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Abstract: α-mangostin (AM) is a promising natural anticancer agent that can be used in cancer
research. However, its effectiveness can be limited by poor solubility and bioavailability. To address
this issue, chitosan-based nanoparticles (CSNPs) have been investigated as a potential delivery
system to enhance the cytotoxicity to cancer cells and improve selectivity against normal cells. In this
study, we developed folate-conjugated chitosan nanoparticles (F-CS-NPs) using a carbodiimide-based
conjugation method to attach folate to chitosan (CS), which have different molecular weights. The
NPs were crosslinked using tripolyphosphate (TPP) via ionic gelation. To characterize the F-CS-
NPs, we utilized various analytical techniques, including transmission electron microscopy (TEM)
to evaluate the particle size and morphology, Fourier-transform infrared spectroscopy (FTIR) to
confirm the presence of functional groups, and ultraviolet-visible spectroscopy (UV-Vis) to measure
the absorption spectrum and confirm the presence of folate. The particle size of AM-F-CS-NPs
ranged from 180 nm to 250 nm, with many having favorable charges ranging from +40.33 ± 3.4 to
10.69 ± 1.3 mV. All NPs exhibited the same spherical morphology. The use of F-CS-NPs increased
drug release, followed by a sustained release pattern. We evaluated the cytotoxicity of AM, AM-
F-CS-HMW, and AM-F-CS-LMW NPs against MCF-7 cells and found IC50 values of 8.47 ± 0.49,
5.3 ± 0.01, and 4.70 ± 0.11 µg/mL, respectively. These results confirm the improved cytotoxicity
of AM in MCF-7 cells when delivered via F-CS-NPs. Overall, our in vitro study demonstrated that
the properties of F-CS-NPs greatly influence the cytotoxicity of AM in MCF-7 breast cancer cells
(significantly different (p < 0.05)). The use of F-CS-NPs as a drug-delivery system for AM may have
the potential to develop novel therapies for breast cancer.

Keywords: chitosan; conjugates; drug release; active targeting; nanocarrier

1. Introduction

Breast cancer is a significant cause of mortality among women worldwide [1,2], and
current treatment methods, such as chemotherapy, surgery, radiation, and hormonal ther-
apy, have limitations, including lack of effectiveness, damage to healthy organs, and
development of drug resistance in cancer cells [3,4]. The tumor microenvironment is a
critical factor in cancer therapy. It allows for more significant drug accumulation at the
tumor site and targeted and regulated drug release, while maintaining selectivity to normal
cells [5]. Mangosteen (Garcinia mangostana Linn.) is well known as the queen of fruits, and it
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grows in the Southeast Asian region. α-mangostin (AM), the main xanthone derivative con-
tained in mangosteen pericarp, has many pharmacological activities, such as antioxidant,
antiproliferation, anti-inflammatory, and anticancer [6,7]. AM has demonstrated poten-
tial therapeutic benefits for many types of cancer cells, with antitumor effects inhibiting
key phases of cancer development [8–11], increasing cell cycle arrest and death in breast
cancer cells [10,11], and growing selectivity [12]. However, AM’s hydrophobic nature,
poor water solubility, limited bioavailability [6,13–15], and accumulation in target organs
pose significant challenges [16,17]. Folate-conjugated chitosan nanoparticles (F-CS-NPs)
have been developed to enhance AM cytotoxicity and to selectively target MCF-7 breast
cancer cells. Using F-CS-NPs for targeted drug delivery may help to overcome the limi-
tations of conventional treatment methods and increase the effectiveness of AM in breast
cancer therapy.

Nanomicelle formation and polymeric nanoparticle encapsulation have been proven
to enhance the solubility of AM and facilitate its targeted delivery to specific organs [18].
Various studies, conducted both in vitro and in vivo, have demonstrated the enhanced cyto-
toxicity, antiproliferative activity, and induction of apoptosis when AM is delivered through
these nanoparticle systems, such as transferrin-conjugated lipid–polymer hybrid NPs [19],
AM-encapsulated poly(lactic-co-glycolic) acid (PLGA) NPs [20], AM-CS/sodium alginate
NPs [21], AM-CS/carrageenan NPs [22] and hyaluronic acid-coated CS-NPs [23]. Addition-
ally, NPs constructed with crosslinked CS and glyoxal have demonstrated controlled-release
properties, making them a promising drug-delivery system for hydrophobic compounds
such as AM [24].

Modified chitosan nanoparticles (CSNPs) have emerged as a promising drug-delivery
system for cancer therapy, addressing critical challenges in bioavailability, stability, cellular
uptake, protein adsorption, and drug distribution [25–27]. Recent studies have demon-
strated that depolymerized CS can increase the cytotoxicity of AM in MCF-7 cells. The
properties of CSNPs are influenced by the inherent properties of the CS polymer [28,29].
CS’s unique chemical and physical characteristics determine the degree of crystallinity,
surface smoothness, porosity, surface charge, size, and shape. The increased deacetylation
degree of CS enhances its hydrophilicity, making it more suitable for formulating drug
carriers. As a result, these properties directly affect the drug-loading capacity, release be-
havior, biocompatibility, targeted delivery, cellular uptake, and overall therapeutic efficacy
of CSNPs [30,31].

Folate conjugation is vital in actively targeting cancer cells, as many tumors overex-
press folate receptors [32]. This targeted approach enhances drug uptake by cancer cells and
reduces damage to healthy tissues, minimizing the side effects associated with conventional
chemotherapy [2,4,33]. F-CS-NPs, obtained by attaching folate conjugates to CS using a
carbodiimide reaction, have demonstrated increased cytotoxicity against breast cancer cells,
highlighting their potential for breast cancer therapy [34]. CS-based drug carriers show
great potential in cancer treatment when modified and targeted with folate.

This research paper aims to further this study by functionalizing CSNPs with folate for
targeted delivery of AM using CS, which have different molecular weights. Adding folate
will provide a new vector for cancer cells, serving as an active target for drug delivery and
enhancing the cytotoxicity of AM in a multimodal manner (Scheme 1). However, further
studies are needed to investigate the potential enhancement of the cytotoxicity of AM
using F-CS-NPs, based on release studies. This work represents an essential step toward
developing nanosystems for treating breast cancer by combining CS, derivatized CS, and
natural anticancer drugs.
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Scheme 1. The idea of AM-F-CS NPs as an active, targeted drug.

2. Results and Discussion
2.1. Characterization of F-CS

The interaction between CS and folate was investigated using FTIR spectroscopy. The
measurements were obtained at 4000–400 cm−1 under vacuum pressure of 60 kN within
15 min.

F-CS, as depicted in Figure 1, demonstrates comparable IR spectra to CS due to
their structural similarities. CS and F-CS have similar chemical compositions and func-
tional groups, contributing to the overlapping peaks observed in their infrared spectra.
Specifically, they exhibit peaks within the 3300- to 3500-cm−1 range, corresponding to the
stretching vibrations of hydroxyl (OH) groups in both CS and F-CS. Additionally, both
materials show peaks at approximately 1642 cm−1, representing the stretching vibrations
of N-H bonds, further highlighting their shared characteristics. These similarities in the
IR spectra suggest that F-CS retains the essential features of CS while undergoing specific
modifications or treatments [35]. The presence of an amide bond in F-CS can be identified
by the C=O stretching band, which typically appears in the 1650 and 750 cm−1 ranges. This
band is usually strong and sharp, characteristic of all amide compounds. Therefore, the
appearance of the characteristic C=O stretching band in the IR spectra of F-CS confirms the
presence of an amide bond between CS and folate. While CS and F-CS should have similar
IR spectra, modifying CS with folate may result in a slight shift or change in the intensity
of specific peaks, particularly in the regions where the amide bond is present (1650 and
750 cm−1). The observed shift in peak intensity can confirm the successful conjugation of
folate in CS, ultimately leading to the formation of F-CS.
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Peak absorption spectroscopy is a valuable technique for identifying specific sub-
stances in a sample and quantifying their concentrations. The peak of the absorption
spectrum corresponds to the wavelength at which the substance absorbs light most strongly.
One can determine the presence of specific compounds by comparing the absorption spec-
trum of an unknown sample to known absorption spectra of various substances. In this
case, peak absorption at 282 nm could indicate the presence of substances such as amino
acids, which typically exhibit a peak absorption at around 280 nm due to aromatic amino
acids that absorb light in that region. In the case of F-CS, two absorption bands appeared in
the spectral ranges of 200–300 and 300–400 nm, which were assigned to the π-π* and n-π*
transitions, respectively (Table 1) [36]. Further analysis using UV-Vis and FTIR spectroscopy
confirmed the attachment of folate to CS, as indicated by the characteristic absorption bands
of the amide bond in the IR spectra [23]. However, F-CS yield may be reduced due to the
sequential processes required in its manufacture, such as dialysis purification. During
dialysis, unbound folate and soluble EDC hydrochloride can diffuse outside the dialysis
membrane and be removed from the F-CS solution.

Table 1. UV absorption spectroscopy of CS, F, and F-CS.

Compound Max Absorbance (λ) Chromophore Groups

CS 218 nm N-acetyl glucosamine and glucosamine

F 287 nm π→π* of the aromatic ring

F-CS 218 nm and 282 nm
The n→π* and π→π* transitions are related

to the formation of amide bonds and the
transition of C=C bonds, respectively.

2.2. Preparation of AM-F-CS-NPs

Folate-functionalized AM-F-CS-NPs with uniform shapes were successfully synthe-
sized using the ionic gelation process. The SEM and TEM data showed that the NPs
had a homogenous sub-200 nm spherical shape. Na TPP (Na5P3O10) was dissolved in
water to carry hydroxyl and phosphoric ions in the ionic gelation process. This process
formed an ionic complex via electrostatic interactions between the amine groups of CS
and the trivalent TPP anion [37,38] due to the polycationic nature of CS in acidic solutions
(pH 4.0–6.5). Cross-linking enhanced several essential characteristics of the CSNPs, in-
cluding their stability, mechanical strength, swelling capacity, solubility, and drug release
capabilities [39–46].

2.3. Characterization of AM-F-CS-NPs.
2.3.1. Physical and Morphology Nanoparticles

Nanoparticle design plays a crucial role in the efficient delivery of drugs due to
various biophysical limitations [47]. The AM-F-CS-NP demonstrated the desired diameter,
encapsulation efficiency, and spherical shape. Using 20-kDa CS reduced the NP size from
250.9 ± 23 to 180.5 ± 12 nm (Table 2). This smaller size is advantageous, as it favors
renal filtration, which has a margin of 3.5 nm, thereby protecting the drug from rapid
elimination [48]. Additionally, the smaller size allows for greater penetration into solid
tumors with larger vascular cavities (200 to 780 nm) through which the drug-containing
NPs can enter [49].

Table 2. Loading efficiency and loading capacity of the NPs: (A) AM-F-CS-HMW-NPs; (B) AM-F-CS-
LMW-NPs.

Formula Size (nm) ZP (mV) Shape Loading
Efficiency (%)

Loading
Capacity (%) PDI

F1 250.9 ± 23 +40.33 ± 3.4 Spherical 88.34 ± 1.30 5.93 ± 0.43 0.513 ± 0.05

F2 180.5 ± 12 +10.69 ± 1.3 Spherical 80.35 ± 1.40 5.43 ± 0.33 0.429 ± 0.03
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The difference in nanoparticle sizes can be attributed to the type of molecular weight of
CS used in the formulation. High molecular weight CS usually contains more amino groups
along its long chain, which can result in larger particle sizes when cross-linked to form
CSNPs. As a result, more available amino groups allow for more cross-link sites, resulting
in larger aggregates or nanoparticles. Second, the molecular weight also represents the
length of the CS chain, which can affect the particle-formation process and the resulting
nanoparticle structure. Longer CS chains may have a more significant steric effect, with
the size and spatial arrangement of the polymer chains affecting the accessibility of the
crosslinking sites. This process can lead to more collapsed or denser particles in larger
locations due to the limited availability of reactive groups for crosslinking.

Moreover, the ratios of CS, folate, and Na TPP concentrations can influence the sur-
face charge of NPs. The zeta potential of the NPs increased from 10.69 ± 1.3 mV to
40.33 ± 3.4 mV, indicating an increase in their stability. In general, boosting the zeta
potential of NPs increases their surface charge, leading to strong repulsive interactions
and more excellent stability and uniform size [50]. This improved stability is crucial for
effective drug delivery and targeted therapies, making CSNPs a promising strategy in
pharmaceutical applications.

In this study, we observed that decreasing the molecular weight of CS significantly
reduced the zeta potential of the NPs from 40.33 ± 3.4 mV to 10.69 ± 1.3 mV. CSNPs
typically have a positive surface charge due to the protonation of amine groups in acidic
pH conditions. When high-molecular weight CS is employed, it can increase the number
of positively charged NH3

+ groups on the surface, thereby increasing the surface charge.
However, for pH levels other than 4 and 6, neither the type of CS nor its molecular weight
significantly impacted the surface charge of the NPs [51,52].

Most studies have found that CSNPs exhibit a spherical morphology (Figure 2) [53,54].
The molecular weight of CS does not appear to affect the spherical shape of the parti-
cles [55]. Instead, the complexation between oppositely charged species shapes CS into
spherical particles [56]. Cancer cells use NPs based on their size, shape, and surface
functionalization [57,58].
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The smoothness of nanoparticle surfaces (Figure 3) significantly impacts drug charac-
teristics, particularly in terms of their stability, bioavailability, and targeting ability [59,60].
A smoother surface can enhance the stability of nanoparticles by reducing defects or ir-
regularities that might lead to particle aggregation or degradation. Moreover, a smooth
surface facilitates improved drug bioavailability, as it enhances absorption rates and lowers
the likelihood of clearance by the immune system. Additionally, smooth nanoparticles are
more effective in targeting specific cells or tissues by minimizing non-specific interactions
with other cells or molecules [61]. Achieving a smooth nanoparticle surface is crucial for
optimizing drug delivery and enhancing therapeutic outcomes [62].
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Figure 3. SEM of CSNP surfaces: (A) F1 (AM-F-CS-HMW); (B) F2 (AM-F-CS-LMW).

Several factors can influence the smoothness of nanoparticle surfaces, including the
synthesis method, surface modification, size and shape, agglomeration, environmental
conditions, quality control, surface energy, and composition of the NPs. For instance, in the
case of CSNPs, hydrophobicity can affect surface smoothness. Hydrophobic drugs may
interact with the hydrophobic regions of CS molecules, leading to aggregate formation
and rough surfaces. Conversely, hydrophilic drugs may interact with the hydrophilic
regions of CS molecules, resulting in more homogeneous drug distribution and a smoother
surface [63]. Furthermore, the synthesis method and surface modification used in prepar-
ing CSNPs can also influence the smoothness of the particles. For instance, electrostatic
interaction-based methods may result in a more irregular surface due to collision and
aggregation. At the same time, ionic gelation may lead to smoother surfaces through
cross-linking of the CS [64,65].

Recent studies have shown that the size reduction effect of folate conjugation to CSNPs
may depend on various factors, such as the degree of deacetylation of CS and the folate-to-
CS ratio [66,67]. A higher degree of deacetylation of CS may result in a more significant
reduction in nanoparticle size upon folate conjugation. Additionally, the folate-to-CS ratio
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can affect the size reduction effect, with a higher folate-to-CS ratio leading to a more
substantial decrease in size.

Moreover, the smoothness of CSNPs can affect their drug release, stability, and tar-
geting ability and impact cellular uptake and toxicity. It has been reported that rough
surfaces of NPs can induce more cellular uptake and cause higher toxicity due to increased
interaction with cell membranes. Therefore, maintaining a smooth surface can reduce
toxicity and improve biocompatibility.

In addition, the surface charge of CSNPs can also affect their biological properties.
A recent study showed that positively charged CSNPs can enhance cellular uptake and
improve therapeutic efficacy compared to negatively charged NPs. However, positively
charged NPs may also lead to increased toxicity, which should be carefully evaluated.

Overall, the conjugation of folate to CSNPs can significantly impact their size and
biological properties, and these factors should be carefully considered in the design and
development of targeted drug-delivery systems [66,68,69].

2.3.2. FTIR Analysis

Using FTIR to assess AM–CS interactions, the ability of the ionic gelation mechanism
to form AM–CS–NPs was evaluated (Figure 4).
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Figure 4. FTIR spectra of AM–F-CS NPs.

Figure 4 displays the FTIR spectrum of CSNPs, where the broad peak in the 3500-
to 3300-cm−1 region corresponds to hydrogen-bonded O-H stretching vibrations. The
primary amine and amide form II N-H peaks overlap, the C-O-C asymmetric stretch peak
appears at around 1150 cm−1, and the C-N stretch peak of amine type I is observed at
1317 cm−1. Notably, in the NPs, the N-H bending vibration of amine I at 1600 cm−1 and the
carbonyl stretch of amide II at 1650 cm−1 shifted to 1540 cm−1 and 1630 cm−1, respectively,
indicating successful nanoparticle formation and functionalization [70,71].

Additionally, the FTIR spectrum of low molecular weight CS (CS-LMW) matched that
of the original CS. No band was detected between 1650 and 1900 cm−1, indicating the
absence of oxidative groups in CS-LMW [72,73].

2.4. In Vitro Drug Release

The impact of F-modification on AM release from CSNPs was investigated in vitro,
and it was found that there was no significant effect. As shown in Figure 3, the release of
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the drug is dependent on both pH and time. pH significantly impacts AM-F-CSNP release,
as improved protonation of CS amino groups can result in a loose nanoparticle structure
and increased AM solubility, which may be responsible for the accelerated drug release
at a lower pH. This pH-dependent hydrolysis is advantageous for delivering anticancer
medications in the tumor microenvironment, which has a higher acidic pH (6.0–7.0) than
normal plasma (7.4) [49].

The in vitro release profile of AM-F-CS-NPs was conducted over 8 h, and the drugs
exhibited sustained release behavior, with a gradual increase in total drug release up to 20 h.
The formulation displayed continuous release activity. The initial burst release observed
can be attributed to the small NPs. As the particle diameter decreased, so did the distance
to the drug’s surface, resulting in sustained drug release [34].

The release data from this study showed that the pH and molecular weight of CS
significantly influenced the release of AM from AM-F-NPs (Figure 5). At a low pH, the
surface charge of the CSNP becomes positive, reducing electrostatic interactions and facili-
tating drug release. This pH responsiveness is beneficial under physiological conditions
(pH 7.4), in which most of the drug remains within the nanoparticles, causing prolonged
circulation and reducing side effects on healthy tissue. However, once drug-containing
CSNPs are endocytosed by tumor cells, the lower pH in the tumor microenvironment
promotes rapid drug release, potentially increasing the effectiveness of cancer therapy.
This pH-dependent drug release mechanism in AM-F-NPs offers a promising approach for
targeted and controlled drug delivery in cancer treatment. High molecular CS has a larger
number of amino groups, and the steric effect can result in the formation of CSNPs, which
are larger and potentially more compact than those formed using CS with a lower molecular
weight. Additionally, the particle size of the NPs can impact drug dissolution following the
Noyes–Whitney equation. The Noyes–Whitney equation describes the dissolution rate of a
solid drug particle and states that the dissolution rate is directly proportional to the surface
area of the drug particles [74,75].
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It is important to note that drug release and cytotoxicity often have a close relationship.
Drug release refers to the process by which drugs are released from the delivery system
and become available to the body for therapeutic effects. The rate and duration of drug
release can significantly impact the efficacy and safety of a drug. For example, a slow
release rate may result in a lower peak drug concentration, reducing toxicity and leading to
a lower overall therapeutic effect. Conversely, a drug-delivery system that releases the drug
quickly may lead to a higher peak drug concentration and, therefore, higher cytotoxicity.
However, a drug-delivery system that releases the drug slowly may lead to a lower peak
drug concentration and, hence, lower cytotoxicity and overall therapeutic effect.

Several variables can affect drug release from CSNPs, including the polymer molecular
weight, deacetylation, nanoparticle size, porosity, and shape. The ability of drug molecules
to interact electrostatically and be incorporated into CS structures depends on their length
and conformation [76]. Thus, optimizing these variables can significantly impact the
efficacy and safety of drug-delivery systems based on CSNPs.

To understand the kinetic release of AMG from CSNPs within the first 24 h, we
conducted an analysis using various mathematical models: zero-order, first-order, Higuchi,
and Korsmeyer-Peppas [77]. The correlation coefficients (r) obtained from the CSNP data
(shown in Tables 3 and 4) indicate that there are two types of AMG release from F-CS-NPs:

• At a pH of 5, the release model follows the Higuchi model, suggesting a matrix-type
release mechanism based on Fickian diffusion;

• However, at pH values of 6 and 7, the release follows the Korsmeyer–Peppas model,
indicating a non-Fickian diffusion process.

Table 3. Higuchi regression parameter of AM from CSNPs in PBS in 24 h.

Parameter
pH 5.0 pH 6.0 pH 7.4

CS–LMW CS–HMW CS–LMW CS–HMW CS–LMW CS–HMW

Slope (%h−0.5) 28.23 ± 1.48 22.43 ± 2.21 26.77 ± 1.31 19.51 ± 0.42 20.02 ± 2.08 19.10 ± 0.75

Correlation coefficient (r) 0.95 ± 0.02 0.93 ± 0.02 0.92 ± 0.03 0.91 ± 0.01 0.79 ± 0.03 ±0.03

Table 4. Korsmeyer–Peppas regression parameter of AM from CSNPs in PBS in 24 h.

Parameter
pH 5.0 pH 6.0 pH 7.4

CS–LMW CS–HMW CS–LMW CS–HMW CS–LMW CS–HMW

Slope (%h−0.5) 0.37 ± 0.01 0.361 ± 0.02 0.58 ± 0.01 0.46 ± 0.03 0.51 ± 0.03 0.74 ± 0.03

Correlation coefficient (r) 0.94 ± 0.01 0.92 ± 0.01 0.94 ± 0.03 0.93 ± 0.02 0.92 ± 0.09 0.92 ± 0.01

The Korsmeyer–Peppas release model determines the value of “n” from a regression
equation, with obtained values typically ranging from 0.45 to 1. A value of “n” between
0.45 and 1.0 indicates non-Fickian release, suggesting contributions from mechanisms other
than Fickian diffusion. Non-Fickian conditions can lead to faster or slower drug release
rates than expected from Fickian diffusion alone. The drug-release mechanism can be
further confirmed using Korsmeyer–Peppas plots, with slope values less than 0.5 indicating
diffusion-controlled release [78], contributing to more sustained drug release [77]. Analyz-
ing drug release under different pH conditions helps in the design of drug-delivery systems
with optimized and controlled release profiles, ultimately enhancing therapeutic outcomes.

2.5. In Vitro Cytotoxicity

AM offers anticancer characteristics and is used to treat breast cancer. This research
customized CSNPs with folate and AM to target FR-positive cells. No cytotoxic effect
on cells was observed for CS-TPP (Figure 6). There was a significant difference between
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the cytotoxicity of AM and AM-F-CS-NPs. The IC50 of AM, AM-F-CS-HMW-NPs, and
AM-F-CS-LMW-NPs was 8.47 ± 0.49, 5.3 ± 0.01, and 4.70 ± 0.11 µg/mL, respectively.
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The MTT assay is commonly used to assess cytotoxicity. In the current study, the pres-
ence of free amine groups and reduced steric hindrance resulting from folate conjugation
may have facilitated the growth of CS-NPs. Folate has a strong affinity for folate receptors
(FRs) and is stable, cost-effective, and not very immunogenic. F-CS-NPs have been used
to encapsulate various anticancer drugs, including doxorubicin, 5-fluorouracil, ursolic
acid [79], and cytarabine [46], and as DNA-delivery vehicles [35]. Conjugating polymers
with targeting ligands, such as folate, has become a popular approach for targeted drug
delivery. The increased internalization of NPs through endocytosis is mostly due to the
specific interaction of folate receptors overexpressed in breast cancer cells [69]. In previous
studies, passive targeting based on physicochemical properties, such as size and surface
charge, has been easily adjustable by adjusting the component molecules or fabrication
method [57]. F-CS-AM-NPs may increase AM effectiveness in two ways (Figure 7).

Active targeting through folate-directed AM-F-CS-NPs enhances cytotoxicity, as the
MTT results indicate, with more significant inhibition of MCF-7 cancer cell growth and
survival compared to AM alone. This capability makes AM-F-CS-NPs a potential solution
for overcoming drug resistance in tumors by specifically targeting cells expressing folate
receptors, which are often overexpressed in cancer cells [35]. Additionally, AM-F-CS-
NPs exhibit high specificity in cellular uptake by folate receptor-expressing cells, offering
a suitable vehicle for addressing tumor drug resistance. Regarding passive targeting
mechanisms, the shape and size of nanoparticles play crucial roles [80,81]. Spherical
polymer NPs of a specific size facilitate membrane penetration and absorption, while
the size range of 100–200 nm displayed by AM-F-CS-NPs takes advantage of unique
tumor-associated phenomena, such as holes or gaps between endothelial cells in the tumor
vasculature and tissue, enabling targeted delivery to cancer cells [82].

Moreover, CS polycationic characteristics allow positively charged AM-F-CS-NPs to be
readily absorbed by cancer cells with negatively charged membranes through electrostatic
interactions. The zeta potential exceeding 25 mV ensures stable nanoparticle dispersion
and absorption by tumor cells. Furthermore, protonation of the CS amino group at a lower
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pH promotes drug release from the porous matrix of CSNPs, displaying pH adaptive
swelling and decreased solubility. These combined active and passive targeting features
make AM-F-CS-NPs a promising strategy for overcoming drug resistance in tumors and im-
proving cancer treatment efficacy [83]. Folate conjugation with CS in cancer drug-delivery
systems offers significant advantages, such as targeted drug delivery, biocompatibility,
and sustained release [32]. However, there are challenges related to synthesis complexity,
variable targeting efficiency, and potential immune responses [32,84,85]. Despite these dis-
advantages, researchers continue to explore and optimize CS-based drug-delivery systems
for improved cancer therapy outcomes [86,87].
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Molecular modelling and structural aspects are crucial in drug development and
delivery [88,89]. They use computer methods to study how drugs interact with target
molecules, predict drug behavior, and design delivery systems for better results (targeting,
controlled release, stability, biocompatibility, and pharmacokinetics) [90,91]. Using these
computational tools, we can discover and optimize new drugs faster, leading to more
effective and targeted treatments for different diseases.

3. Materials and Methods
3.1. Materials

CS (300 kDa) and sodium tripolyphosphate (Na TPP) were purchased from Interlab,
Ltd. (Jakarta, Indonesia). Folate (F) and 1-(3-dimethylaminoproply)-3-ethylcarbodiimide
hydrochloride (EDC) were purchased from Sigma-Aldrich (St. Louis, MO, USA). MCF-7
cancer cells were provided by the American Type Culture Collection (Manassas, VA, USA).

3.2. Preparation of F-CS

Low-molecular weight CS (20 kDa) was prepared as in previous studies [57]. F-CS
was synthesized using an aminoacylation process. For the attachment of FA to CS, a
0.2 mol ratio of FA to 1 mol CS was used. Initially, 200 mg of CS (1.24 mmol) was dis-
solved in 50 mL of 1 M acetic acid. A solution of 100 mg (0.23 mmol) of FA and 50 mg
(0.26 mmol) of EDC hydrochloride in 20 mL of DMSO was then added to the CS solution,
and the mixture was continuously stirred using a magnetic stirrer for 18 h in the dark.
After 18 h, the pH was adjusted to 9 using 1 M sodium hydroxide. CS-modified folic acid
was precipitated by centrifuging the mixture at 2500 rpm. F-CS was dissolved in 50 mL of
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water and dialyzed against PBS for three days, followed by four days against water. The
F-CS-containing solution was then freeze-dried and kept at 4 ◦C.

3.3. Characterization F-CS

Fourier-transform infrared spectrophotometer (Model IR Prestige-21, Kyoto, Japan)
and a UV-spectrophotometer (Shimadzu UV-1601, Kyoto, Japan) at 363 nm were used to
study the CS-chemical F’s structure [35].

3.4. Preparation AM-F-CS-NPs

The CSNPs were produced using a modified ionic gelation method, as described in
Table 5. Initially, 20 mg of AM was diluted with 20 mL of ethanol and mixed with a 0.1%
w/v (200 mg/200 mL) solution of F-CS in 1% acetic acid. This combination was stirred
overnight at a pH of 4.7–4.8. In a separate container, 40 mg of TPP was dissolved in 10 mL
of cold (25 ◦C), filtered (0.22 µm) distilled water [92]. Next, 10 mL of the TPP solution was
added to 200 mL of the AM-F-CS solution, using this process to prepare Formula (2) [93].

Table 5. AM polymeric nanoparticle formulation.

Formulation F1 F2

AM (mg) 20 20
F-CS-HMW (mg) 200
F-CS-LMW (mg) 200

Na TPP (mg) 40 40

3.5. Characterization of AM-F-CS NPs
3.5.1. Physical Properties and Morphology Nanoparticles

Zetasizer SZ 100 Horiba was used to analyze samples for particle size and zeta po-
tential (Kyoto, Japan) [72]. SEM (Thermo Scientific, Braunschweig, Germany) was used
to analyze the NP surface morphology (SEM). Nanoparticle powder was attached on a
stub. The powder was conductive with a narrow platinum beam for 30 s at 10 mA. The
10-kV picture is magnified. TEM (Thermo Scientific, Braunschweig, Germany) was utilized
to analyze the morphologies of all CSNPs. Before analysis, carbon-coated samples were
inspected under a microscope.

3.5.2. Fourier-Transform Infrared Analysis

F-CS was characterized by a Fourier-transform infrared (FTIR) spectrophotometer
(Model IR Prestige-21, Kyoto, Japan) at 4000–400 cm−1 [70].

3.6. Loading Efficiency (LE) and Loading Capacity (LC)

UV-VIS spectroscopy was used to measure the LE of AM and LC of CSNPs. Twenty
milligrams of sample NPs were diluted in ethyl acetate before centrifugation (3000 rpm,
10 min). The absorbance of filtrate at 245 nm was determined using UV-visible spectropho-
tometry to assess the amount of free AM [94]. The total quantity of AM was estimated,
and the silt was reconstituted in ethanol to ascertain the LC. The various concentrations
(2–20 g/mL) recorded at 245 nm were used to generate a standard curve.

The LE and LC of AM contained in NPs were determined using Equations (1) and (2),
respectively [95,96]:

Loading Efficiency (%) =
mass of AM present in nanoparticle (mg)

mass of AM used (mg)
× 100% (1)

Loading Capacity (%) =
mass of AM present in nanoparticle (mg)

the total mass of nanoparticle (mg)
× 100% (2)
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3.7. In Vitro Drug Release

To dialyze the AM-F-CS-NPs, 100 mg of the particles were suspended in 50 mL of
deionized water for injection and then placed inside a membrane dialysis bag (Ward
Science, West Henrietta, NY, USA, MW cut-off 14,000 Da) in PBS at pH values of 5.0, 6.0,
and 7.4 with constant stirring at 37 ◦C. Five milliliters of dialysis buffer was withdrawn
from the dialysis bag at regular intervals. Samples were taken periodically for 2, 4, 6, and
8 h, and the AM content was determined by UV-spectrophotometry analysis (Shimadzu
UV-1601, Kyoto, Japan) [97,98]. pH 5.0, pH 6.0, and pH 7.4 were used to test AM release
from NPs [99–101]. We obtained the release profile by plotting the total amount of AM
released from the matrix against time in PBS.

The in-vitro drug release data were applied to several kinetic models (zero order, first
order, Higuchi’s kinetics, and Korsmeyer’s equation) for formulation in various release
media (Table 6). The in-vitro drug release data were fitted to multiple kinetic models to
comprehend the drug release and rate-controlling mechanisms for the varied drug release.
Every release experiment was conducted in triplicate. For each kinetic model, the drug
release mechanism and linearization were calculated by finding the fit quality (R2) and the
number of residuals squared (SSR).

Table 6. Kinetic models and the equations of kinetic models.

No Kinetic Models The Equations of Kinetic Models

1 Zero Order C = Kot

2 First Order Log C = Log Co − kt/2.303

3 Higuchi’s kinetics Q = Kt1/2

4 Korsmeyer’s equation Mt/M∞ = Ktn

3.8. In Vitro Cytotoxicity

In a 96-well culture plate, 1 × 104 MCF-7 cells were seeded in 10,000 culture medium
and incubated for 24 h. Various quantities of F-CS-AM-NPs (1, 0.5, 0.25, 0.05, or 0.01 mg/mL)
were added to the cells and cultured for 48 h at 37 ◦C. Ten microliters of 0.5% MTT solution
was added to each well’s cells, which were then cultured for an additional 4 h before 100 µL
of DMSO was added. After dissolving formazan, the plate was agitated. Calculating the
metabolism of the tetrazolium substrate, MTT, allowed for the determination of cell growth.
The absorbance was at 570 nm. Cell viability declined as absorption dropped. IC50 was
computed using linear regression’s best-fit line [102]. Similarly, we measured pure AM,
CS-TPP, and F-CS-TPP as controls.

3.9. Statistical Analysis

The standard deviation of the mean was given, and all measurements were performed
in triplicate. The results were analyzed using the t-test or Student’s t-test. Results were
considered statistically significant if their p-value was less than or equal to 0.05.

4. Conclusions

CSNPs have been the subject of extensive research and are ideal delivery systems for
cytotoxic anticancer agents. Compared to conventional NPs, which rely on passivity for
tumor targeting and pure AM, the cytotoxicity of CNSPs is increased. F-CS-AM-NP is
a potential tool for targeting MCF-7 cells and offers a promising strategy for optimizing
therapeutic effectiveness. Further research is needed to clarify how various molecular
weights of CS in CSNPs act on other breast cancer cell lines and normal cell lines and
their feasibility for clinical application. This study still requires confirmation in vivo and
selectivity tests on normal cells.
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