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Abstract: A boron and iron co-doped biochar (B-Fe/biochar) from Masson pine bark was fabricated
and used to activate peroxydisulfate (PDS) for the degradation of guaiacol (GL). The roles of the
dopants and the contribution of the radical and non-radical oxidations were investigated. The results
showed that the doping of boron and iron significantly improved the catalytic activity of the biochar
catalyst with a GL removal efficiency of 98.30% within 30 min. The degradation of the GL mainly
occurred through the generation of hydroxyl radicals (·OHs) and electron transfer on the biochar
surface, and a non-radical degradation pathway dominated by direct electron transfer was proposed.
Recycling the B-Fe/biochar showed low metal leaching from the catalyst and satisfactory long-term
stability and reusability, providing potential insights into the use of metal and non-metal co-doped
biochar catalysts for PDS activation.
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1. Introduction

The refractory organic pollutants discharged from wastewater result in great harm to
the ecological environment and human health [1,2]. Therefore, many advanced treatments
have been applied to reduce the adverse consequences caused by organic pollutants [3–6].
Among them, advanced oxidation processes (AOPs), especially the sulfate radical-based
AOPs that involve a catalytic activation of peroxydisulfate (PDS) or peroxymonosulfate
(PMS), have been considered a promising technology for the treatment of organic com-
pounds that contain wastewater. This is because they can produce SO4

− with a high
redox potential (2.5–3.1 V) under a wide pH range (2.0–11.0) [7], which is favorable for
practical applications. In the process of persulfate-based AOPs, radicals including ·OH and
SO4· can be produced by the activation of PDS or PMS assisted through some physical or
chemical techniques (such as UV irradiation, heat, or catalysts) to break the O–O bond in
persulfate [8]. Diverse catalysts, such as metal oxides [9], carbon materials [10], and natural
minerals [11], have been exploited to catalyze persulfate. Among them, carbon materials
derived from biomass waste, e.g., crop straw (which is often named biochar), show great
advantages in being easily available in raw materials, having a tunable structure, and
being industrially and economically attractive [12]. Nevertheless, the catalytic efficiency
of pristine biochar is relatively lower than that of transition metal-based catalysts. Thus,
many efforts have been made to enhance the catalytic activity of biochar [13–17].

Presently, transition metals, especially iron, have been widely used for enhancing the
activation efficiency of biochar due to its relatively low cost and high activity [18,19]. The
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introduction of iron can not only greatly improve the catalytic performance of biochar, but
the recycling process ascribed to the magnetism of Fe0 is also fascinating. However, the
catalytic performances of pure iron or iron compounds are generally inhibited by solution
pH and the accumulation of ferric oxide sludge, thus reducing the number of active sites
and ultimately affecting the catalytic performance [20,21]. Fortunately, doping heteroatoms
has been proposed and regarded as a feasible way through which to solve this problem [22].
As reported, heteroatom doping could modulate the inherent electroactive sites of a carbon
configuration [23]. It not only provides carbocatalysts with a better catalytic efficacy, but it is
also expected to trigger non-radical persulfate activation, which exhibits higher selectivity
than free radical-based oxidation, thus resulting in a more sufficient degradation toward
the target contaminants in complex environments [24]. Numerous studies have found
that heteroatom-doped iron-based catalysts have showed a much higher degradation rate
toward organic pollutants when compared with only iron-based catalysts [25–27]. For
example, according to Yu et al.’s study, the N-doped Fe/biochar catalyst showed a 1.7 times
higher performance in terms of degrading azo dye acid orange 7 than a Fe/biochar catalyst
during the persulfate activation process. As reported in Lv et al.’s research, compared
with the Fe@C obtained from MIL-101 (Fe), the S-doped Fe@C exhibited much higher
performance (1.5 times larger) in the context of PDS activation.

Boron (B) is another ideal co-doped heteroatom due to its low electronegativity and
having an atomic size similar to carbon. Positively charged B doping can easily adjust the
electron distribution as well as the physical and chemical properties of sp2 hybrid carbon,
thus providing more defect sites [28,29]. Moreover, boron doping allows oxygen to be
grafted onto the carbon surface, improving the chemical stability of the carbon material [30].
To date, many studies have proven that B doping can significantly improve the activity and
stability of catalytic materials [31–33]. However, the effect of B doping on an iron-based
biochar catalyst has not been clearly investigated, and the theoretical bases still need to be
studied in biochar that possess more complicated structures.

Based on the above discussions, fabricating a B and iron co-doped biochar catalyst
seems to be a desirable method for PDS activation. Herein, guaiacol (GL), a model com-
pound of lignin, usually exists in pulping wastewater, and it was selected as the target
compound due to its inefficient removal by other AOP technologies, such as the Fenton pro-
cess [34], ozonation [35], and photocatalytic degradation [36]. In this paper, the enhanced
activation performance of B on Fe-doped biochar was evaluated. Meanwhile, the reactive
species and oxidation pathways were also identified through a comprehensive analysis of
radical quenching, electron paramagnetic resonance (EPR) studies, and electrochemical
tests. Finally, the reusability of B-Fe/biochar was discussed.

2. Results and Discussion
2.1. Characterizations of B-Fe/Biochar

The phase compositions of pristine biochar, Fe/biochar, and B-Fe/biochar were charac-
terized by XRD patterns. As illustrated in Figure 1a, two diffraction peaks at approximately
26◦ and 43.6◦ were associated with the (002) and (100) planes of amorphous and crys-
talline carbon, respectively [37]. The (002) diffraction peak of B-Fe/biochar was more
intense compared to Fe/biochar. The reason for this might be ascribed to the boron-doping
process, which might lead to the deformation of the carbon layer and could produce
more defects [28]. Meanwhile, both Fe/biochar and B-Fe/biochar presented sharp diffrac-
tion peaks at 2θ = 44.5◦and 65.0◦ when assigned to the (100) and (200) planes of α-Fe0
(JCPDS 06-0696), thus demonstrating the successful formation of α-Fe0 in Fe/biochar and
B-Fe/biochar [38]. Moreover, no peaks of iron oxide were observed in the XRD patterns
for Fe/biochar and B-Fe/biochar, implying that α-Fe0 was the only iron crystal species in
the composites. As exhibited in Figure S1, the S-shape curve of B-Fe/biochar reflected its
super-paramagnetism with a saturation magnetization (Ms) of 32.0 emu/g, implying that
the obtained B-Fe/biochar possess a property of robust magnetism and could be separated
from the solution by an external magnet.



Molecules 2023, 28, 7591 3 of 16

Molecules 2023, 28, x FOR PEER REVIEW  4  of  16 
 

 

oxygen content of boron‐modified biochar compared  to boron‐free biochar verifies  the 

grafting of oxygen to the carbon surface, resulting in a higher hydrophilicity of the car‐

bon material (Figure 1f). 

 

Figure 1. (a) XRD patterns; (b) Raman spectra. D band corresponds to disordered carbon or defec‐

tive graphite structure; G band corresponds  to E2g mode vibration of complete honeycomb sp2 

hybrid carbon grid. (c) The nitrogen adsorption–desorption isotherms and pore‐size distributions 

of B‐Fe/biochar; (d) SEM images; (e) SEM mapping images of B‐Fe/biochar; (f) XPS survey spectra; 

(g)  high‐resolution  XPS  spectrum  of  C  1s;  (h)  high‐resolution  XPS  spectrum  of  B  1s;  (i) 

high‐resolution XPS spectrum of Fe 2p. 

2.2. Catalytic Degradation of GL with B‐Fe/Biochar‐Activated PDS System 

The  degradation  of  the  GL  catalyzed  by  B‐Fe/biochar/PDS  system was  used  to 

evaluate  the activating performances of B‐Fe/biochar on PDS. As a  control, biochar or 

Fe/biochar was also tested under identical conditions. As depicted in Figure 2a, GL could 

not be degraded when only PDS or biochar was present. The slight decrease in concen‐

tration  of  GL  might  be  attributed  to  the  adsorption  of  biochar.  Conversely,  in  the 

B‐Fe/biochar/PDS  system,  the  removal  efficiency of GL within  30 min  increased  from 

19.18%  to  98.30%,  suggesting  the  activation  of  PDS  by  B‐Fe/biochar. Notably,  in  the 

B‐Fe/biochar/PDS system, the removal rate of GL within 30 min was significantly higher 

than those of the control group (76.4% for Fe/biochar and 38.6% for biochar). Meanwhile, 

the  total organic carbon  (TOC) values of  the  solutions were also measured,  yielding a 

Figure 1. (a) XRD patterns; (b) Raman spectra. D band corresponds to disordered carbon or de-
fective graphite structure; G band corresponds to E2g mode vibration of complete honeycomb sp2
hybrid carbon grid. (c) The nitrogen adsorption–desorption isotherms and pore-size distributions of
B-Fe/biochar; (d) SEM images; (e) SEM mapping images of B-Fe/biochar; (f) XPS survey spectra;
(g) high-resolution XPS spectrum of C 1s; (h) high-resolution XPS spectrum of B 1s; (i) high-resolution
XPS spectrum of Fe 2p.

The defects and local structural change in samples were further investigated using
Raman spectroscopy (Figure 1b). It has been widely recognized that the D peak is associated
with the defects of disordered sp2-hybridized carbon, while the G peak originates from
the crystalline graphite structure in porous carbon [39]. Therefore, the intensity of the
ratio of the D peak to the G peak (ID/IG ratio) can unveil the defective degree of carbon
materials. As illustrated in Figure 1c, the B-Fe/biochar displayed the highest defective
level (ID/IG of 0.98), which meant that B-Fe/biochar provided the most defective sites.
As reported previously, numerous defects sites of carbon lays might be the active sites in
catalytic reactions [40]. Therefore, B-Fe/biochar with the highest defect density might show
higher catalytic performance.

The N2 sorption–desorption curve and the pore size distribution of the B-Fe/biochar
are depicted in Figure 1c. It was evident that the material showed a typical type I isotherm
with a H4 hysteresis loop, indicating the existence of micropores and mesopores with the
majority of the mesopores having a diameter of less than 6 nm (see the insert graph in
Figure 1c). The corresponding parameters were gathered in Table S1. As illustrated in
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Table S1, the pore volume of B-Fe/biochar was similar to that of Fe/biochar, but the
average pore width was smaller, resulting a higher specific surface area. The Barrett–
Joyner–Halenda (BJH) analysis revealed that the specific surface area of B-Fe/biochar was
538.74 m2 g−1, which was significantly higher than that of pristine biochar (460.97 m2 g−1)
and Fe/biochar (473.14 m2 g−1) (Table S1). Thus, B/Fe co-doping allowed the carbon-based
catalyst to have a larger specific surface area and more abundant porous structure, thereby
promoting the adsorption and transfer of PDS and organic pollutants during the catalytic
degradation process.

SEM was conducted to investigate the surface change in biochar during the doping
process (Figure 1d). The results displayed that the pristine biochar exhibited an irregular
blocky structure with a relatively smooth and flat surface. After Fe doping, irregular
pores and cracks were generated on the surface of biochar, which might be caused by the
oxidation of K2FeO4 and corrosion of K (Equations (S1)–(S6)). When further doped with
boron, the surface became more rough and uneven, and some pores might be hidden under
the fracture surface, which was mainly due to the porogenic effect of boric acid. In addition,
many particles were observed on the surface of B-Fe/biochar. Combined with the analysis
of XRD patterns, these particles were mainly α-Fe0. EDS analysis confirmed that both
Fe and B elements were successfully doped into the biochar matrix (Figure 1e).

The surface elements of the prepared catalysts were analyzed by XPS (Figure 1f–i).
The spectra in Figure 1f showed that C, O, B, and Fe elements could be detected in the
B-Fe/biochar, further confirming the successful doping of B and Fe onto the carbon matrix.
Figure 1g depicted that the C 1s spectrum can be decomposed into four components. The
main peak centered at 284.8 eV corresponded to the sp2 hybridized carbon, indicating
the existence of high graphitic carbon in B-Fe/biochar. The tail of the C 1s peak was
asymmetric obviously, which implied the disordered structure of graphite carbon. The
above results were consistent with those of Raman spectroscopy [41]. The binding energy
peaked at 285.8 eV, 287.2 eV, and 289.2 eV, revealing the presence of C–OH/C–O–B, C=O,
and O–C=O groups, respectively [28]. The Fe 2p spectrum (Figure 1h) showed five forms of
Fe: namely, Fe0 (711.1 eV), Fe2+ 2p3/2 (712.9 eV), Fe3+ 2p3/2 (716.3 eV), Fe2+ 2p1/2 (719.9 eV)
and Fe3+ 2p1/2 (728.0 eV) [42]. The presence of Fe (II) and Fe (III) might be attributed to the
oxidation of α-Fe0 during storage and analysis. The high-resolution XPS spectrum of B 1s
of B-Fe/biochar was also illustrated. As shown in Figure 1i, the binding energies of the
two species were 189.2 eV and 192.4 eV, which were attributed to -BC3 and -BCO2, re-
spectively. The relatively high content of -BCO2 was ascribed to the easy bonding of
boron atoms to the more electronegative oxygen atoms at the edge sites. The much higher
oxygen content of boron-modified biochar compared to boron-free biochar verifies the
grafting of oxygen to the carbon surface, resulting in a higher hydrophilicity of the carbon
material (Figure 1f).

2.2. Catalytic Degradation of GL with B-Fe/Biochar-Activated PDS System

The degradation of the GL catalyzed by B-Fe/biochar/PDS system was used to
evaluate the activating performances of B-Fe/biochar on PDS. As a control, biochar or
Fe/biochar was also tested under identical conditions. As depicted in Figure 2a, GL
could not be degraded when only PDS or biochar was present. The slight decrease in
concentration of GL might be attributed to the adsorption of biochar. Conversely, in the
B-Fe/biochar/PDS system, the removal efficiency of GL within 30 min increased from
19.18% to 98.30%, suggesting the activation of PDS by B-Fe/biochar. Notably, in the
B-Fe/biochar/PDS system, the removal rate of GL within 30 min was significantly higher
than those of the control group (76.4% for Fe/biochar and 38.6% for biochar). Meanwhile,
the total organic carbon (TOC) values of the solutions were also measured, yielding a
value of 39.17% (Figure 2b), indicating that more than half of the target pollutant was
completely oxidized to H2O and CO2 by the end of the catalytic reaction (Figure 2b). The
mineralization could reach more than 60%. All the results strongly confirmed that the
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doped B significantly promoted the PDS activation and achieved the rapid degradation
of GL.

Molecules 2023, 28, x FOR PEER REVIEW  5  of  16 
 

 

value of 39.17%  (Figure 2b),  indicating  that more  than half of  the  target pollutant was 

completely oxidized to H2O and CO2 by the end of the catalytic reaction (Figure 2b). The 

mineralization could  reach more  than 60%. All  the  results  strongly confirmed  that  the 

doped B significantly promoted the PDS activation and achieved the rapid degradation 

of GL. 

 

Figure 2. (a) GL removal by various catalysts; (b) TOC removal in B‐Fe/biochar/PDS/GL system; (c) 

effects of B‐Fe/biochar dosage; (d) effect of PDS dosage; (e) effects of initial pH; (f) effects of reac‐

tion temperature; (g) the point of zero charge (pHpzc) of B‐Fe/biochar; (h) effects of different anions 

(Cl−, NO3−, HCO3−, H2PO4−); (i) effects of humic acid. Conditions: [Catalyst] = 200 mg/L, [PDS]0 = 20 

mM/L, [GL]0 = 50 mg/L, pH ≈ 5.5, T = 25 °C. 

The  effects  of  important  factors,  such  as  catalyst  dosage,  PDS  dosage,  pH  and 

co‐existing ions, on the GL degradation in the B‐Fe/biochar/PDS system were also inves‐

tigated. Figure 2c illustrated the degradation of GL and corresponding apparent rate co‐

efficients  (Kobs)  (calculated by Equation  (S7))  in  the B‐Fe/biochar/PDS  system within 10 

min under various B‐Fe/biochar dosages. The  results showed that the dosage increased 

from 50 to 400 mg∙L−1, while the degradation rate increased from 26.44% to 99.00% with 

the  corresponding  Kobs  rising  from  0.0267 min−1  to  0.4567 min−1,  implying  that  higher 

dosages of B‐Fe/biochar promoted the degradation of GL. The PDS dosage also played a 

Figure 2. (a) GL removal by various catalysts; (b) TOC removal in B-Fe/biochar/PDS/GL system;
(c) effects of B-Fe/biochar dosage; (d) effect of PDS dosage; (e) effects of initial pH; (f) effects of
reaction temperature; (g) the point of zero charge (pHpzc) of B-Fe/biochar; (h) effects of different
anions (Cl−, NO3

−, HCO3
−, H2PO4

−); (i) effects of humic acid. Conditions: [Catalyst] = 200 mg/L,
[PDS]0 = 20 mM/L, [GL]0 = 50 mg/L, pH ≈ 5.5, T = 25 ◦C.

The effects of important factors, such as catalyst dosage, PDS dosage, pH and co-
existing ions, on the GL degradation in the B-Fe/biochar/PDS system were also inves-
tigated. Figure 2c illustrated the degradation of GL and corresponding apparent rate
coefficients (Kobs) (calculated by Equation (S7)) in the B-Fe/biochar/PDS system within
10 min under various B-Fe/biochar dosages. The results showed that the dosage increased
from 50 to 400 mg·L−1, while the degradation rate increased from 26.44% to 99.00% with
the corresponding Kobs rising from 0.0267 min−1 to 0.4567 min−1, implying that higher
dosages of B-Fe/biochar promoted the degradation of GL. The PDS dosage also played
a crucial impact role in GL degradation. The effect of PDS dosage on GL degradation
was demonstrated in Figure 2d, which showed that the corresponding Kobs within 10 min
rose from 0.1445 to 0.3013 min−1 when the PDS dosage increased from 10 to 40 Mm/L.
However, with the further increase in PDS concentration, the removal of GL was inhibited,
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thus leading to a decrease in Kobs. An excess amount of PDS might react with the generated
active species, thus reducing the catalytic performance. As shown in Equations (S8) and (S9),
the excess SO4

−· produced by PDS could be scavenged by itself to form S2O8
2− or react

with S2O8
2−. The produced S2O8

2− could further react with ·OH, thus reducing the activity
of the system (Equation (S10)) [43,44].

The effect of pH on degradation was investigated because pH played an important
role in the degradation process of GL. As shown in Figure 2e, the GL degradation rates
and the corresponding Kobs gradually decreased as the pH value increased from 3.0 to 11.0.
Compared with the narrow effective pH range of the Fenton reaction (pH = 2.5–4.0), the
B-Fe/biochar/PDS system maintained a good degradation performance in a wider pH
range of 3.0–9.0, which was favorable for practical applications. The decrease in reaction
rate under alkaline conditions could be attributed to the following two reasons [45]. First,
the formation of iron hydroxide precipitation was more likely under alkaline conditions,
which would hinder the activation reaction of active sites on the catalyst surface with PDS.
(2) Secondly, the surface of B-Fe/biochar was negatively charged at pH > 3 (Figure 2f).
Additionally, the GL existed as an anion under alkaline conditions (pKa = 9.98), creating
electrostatic repulsion between GL and B-Fe/biochar, which was unfavorable for degrada-
tion. The effect of temperature on degradation was also studied (Figure 2g). The results
showed that the catalytic effect was significantly enhanced with the increase in the reaction
temperature, and the GL removal rate increased from 76.39% (15 ◦C) to 99.10% (45 ◦C)
within 10 min, demonstrating that a higher reaction temperature was beneficial to the
electron transfer between the catalyst and PDS. Additionally, a high correlation coefficient
(R2 = 0.96) between ln k and 1/T was obtained using the pseudo-first-order kinetics. The
activation energy (Ea) of the GL degradation system was calculated using the Arrhenius
equation and the value was 32.85 kJ/mol, which was lower than that of other catalysts
(Table S2) [28,46–51], implying that the reaction was easily achieved.

Given the presence of several inorganic anions and humic acid (HA) in the real
wastewater, the effects of a variety of inorganic anions (Cl−, NO3

−, HCO3
−, H2PO4

−) and
HA on degradation were evaluated. As demonstrated in Figure 2h, four anions showed
certain impact on the degradation of GL. Cl− had a facilitative effect on the degradation of
GL. It is speculated that a series of Cl species was generated by the reaction of Cl− with
SO4

−· and ·OH, including Cl·, Cl2−·, Cl2 and HClO (Equations (S11)–(S14)), especially
the highly reactive HClO counteracted the possible radical scavenging [52,53]. The slight
negative influence of NO3

− in the reaction system might be related to the reason that NO3
−

could react with SO4
−·/OH· and generate free radicals with low redox potential, such

as NO3· (Equations (S15) and (S16)) [42]. Similarly, the HCO3
− and H2PO4

− could also
quench the SO4

−· and ·OH (Equations (S17)–(S20)) [54,55]. HCO3
− was able to react with

S2O8
2− while H2PO4

− can form a complex with dissolved Fe2+ to inhibit the production of
SO4

−· (Equation (S21)), further exacerbating the inhibitory effect of GL degradation [56,57].
Humic acid (HA), as a natural organic substance commonly found in water, has been

proven to have an effect on the PDS activation process [58]. The effect of HA on GL
degradation was shown in Figure 2i. As the HA concentration increased from 2 to 5 mg/L,
the degradation rate of GL decreased from 82.65% to 75.24% within 10 min, and further
increasing the HA concentration to 20 mg/L barely decreased the degradation rate. The
inhibitory effect of HA was mainly attributed to the competitive adsorption of HA and
PDS, which hindered the generation of active complexes [59,60]. In addition, HA was rich
in electron centers, which could compete with the target pollutant for active radicals [61].

Based on the above results, the B-Fe/biochar/PDS system showed good tolerance to
inorganic anions and natural organic matter, demonstrating promising prospects for the
removal of pollutants from real wastewater.

2.3. Activation Mechanism of Persulfate by the B-Fe/Biochar Catalyst

It is well known that a variety of reactive oxygen species, such as the radicals like
·OH, SO4

−·, and O2
–· and non-radicals like 1O2, are generated during the activation
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of persulfate by Fe-based catalysts [62]. In order to explore the main radicals during
the B-Fe/biochar/PDS system, quenching experiments were carried out with differ-
ent scavengers. Herein, PBQ (k·O2− is 9.6 × 108 M −1·s −1) and L-histidine (k1O2 is
2 × 109 M −1·s −1) were chosen as the quenchers for ·O2

− and 1O2, respectively. As shown
in Figure 3a, the degradation rate of GL decreased by 12.17% after adding PBQ, indicat-
ing the presence of ·O2

− in the reaction system. Meanwhile, the degradation rate of GL
decreased slightly when L-histidine was added, which implied that 1O2 might not be the
main active species in the reaction system. Figure 3b presented the degradation of GL
after adding methanol and TBA (quenchers for ·OH and SO4

−·). The result showed that
both methanol (kSO4−· and k·OH are 1.6–7.8 × 106 M−1 s −1 and 1.2–2.8 × 109 M−1 s −1,
respectively) and TBA (kSO4−· and k·OH are 4–9.1 × 105 M−1 s −1 and 3.8–7.6 × 108 M−1 s −1,
respectively) inhibited the degradation of GL. And the removal efficiencies of GL de-
creased by 15.13% and 10.80% after the addition of methanol and TBA (n(radical
quenchers/PDS) = 100), respectively. The result illustrated that there was both SO4

− ·
and ·OH in the system. Surprisingly, with the increase in quencher concentration
(n (radical quenchers/PDS) = 1000), the inhibition effect of TBA was significantly greater
than that of methanol. Generally, it is considered that the inhibition effect of the PDS
reaction by methanol is greater than that of TBA due to the higher reaction rate of
methanol with SO4

−· and ·OH. The contradictory phenomena observed in this study
might be ascribed to the following two reasons. (1) The CH2OH· generated from SO4

−·
that was scavenged by methanol could react with PDS to produce SO4

−· and then di-
rectly participate in the process of GL degradation, thus weakening the inhibitory effect
of methanol [63]. (2) TBA had a strong affinity with the surface of carbon, which hin-
dered the contact between PDS and B-Fe/biochar [40]. Figure 3c confirmed the obvious
inhibitory effect of TBA on PDS decomposition, thus reducing the reaction rate. Con-
sidering the uncertainty of the quenching results, EPR analysis was further applied to
confirm the reactive oxygen species generated in the B-Fe/biochar/PDS system. 5,5-
dimethyl-1-pyrrolidone-2-oxyl (DMPO) and 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMP)
were chosen as the spin-trapping agents to capture ·OH, SO4

−·, O2
− and 1O2, respectively.

As shown in Figure 3d, the EPR with DMPO as the trapping agent illustrated weak six
signals (1:1:1:1:1:1) and strong four signals (1:2:2:1), suggesting the presence of DMPO-SO4
adducts and DMPO-OH adducts, respectively. The result indicated that a large amount
of ·OH and a small amount of SO4

−· were produced during the reaction. In addition,
the electron paramagnetic resonance spectrum of ·O2

− captured by DMPO was detected
(Figure 3e), meaning the formation of ·O2

− during the reaction. The role of ·O2
− was

to generate 1O2 by complexation in the form of superoxide intermediates [64]. How-
ever, when TEMP was added, weak triplet signals belonging to TEMP-1O2 were detected
(Figure 3f), further confirming that 1O2 was probably not the main reactive oxygen species
in the reaction system. To confirm whether there was electron transfer between organic
matter (electron donor) and persulfate (electron acceptor) [65], K2CrO4 was added to the
PDS system as an electron-trapping agent. As shown in Figure 3a, obvious inhibition was
observed, proving the occurrence of electron transfer. When both PDS and GL attached
to the B-Fe/biochar, a ternary system with B-Fe/ biochar as the electronic medium was
formed, and electron was transferred from adsorbed GL (electron donor) to metastable
B-Fe/biochar-PDS complexes (electron receptor). Based on the above discussion, it was
deduced that ·OH and direct electron transfer were the main reason for GL degradation in
the B-Fe/biochar/PDS system.

The mediated electron transfer mechanism was further confirmed by electrochemical
evaluation to clarify the electron transfer in the ternary system. As illustrated in linear
sweep voltammetry (LSV) curves (Figure 3g), compared with that when only B-Fe/biochar
existed, the current increased after adding PDS, which could be attributed to the interaction
of PDS with the catalyst and the formation of metastable reaction complexes on the surface.
The current also increased with the addition of GL, verifying the establishment of the
electron transfer pathway based on the ternary system. A similar conclusion could be drawn
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from the i-t plot with the sequential addition of PDS and GL, as shown in Figure 3h, where
a significant current jump occurred after the addition of GL. Simultaneously, the property
of carbonaceous material also played a key role in the non-radical degradation route, since
the current change in pristine biochar was much lower than that of B-Fe/biochar. Moreover,
it was concluded from the electrochemical impedance spectrum that the impedance of
the carbon-based catalyst was an important parameter that affected the electron transfer.
Figure 3i presented the Nyquist plots and the corresponding fitted curves as well as the
equivalent circuit model, and it was shown that the semicircle diameter of B-Fe/biochar
was smaller than that of Fe/biochar and pristine biochar, indicating that the incorporation
of Fe and B effectively reduced the resistance of the biochar, which was beneficial to the
fast electron transfer. Thus, B-Fe/biochar had the ability to serve as an electron mediator to
induce the electron transfer pathway. The above analysis further confirmed the important
role of direct electron transfer in the non-radical pathway during the degradation of GL by
the B-Fe/biochar/PDS system.
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Figure 3. (a,b) Inhibition of quenching agents and K2CrO4 on GL degradation; (c) PDS decomposition
under various quenching agents in the B-Fe/biochar/PDS system; (d–f) EPR spectra obtained by
using DMPO and TEMP as spin-trapping agents; (g) linear sweep voltammetry (LSV) curves under
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Additionally, the high-resolution XPS spectra of B-Fe/biochar after activation were also
investigated to confirm the activation mechanism. The results are illustrated in Figure 4a–c.
It could be seen from Figure 4a that after the activation reaction, the proportion of C=O
increased significantly, while the oxygen content also increased significantly. This phe-
nomenon could be attributed to the following two reasons [66]. (1) As a bridge of electron
transfer, surface functional groups were oxidized by donating electrons to activate PDS.
(2) The high oxidation environment formed by the large number of free radicals gener-
ated during the reaction process led to the oxidation of the surface of B-Fe/biochar. The
high-resolution XPS spectrum of Fe 2p for used B-Fe/biochar is presented in Figure 4b;
compared with the spectrum of fresh B-Fe/biochar (Figure 1h), the amounts of both O
and Fe2+ increased while Fe0 decreased after the reaction, which might be attributable to
the increase in iron oxide. Figure 4c showed the high-resolution XPS spectrum of B 1s for
used B-Fe/biochar. It was reported that -BCO2 as the main activation site could increase
the adsorption energy (Eads) between PDS and catalyst and thus enhance the oxidation
capacity of the adsorbed PDS [67,68]. From the change in -BCO2 content in the catalyst after
the reaction (from 94% to 78%) (Figure 4c), it could be deduced that -BCO2 was also the
catalytic site for the activation of PDS. B doping could promote the interaction between PDS
and the catalyst to form metastable surface complexes (Equation (S22)) [69]. Additionally,
boron-doped catalysts had lower electrochemical impedance and better electron transfer
ability. These metastable complexes were activated in the presence of the contaminant (GL),
which acquired electrons from the contaminant, causing the degradation of pollutants and
the decomposition of PDS to sulfate ions.

Based on the above results, a possible mechanism of PDS activation by B-Fe/biochar
was proposed (Figure 4d). In the free radical pathway, PDS was firstly adsorbed onto the
catalyst surface to react with Fe0 due to the large specific surface area of B-Fe/biochar.
Then, the Fe0 could react with O2 (Equations (S23) and (S24)) to maintain the continuous
release of Fe2+, and the resulting Fe2+ further activated PDS to produce SO4

−· and ·OH
(Equations (S25) and (S26)). Meanwhile, Fe0 reduced part of Fe3+ to Fe2+ (Equation (S27)),
which ensured the concentration of Fe2+ in the reaction system and avoided the accumu-
lation of Fe3+. The XPS spectra of Fe 2p (Figures 1h and 4b) showed that the proportion
of Fe0 decreased from 23.92% to 13.26% after the reaction, while the proportion of Fe2+

(from 30.37% to 40.07%) and Fe3+ (from 8.18% to 10.33%) increased. These results further
verified that α-Fe0 formed during the catalyst preparation dominated the activation process
of PDS in the free radical pathway. In the non-radical pathway, electron-rich regions on
B-Fe/biochar (sp2-carbon with defective edges and ketone groups) affected the electronic
configuration of PDS (especially the O–O bond in S2O8

2−), activating the hydrolysis of
PDS, and the resulting HO2

− would further react with S2O8
2− to form SO4

−· and ·O2
−

(Equations (S28) and (S29)) [70]. Fe2+ could also react with O2 to form ·O2
−. Under acidic

conditions, ·O2
− complexes could form 1O2 (Equations (S30) and (S31)) [40]. The direct

electron transfer in the non-radical pathway also contributed to the degradation of GL. In
general, both free radicals (SO4

−·, ·OH and ·O2
−) and non-free radicals (1O2 and direct

electron transfer) were involved in the degradation of GL, in which ·OH and direct electron
transfer played a dominant role.
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2.4. Stability and Reusability of B-Fe/Biochar Catalyst

The stability and reusability of B-Fe/biochar-activated PDS for the degradation of
GL were evaluated. As shown in Figure 5a, the degradation performance of B-Fe/biochar
stored in air for 60 days still maintained good catalytic performance, while the removal
efficiency of GL decreased from 98.30% to 69.93% after three cycles of reuse (Figure 5a).
The GL degradation rate decreased with the increase in reuse cycles mainly due
to the following two reasons: (1) the inevitable consumption of α-Fe0 during the reac-
tion; and (2) the decrease in contact area between B-Fe/biochar and PDS caused by the
coverage of GL and degradation products on the biochar [71]. This coincided with the
N2 adsorption–desorption curves of B-Fe/biochar before and after the catalytic reaction
(Figure 5b), and the specific surface area of B-Fe/biochar decreased after the reaction.
Further functionalization of the used biochar might improve its performance, but the
specific functionalization treatments need to be further explored. In addition, the leaching
of Fe during the catalytic reaction was examined. Compared to Fe/biochar (iron leaching
2.21 mg/L), B-Fe/biochar showed much lower iron leaching in the reaction (1.05 mg/L),
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exhibiting satisfactory long-term stability and reusability. The reason might be ascribed to
the smaller pore size of B-Fe/biochar, in which iron particles were not easy to leach.
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of fresh and used B-Fe/biochar. Oxidation conditions: [Catalyst] = 200 mg/L, [PDS]0 = 20 mM/L,
[GL]0 = 50 mg/L, pH ≈ 5.5, T = 25 ◦C.

3. Material and Methods
3.1. Materials and Chemicals

Masson pine bark was obtained from the forest farm of Zhouning County,
Ningde city, Fujian province. The Masson pine bark was washed, dried, pulverized into
fine biomass powder and passed through a 100-mesh screen for use. Guaiacol (98.0%), boric
acid (99.0%), potassium ferrate (K2FeO4, 99.0%), and sodium persulfate (Na2S2O8, 99.0%)
were purchased from Aladdin Industrial Co., Ltd. (Shanghai, China). Methanol (chromato-
graphically pure) was obtained from Merck Chemical Co., Ltd. (Shanghai, China). Sodium
chloride (NaCl, 99.0%), sodium nitrate (NaNO3, 99.0%), sodium bicarbonate (NaHCO3,
99.0%), sodium dihydrogen phosphate (NaH2PO4, 99.0%), potassium iodide (KI, 99.0%),
tert-butanol (TBA, 99.0%), furfuryl alcohol (FFA, 98%), p-benzoquinone (p-BQ, 99.9%),
and potassium chromate (K2CrO4, 99.5%) were purchased from Sinopharm Chemical
Reagent Co., Ltd. (Shanghai, China). 5,5-dimethyl-1-pyrroline n-oxide (DMPO, 99.0%) and
2,2,6,6-tetramethyl-1-piperidinyloxy (TEMP, 99.0%) were obtained from Macklin Biochem-
ical Co., Ltd. (Shanghai, China). Deionized water (18.2 MΩ cm−1) was used during
all experiments.

3.2. Synthesis of Boron and Iron Co-Doped Biochar Catalyst (B-Fe/Biochar)

Masson pine bark (5 g, 100 mesh) and boric acid (5 g) were mixed in 50 mL ethanol and
stirred at 55 ◦C for 4 h to evaporate the solvents. After grinding, the dried powder was then
transferred into a tube furnace and pyrolyzed at 800 ◦C under N2 for 2 h with a heating
rate of 5 ◦C min−1. The obtained product (1 g) was added to 50 mL of K2FeO4 solution
(0.05 M) and then magnetically stirred at room temperature for 12 h. After reaction,
the product was filtered, dried, and activated by calcining at 900 ◦C for 1 h under N2
atmosphere. The resulting product was designated as B-Fe/biochar. For comparison, the
pristine biochar was prepared via the same procedure without boric acid and K2FeO4, and
Fe/biochar was obtained without boric acid.

3.3. Characterization Methods

The morphology of the catalyst was observed by a scanning electron microscope (SEM,
Thermo Scientific Verios G4, Thermo Fisher Scientific, Waltham, MA, USA). The micro-
scopic image of biochar was verified by an energy spectrometer (EDS). The nitrogen
adsorption–desorption isotherm was measured on an automatic surface analyzer
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(Micromeritics ASAP 2020 HD88, Micromeritics, Norcross, GA, USA), and the multi-
point Brunauer–Emmett–Teller (BET) method and Barrett–Joyner–Halenda (BJH) model
were used to calculate the specific surface area and pore size of the catalyst. The mag-
netic hysteresis curve (M-H curve) was analyzed on a vibrating sample magnetome-
ter (VSM, Lakeshore 7404, Lake Shore Cryotronics, Westerville, OH, USA). The crys-
talline structures were analyzed by X-ray diffraction (XRD) patterns, which were mea-
sured on an X-ray diffractometer (Bruker D8 Advance, Bruker Scientific Technology Co.,
Saarbrucken, Germany). Raman spectra were investigated on a Renishaw invia Raman mi-
croscope (Renishaw InVia reflex, Renishaw Company Ltd, Gloucestershire, UK) with
laser excitation at 532 nm. The chemical states of elements were investigated by an
X-ray photoelectron spectrometer (XPS, Thermo Scientific K-Alpha, Thermo Fisher Scien-
tific, Waltham, MA, USA). The zeta potential of the catalyst under different pH solutions
was determined with a NanoBrook Omni apparatus (NanoBrook Omni, Brookhaven In-
struments Corporation, Holtsville, NY, USA). Electron paramagnetic resonance (EPR)
spectra were recorded using a Bruker EMXplus-6/1 (Bruker Scientific Technology Co.,
Saarbrucken, Germany). The electrocatalytic performance of catalysts was tested using
a CHI 760E (Shanghai, China). The Fe ion concentration in the reaction solution was
determined by inductively coupled plasma mass spectrometry (ICP-MS, Thermo Scientific
XSeries 2, Thermo Fisher Scientific, Waltham, MA, USA).

3.4. Degradation of GL

The degradation of GL was conducted in a 100 mL triangular flask. First, 20 mg
of catalysts and PDS (2 mM) were added into 100 mL of GL solution (50 mg/L). The
reaction was then carried out under the speed of 180 rpm at 25 ◦C The pH of the reaction
mixture was approximately 5.5 after PDS addition without adding any buffer. At a certain
time interval, 1 mL aliquots of reaction solution were withdrawn and filtered through
a 0.22 µm millipore film and then injected into a vial containing 1 mL methanol as a
quencher. For the stability test, the catalyst was collected, washed with deionized water
and ethanol three times to remove adsorptive pollutants, and then dried at 80 ◦C for the next
run. The GL concentration was analyzed using high-performance liquid chromatography
(methanol/water = 40/60, volume ratio) at the wavelength of 274 nm. The concentration of
PDS during the reaction was determined using the spectrophotometry method proposed
by Liang et al. [72]. Briefly, 100 µL of sample was added into a 10 mL colorimetric tube,
which was followed by the successive addition of 4.9 mL solution, which consisted of
0.415 g KI and 0.02 g NaHCO3. After reaction for 20 min, the spectrophotometry was
performed at a detection wavelength of 352 nm. All the experiments were conducted
in triplicate.

GL removal efficiency was determined by Equation (1).

Removal efficiency (%) =
C0 − Ct

C0
× 100% (1)

where Ct is the concentration of GL at time t, mg/L; and C0 is the initial concentration of
GL, mg/L.

4. Conclusions

In summary, we successfully fabricated a B and Fe-doped biochar catalyst (B-Fe/biochar)
from Masson pine bark. Compared with pristine biochar or single Fe-doped biochar
(Fe/biochar), the catalytic performance of B-Fe/biochar in PDS activation for GL degrada-
tion was found to be better, and the degradation rate of GL was influenced by B-Fe/biochar
and PDS addition, the solution’s pH value, and reaction temperature. The system could
maintain good degradation performance in a wider pH range of 3–9, but it was not effective
at a higher pH value. The ·OH was confirmed as the main reactive radical, and the direct
electron transfer was found to be primarily responsible for the oxidative degradation of
GL. The α-Fe0-mediated radical pathway and -BCO2-mediated direct electron transfer
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pathway together dominated the efficient degradation of GL during PDS activation. After
four reuse times, the degradation rate of GL was still up to 69.93% within 30 min, showing
great potential application of metal and non-metal co-doped biochar in the treatment of
lignin-containing wastewater.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/molecules28227591/s1, Figure S1: Magnetic hysteresis of B-Fe/biochar;
Table S1: BET surface area, pore distribution and total pore volume of catalysts; Table S2: Comparison
of activation energy of different catalysts for degrading organic.
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