCAs), tetracyclic antidepressants (TeCAs), selective serotonin reuptake inhibitors (SSRIs),
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and serotonin-norepinephrine reuptake inhibitors (SNRIs) [9–11]. Those anticancer antide-
pressants, which work through the mechanism of modulating autophagy, are summarized
in Tables 1 and 2.

A number of studies have also shown that the combination of antidepressants and con-
ventional anticancer drugs increases effectiveness in cancer treatment. Desipramine fluoxe-
tine, citalopram, and paroxetine could enhance the cytotoxicity of platinum drugs [69–71].
Fluoxetine, benztropine, fluphenazine, and paroxetine intensified the effects of paclitaxel
or docetaxel to cancer [70,72–74]. A synergistic effect was found with the combination of
5-fluorouracil/doxorubicin and antidepressants including sertraline, thioridazine escitalo-
pram, fluoxetine, imipramine, and paroxetine [70,73–77]. The combination of fluoxetine and
raloxifene enhanced therapeutic effects in breast cancer [78,79]. Fluoxetine and imipramine
synergized with temozolomide to induce significant cell death in glioblastoma [80,81].
Sertraline sensitized non–small cell lung cancer to erlotinib by inducing autophagy [40].

Although antidepressants have been demonstrated with sufficient preclinical evidence
to have anticancer properties, further clinical trials are still needed to evaluate their clinical
effect. We searched the ClinicalTrials.gov registry. As a result, we identified 11 registered
clinical trials investigating the anticancer effects of autophagy-regulating antidepressants
(Table 3). However, no interim or final results on their therapeutic effectiveness have
been reported, which requires us to focus more efforts on clinical studies to confirm the
anticancer potential of antidepressants.

Table 3. Clinical trials using antidepressants in treating cancer patients.

Drugs Study Description Phase Tumor Types Start Date ID

Imipramine
Imipramine on ER+ and

triple-negative breast
cancer

I Breast cancer July 2019 NCT03122444

Imipramine

Investigator-initiated
study of imipramine
hydrochloride and

lomustine in recurrent
glioblastoma

II Glioblastoma May 2022 NCT04863950

Desipramine

Phase 2a desipramine in
small cell lung cancer
and other high-grade

neuroendocrine tumors

II

Small cell lung
cancer; Neu-
roendocrine

tumor

October
2012 NCT01719861

Maprotiline

A study of maprotiline
in combination with

tamoxifen and
temozolomide for

recurrent glioblastoma

I Glioblastoma June 2022 NCT04200066

Nortriptyline

Paclitaxel and
nortriptyline

hydrochloride in
treating patients with

relapsed small cell
carcinoma

I Small cell
carcinoma

November
2016 NCT02881125

Fluoxetine

Combination
chemotherapy plus

fluoxetine in treating
patients with advanced
or recurrent non-small

cell lung cancer

II Lung cancer August
2001 NCT00005850
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Table 3. Cont.

Drugs Study Description Phase Tumor Types Start Date ID

Fluoxetine
Evaluation of fluoxetine
and cytotoxic lysosomal
stress in glioma (FLIRT)

I Brain tumor August
2023 NCT05634707

Escitalopram

Escitalopram to placebo
in patients with

localized pancreatic
cancer

II Pancreatic
cancer

August
2022 NCT05289830

Sertraline

Sertraline and cytosine
arabinoside in adults

with relapsed and
refractory AML

I Acute myeloid
leukemia

August
2016 NCT02891278

Sertraline

A proof-of-concept
clinical trial assessing

the safety of the
coordinated

undermining of survival
paths by nine

repurposed drugs
combined with

metronomic
temozolomide for

recurrent glioblastoma

II Glioblastoma November
2016 NCT02770378

Vortioxetine

Vortioxetine for MDD,
cognition, and systemic

inflammatory
biomarkers

IV Breast cancer July 2016 NCT02637466

5. Discussion

It is widely recognized that cancer is a global health problem. Current cancer treatment
is often plagued by several major problems such as serious side effects, frequent therapy
resistance, and the lack of effective drugs. Conventional chemotherapy and radiotherapy
always cause serious toxicity to normal cells by triggering non-specific apoptosis, thus
limiting their employment for cancer therapy. Treatment resistance also frequently occurs
after a prolonged therapeutic cycle, along with new tumor colonies being developed and
apoptosis-tolerant mutations being accumulated. Therefore, to develop new tumor-killing
regimens independently relying on apoptotic cell death but additionally or alternatively
working through other programed cell death mechanisms, like autophagy, should be a
promising strategy to overcome potential treatment resistance. Furthermore, the lack of
sufficient treatment options and effective drugs is a long-lasting obstacle facing clinical
settings, especially for those less frequent cancer types [82]. Repurposing anticancer
drugs from existing ones with the property of inducing autophagy-associated cell death,
like antidepressants, represents a feasible way with cost-effective, time-saving, and less-
toxicity advantages.

Autophagy plays crucial bidirectional roles in regulating cancer development. Either
pharmacological induction or inhibition has been proven to effectively restrain tumor
growth and metastasis. Therefore, to develop cancer therapeutics from autophagy mod-
ulators is considered to be a good strategy. Although there are several available small
molecules that are specifically designed to modulate autophagy, none of these agents
have completed clinical trials and been approved for clinical use so far. There is still a
long process for the therapeutic application of novel autophagy modulators to treat can-
cer patients; it cannot begin until the completion of a full evaluation of efficacy, toxicity,
pharmacokinetics, pharmacodynamics, and so on. Since developing novel drugs starting
from the beginning is time-consuming and they are unavailable for clinical use soon, to
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repurpose existing clinical-used drugs with autophagy-modulating properties, such as
the antidepressants reviewed in this study, represents a time-saving and cost-effective
approach. Moreover, antidepressants have good advantages to penetrate the blood–brain
barrier for being delivered to the brain, which is naturally suitable for treating intractable
brain tumors such glioma and brain metastasis.

Herein, we reviewed autophagy-modulating antidepressants with antitumor effects.
It was found that they targeted multiple autophagic processes, from the early stage associ-
ated with autophagosome formation to the late stage involved in lysosomal degradation
(Figures 1 and 2; Tables 1 and 2). Among these antidepressant agents, sertraline, imipramine,
desipramine; fluoxetine; vortioxetine, duloxetine, and clomipramine were reported to con-
trol the upstream signaling of autophagy via regulating AMPK or mTOR. Amitriptyline,
nortriptyline, N-methylparoxetine, and paroxetine affect autophagy by managing the inter-
play between autophagosomes and lysosomes. Furthermore, maprotiline and fluoxetine
also influence autophagy by modulating intracellular Ca2+ flux. During the past few
decades, these drugs have been demonstrated with good safety profiles and frequently
co-administrated with chemotherapeutic drugs for cancer patients. Recent studies have
proven the anticancer properties of antidepressants through autophagy modulation. Thus,
combining conventional chemotherapeutic regimens with antidepressants offers a promis-
ing anticancer treatment strategy to induce synergistic or additive tumor-killing effects by
simultaneously triggering multiple programmed cancer cell death mechanisms.

There are still some unsolved tasks to be completed before the wide application of
antidepressants for clinically treating cancer patients, although they have been well doc-
umented for suppressing tumor growth in animal experiments. Firstly, more intensive
mechanism studies should be further conducted to elucidate how drug types and dosages
modulate the anticancer effect, as well as to confirm their drug targets during the autophagy
process. Several studies of anticancer antidepressants have merely observed an increase in
the numbers of autophagic markers (Tables 1 and 2) such as LC3II/I ratios; however, their
results are not convincing for drawing certain conclusions about antidepressants’ functions
with regard to autophagy. Antidepressants seem to affect autophagy in a number of ways,
encompassing a variety of autophagy processes (Figures 1 and 2). Varying concentrations
of antidepressants administered in different experimental models may also affect their
autophagic outcomes, which is another important consideration. Secondly, more extensive
clinical trials are urgently required to evaluate the reliability and safety of repurposing
antidepressants as anticancer drugs. There have been a number of studies demonstrating
that antidepressants have anticancer properties. However, it has been suggested that
certain antidepressants increase the risk of cancer development and recurrence [83]. A
systematic review on the carcinogenicity of antidepressants found that 45% antidepressants
(9/20 agents) were positive for carcinogenicity [84]. Many important anticancer targets are
double-edged swords. It is necessary to find the balance between their advantages and
disadvantages. In order to fully understand the clinical applicability of antidepressants to
cancer patients, further research must be conducted. Thirdly, it is necessary to investigate
the potential drug interaction between antidepressants and chemotherapeutic agents to
provide a clear view showing whether the combination is potentially synergistic or an-
tagonistic. Cytochrome P450 is responsible for most of the biological transformations of
anticarcinogens [85]. If co-administered with antidepressants that inhibit this cytochrome
P450 isoform, anticancer efficacy may be reduced or drug toxicity may be increased [85].
For example, tamoxifen is a kind of anticarcinogen for breast cancer that needs to be
metabolized by cytochrome P450 2D6/CYP2D6. Meanwhile, some antidepressants (e.g.,
duloxetine and fluoxetine) are reported as strong inhibitors of CYP2D6 [86,87]. Therefore,
some antidepressants should not be used in conjunction with tamoxifen.

Nevertheless, based on existing preclinical studies, we have reason to believe that
antidepressants may potentially be developed as a promising therapeutic regimen to fight
against cancer. To sum up, we introduced the anticancer potential of antidepressants
and reviewed their underlying pharmacological mechanisms through the modulation
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of autophagic processes. We further discussed the prospects and limits of repurposing
antidepressants as anticancer drugs.
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