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Abstract: We review the milestones in the century-long development of the theory of diffusion-
controlled reactions. Starting from the seminal work by von Smoluchowski, who recognized the
importance of diffusion in chemical reactions, we discuss perfect and imperfect surface reactions,
their microscopic origins, and the underlying mathematical framework. Single-molecule reaction
schemes, anomalous bulk diffusions, reversible binding/unbinding kinetics, and many other exten-
sions are presented. An alternative encounter-based approach to diffusion-controlled reactions is
introduced, with emphasis on its advantages and potential applications. Some open problems and
future perspectives are outlined.
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1. Introduction

The nineteenth century was marked by impressive advances in the theory of chemical
reactions, even though the existence of atoms and molecules, the (quantum) origins of
chemical bonds, and many other fundamental aspects remained to be clarified. Understand-
ing of stoichiometric relations between reactants and the development of a mathematical
theory of ordinary differential equations (ODEs) provided a powerful tool to describe the
kinetics of very sophisticated reactions. On a basic level, stoichiometric relations allow one
to calculate the right proportions of ingredients and the masses of produced reactants at
the end. Moreover, they determine the form of the ODEs that govern the time evolution
of concentrations of the reactants. For instance, upon disintegration of a substance A, its
concentration [A] obeys the simplest ODE,

d[A]

dt
= −kA[A], (1)

where kA is the disintegration rate; here, the change with time of the concentration on
the left-hand side is proportional to the remaining concentration on the right-hand side.
The solution of this equation, [A](t) = [A]0 exp(−kAt), shows an exponential decay of the
concentration from the initial level [A]0. The simplicity of this solution is caused by the
linearity of the equation. For instance, the dynamics of a bimolecular synthesis reaction,

A + B→ AB, (2)

is much more sophisticated as being described by nonlinear differential equations such as

d[A]

dt
= −kAB[A][B], (3)

in which the rate of decrease in the concentration [A] is proportional to the product of
the concentrations of both substances, i.e., to the likelihood of meetings between reactants
A and B. More generally, stoichiometric relations, which determine how many copies of
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each reactant molecule are involved in a chemical reaction, set the powers of the involved
concentrations. The nonlinearity of ODEs describing chemical kinetics presents one of
the major mathematical challenges for their analysis, but also the origin of many peculiar
features (e.g., non-existence or non-uniqueness of the solution, a finite time to the extinction
of some reactants, etc.). These features and their implications in chemistry and biology
have been thoroughly investigated in the twentieth century [1,2].

The above description totally ignores the spatial aspects of chemical reactions, as if
the concentrations of reactants were homogeneous in space at any time. This is known as
the well-mixed assumption, where the reactants are assumed to be well mixed so that the
reaction occurs in different points in space in the same way. However, there are numerous
situations in which the spatial aspects are critically important. For instance, many bio-
chemical reactions in living cells involve proteins and macromolecules that are produced
in one spatial location but have to diffuse to another location to find their reaction partners
(e.g., receptors, enzymes, or specific sites on DNA chains). Even for small particles such
as oxygen molecules, ions, and metabolites, there is generally a gradient of concentration
between their “source” and “sink” that drives their directional transport in space. Moreover,
even if the concentrations [A] and [B] are macroscopically homogeneous but low, the single
molecules A and B have to meet each other to form an aggregate AB according to the
reaction (2), and this transport step takes time and can be the limiting factor in the overall
reaction rate. The crucial role of diffusion was put forward by M. von Smoluchowski,
who formulated in 1917 the first mathematical description of coagulation dynamics [3],
which later became the cornerstone of the theory of diffusion-controlled reactions in a much
broader context [4–10]. Examples of diffusion-controlled reactions include coagulation
dynamics [3,11], most catalysis and enzymatic reactions [12,13] and ligand–protein associ-
ations [14–16], geminate recombination of radicals and ions [17,18], reactions in micellar
and vesicular systems [19], spin relaxation on magnetic impurities [20,21], diffusive search
by a transcription factor protein for a specific binding site on a DNA molecule [22–24], self-
propulsion of active colloids [25–27], and oxygen capture in the lungs [28–30]. Note that
such reactions bear other names such as diffusion-limited, diffusion-mediated, diffusion-
assisted, or diffusion-influenced reactions. In the past, these names were sometimes used
to distinguish the role of diffusion, e.g., whether the reaction occurs instantly upon the
first encounter of the reactants, or after an additional chemical kinetics step. We do not
make such distinctions and understand diffusion-controlled reactions in a broad sense as
reactions in which diffusion is relevant.

In this concise review, we focus on the spatial aspect of chemical reactions. In Section 2,
we describe a chemical transformation on a catalytic surface and emphasize the role of
diffusion and the consequent spatial dependence of the concentration (e.g., the formation of
a depletion zone). Section 3 presents a more realistic setting of imperfect surface reactions,
which combine diffusion in the bulk and chemical kinetics on the surface. In Section 4,
we briefly give an overview of various extensions such as anomalous diffusion, reversible
binding/unbinding reactions, reactions in dynamically heterogeneous media, etc. Section 5
describes an alternative approach to diffusion-controlled reactions based on the statistics
of encounters between the reactant and the catalytic surface, while Section 6 concludes
the review.

2. The Role of Diffusive Transport

For the sake of clarity, we focus on heterogeneous catalysis, where a reactant A can be
transformed into a product B in the presence of an immobile catalyst C:

A + C → B + C. (4)

If the catalytic germs were uniformly dispersed in a chemical reactor, one could still
rely on Equation (1). However, in many practical situations, catalytic germs have specific
locations, most often on a surface of a porous medium, so that the reactant A should first
reach this spatial location. As reactant A nears the catalytic germs it has a higher chance to
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react on them and, thus, to be transformed to B, so the concentration [A] becomes space-
dependent. In particular, a depletion zone, with a low concentration of A, is formed near
the catalytic surface (Figure 1, top row). This is a direct consequence of the transport step,
which can be described, as in the case of coagulation dynamics, by the diffusion equation
(also called the Smoluchowski equation or heat equation),

∂[A]

∂t
= D∆[A], (5)

where ∆ = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplace operator, and D is the diffusion
coefficient of reactant A in a liquid. In analogy to Equation (1), this equation describes
the time evolution of the concentration [A](x, t) in each spatial point x due to diffusive
displacements of the reactant A in the bulk. In turn, the reaction itself, which occurs on
the catalytic surface, C, is implemented via a boundary condition on that surface. If A is
transformed into B immediately upon the first encounter with the catalyst C (so-called
perfect reactions), the concentration [A] is set to zero on C. This so-called Dirichlet boundary
condition was first imposed by von Smoluchowski and still remains the most well-studied
and frequently used boundary condition. Its effect is illustrated in Figure 1 (top row) by
the dark color near the surface of a spherical catalyst. Note that the overall reaction rate is
determined by the diffusive flux of reactant A onto the catalytic surface C:

J(t) =
∫
C

dx
(
−D

∂[A](x, t)
∂n

)
, (6)

where ∂/∂n = (~n · ∇) is the normal derivative along the normal direction~n to the surface.

Figure 1. (Top row) Rescaled concentration [A](x, t)/[A]0 = 1− R
|x|erfc

(
(|x| − R)/

√
4Dt

)
of reactant

A near a perfectly reactive catalytic sphere of radius R (in gray) at different time instances (here erfc(z)
is the complementary error function) [3]. (a) Homogeneous concentration at t = 0; (b) Formation
of a thin depletion zone in a short time Dt/R2 = 0.1; (c,d) Progressive growth of the depletion
zone at longer times Dt/R2 = 1 and Dt/R2 = 10; (e) Approach to a steady-state concentration
[A](x, ∞)/[A]0 = 1 − R/|x| as t → ∞. (Bottom row) Rescaled concentration [A](x, t)/[A]0 =

1− R−Rκ

|x|

{
erfc

(
|x|−R√

4Dt

)
+ eDt/R2

κ+(|x|−R)/Rκ erfc
(
|x|−R√

4Dt
+
√

Dt
Rκ

)}
of reactant A near a partially reactive

catalytic sphere of radius R [31], with reactivity κR/D = 1 and Rκ = R/(1 + κR/D)), at the same
time instants: t = 0 (f), Dt/R2 = 0.1 (g), Dt/R2 = 1 (h), Dt/R2 = 10 (i), and t = ∞ (j).

The inclusion of space dependence into the theory of chemical kinetics led to many
fundamental changes. As the reaction does not occur homogeneously in space anymore,
there are two consecutive steps: the diffusion step (transport towards the catalytic surface
described by the diffusion equation) and the reaction step (chemical transformation from A
to B on the catalytic surface, described by the boundary condition). The dependence of these
two steps on the shape of the catalytic surface introduces a new geometric dimension to the
theory [32–34]. How efficient are catalytic surfaces of different shapes? Since reaction occurs
on the catalytic surface, can irregularly shaped catalysts speed up the overall production due
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to their higher surface area? Can one optimize the shape to increase the production? Have
the large reactive surfaces of exchange organs such as lungs and placentas been optimized
by evolution for more efficient oxygen capture? These and many other questions have been
intensively studied since the 1980s (see [30,35–42] and references therein).

3. Imperfect Surface Reactions

Despite their “popularity” among theoreticians, perfect surface reactions ignore in-
trinsic chemical kinetics during the reaction step and, therefore, may lead to paradoxical
predictions. For instance, the overall reaction rate on a perfectly reactive sphere of radius R,

J(t) = 4πRD[A]0

(
1 +

R√
πDt

)
, (7)

found by von Smoluchowski [3] is infinitely large at the very first time instant (as t→ 0).
This divergence is caused by the molecules in the immediate vicinity of the catalyst that
react instantly. As a consequence, if one searches to maximize the overall production
by distributing a given amount of a catalytic material, the optimal solution consists in
dispersing this material into a “dust”, i.e., a uniform arrangement of tiny catalytic germs.
Moreover, if the subdivision of this material into smaller and smaller germs could be
repeated up to infinity, such a fractal dust would transform all the reactant A in the bulk
instantly [43]. From a mathematical point of view this is not surprising, because any reactant
A would have in its immediate vicinity a tiny catalytic germ, thus eliminating the diffusion
step. However, such a behavior does not make sense from a practical point of view. The
limitations of perfect reactions were recognized in 1949 by Collins and Kimball [31], who
proposed replacing the Dirichlet boundary condition by the so-called Robin or radiative
boundary condition on the catalytic surface:

−D
∂[A](x, t)

∂n
= κ [A](x, t). (8)

This condition postulates that the (net) diffusive flux of reactant A coming onto the
catalytic surface from the bulk (the left-hand side) is proportional to its concentration,
[A], on that surface at each surface point. The proportionality coefficient κ, called the
“reactivity” of the catalytic surface, can range from 0 for an inert surface to infinity for a
perfectly reactive surface. In the former case, the diffusive flux of reactants is zero, meaning
that no reaction occurs on that surface. In the latter case, the division by κ and the limit
κ → ∞ reduce Equation (8) back to the Dirichlet boundary condition [A](x, t) = 0 on the
surface of C. Note that the reactivity κ (in units m/s) can also be expressed in terms of
a forward reaction constant kon (in units m3/s/mol or 1/M/s) as kon = κNASC, where
NA is the Avogadro number, and SC is the surface area of the catalytic surface. Figure 1
(bottom row) illustrates the effect of partial reactivity on the concentration of reactants near
the catalytic sphere of radius R. The depletion zone is thinner and grows slower than in
the case of perfect reactions. Moreover, the overall reaction rate J(t) is finite over a short
time period: J(0) = 4πR2κ[A]0. Indeed, only the molecules near the catalyst (of surface
area 4πR2) can react at short timescales, and their contribution is now limited by chemical
kinetics, i.e., by the time needed for chemical transformation (4), which is controlled by
the reactivity κ. As time increases, molecules from more distant locations arrive onto the
catalyst and can thus contribute. Over long timescales, the region near the catalyst is
depleted, and reactant A needs to diffuse towards the catalyst from very distant locations.
In this limit, one obtains J(∞) = 4πRD[A]0/(1 + D/(κR)), i.e., the overall production is,
therefore, diffusion-limited. In other words, the overall production exhibits a transition
from the reaction-limited regime over short timescales to the diffusion-limited regime over
long timescales.
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The partial reactivity of the surface, described by the Robin boundary condition (8),
can model various microscopic mechanisms of imperfect reactions [34,44], as illustrated
in Figure 2. In physical chemistry, once the reactant A arrives onto the catalytic surface,
it has to overcome an activation energy barrier in order to react [45,46]. This activation
energy determines the probability p of the reaction attempt being successful. However,
the reactant may fail its reaction attempt (with probability 1− p) by leaving the proximity
of the catalytic surface and, thus, resuming its diffusion until the next encounter, and so
on. In this setting, the microscopic interaction determines the probability p, which, in turn,
fixes the effective macroscopic reactivity κ = D

a
p

1−p , where a is the width of the reactive
layer near the catalytic surface (i.e., the interaction range, which is typically of the order of a
nanometer) [47]. Varying p from 0 to 1 covers the whole range of reactivities from 0 to +∞.
In the biochemical context, conformational changes of a macromolecule between nearly
isoenergetic folded states can alter its function; this mechanism is primarily important for
protein–ligand and protein–protein recognition [48–50]. When such a protein arrives onto
the catalytic surface (its reaction partner), it has to be in an appropriate conformational state
(with probability p) to be able to initiate the reaction (4); otherwise, the protein leaves the
catalytic surface and restarts its bulk diffusion [51]. Even small particles such as calcium
ions can spontaneously lose their reactivity via reversible binding to buffer molecules. This
is the basis of one of the regulatory mechanisms in neuron signaling, where tuning the
concentration of buffer molecules inside a presynaptic bouton controls the ability of calcium
ions to reach calcium-sensing proteins that trigger the vesicular release of neurotransmitters
(see [52] and references therein). In the microcellular context, the catalytic surface may rep-
resent a plasma membrane of a cell or of a nucleus, while the reaction event may consist in
the passage through a channel on that membrane; such a “reaction” occurs if the channel is
open (with probability p), while the reactant is reflected back from a closed channel [53–55].
Even if the channel is always open (e.g., just a hole in a container or in a filter), there
is an entropic barrier that may prohibit the escape from the confining domain and lead
to reflection and resumed diffusion [56–58]. In heterogeneous catalysis, the macroscopic
reactivity κ may account for micro-heterogeneity of the catalytic surface, which is not fully
covered by catalytic germs; in this case, p is the probability of hitting the catalytic surface
at the catalytic germ (and thus of reacting), while 1− p is the probability of arriving at
the inert part of the surface and, thus, being reflected. The homogenization of spatially
heterogeneous catalytic surfaces leads to the Robin boundary condition (8), in which the
reactivity κ effectively accounts for distributed reactive spots [59–64]. For instance, in the
seminal work by Berg and Purcell [59], the probability p was found for a spherical cell of
radius R covered by N disk-shaped receptors of radius a: p = Na/(Na + πR).

The partial reactivity adds an important intermediate step to diffusion-controlled
reactions: after the first arrival onto the catalytic surface, the reactant executes a sequence
of diffusive explorations of the bulk near the catalytic surface after each failed reaction
attempt. This step may considerably slow up the overall production, while the shape
and reactivity of the catalytic surface are linked through diffusion in a sophisticated way.
Note that the same problem emerges in the context of semi-permeable membranes in
biology and blocking electrodes in electrochemistry [65–67]. The role of reactivity (or,
equivalently, permeability or resistivity) on the overall production has been thoroughly
investigated [17,20,68–71]. For instance, B. Sapoval and co-workers discussed the role of the
“reaction length” D/κ as a physical scale for oxygen capture efficiency in human lungs [29].
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closed ion channel(d)

Ca+2 Ca+2

open ion channel

Figure 2. Various microscopic origins of imperfect surface reactions. (a) When the reactant A arrives
onto the catalytic surface C, an activation energy barrier Ea has to be overcome for a chemical
transformation of A into B; if failed, the reactant leaves the vicinity of C and, thus, resumes its bulk
diffusion. (b) A macromolecule can spontaneously switch its conformational state from “active” (in
red) to “passive” (in blue) with the rate ka, and back (with the rate kd), while its reaction on the
catalytic surface (in gray) or with another macromolecule (a receptor, an enzyme, a DNA strand, etc.)
is only possible in the “active” conformational state. (c) The reactant can be temporarily trapped
by a buffer molecule (in green) that makes it inactive for the considered surface reaction; their
association/dissociation kinetics is usually described by forward and backward rates ka and kd.
(d) An ion can pass through an open channel, while it is reflected back from a closed channel. (e) The
escape of a semi-flexible polymer through a small hole can be described by an entropic barrier that
leads to partial reactivity when the first arrival to the hole does not guarantee the passage. (f) An
inert (gray) surface is covered by reactive catalytic germs (black spots) so that the reactant may fail to
react upon the first arrival, and thus, resumes its bulk diffusion until the next encounter, and so on.
Similarly, a protein can search for a specific (target) site on a DNA chain for successful binding.

4. Various Extensions

The basic description of diffusion-controlled reactions via Equations (5) and (8) has
been generalized in different ways. Most efforts were dedicated to extensions of the diffu-
sion Equation (5) that describes the simplest diffusive motion of reactants, the so-called
Brownian motion. For instance, the Fokker–Planck equation allows one to incorporate the
effects of external potentials (e.g., an electric field acting on a charged particle), anisotropy,
and space- and/or time-dependence of the diffusion coefficient [72–75]. Fractional space
and time derivatives can further include nonlocal displacements and memory effects in
continuous-time random walks [76–79]. Diffusing diffusivity and switching diffusivity
models were proposed to describe the diffusive transport in dynamically heterogeneous
media or in the presence of buffer molecules that may reversibly bind the reactant and,
thus, randomly change its diffusion coefficient [80–83]. The addition of a linear term
proportional to [A] on the right-hand side of the diffusion Equation (5) can account for
first-order disintegration mechanisms such as photo-bleaching, bulk relaxation, radioactive
decay, or a finite lifetime of the reactant [84–86], as well as the effect of diffusion-sensitizing
magnetic-field-gradient encoding in diffusion magnetic resonance imaging [21]. More-
over, the diffusion equation with nonlinear terms in [A] can describe reaction waves and
many out-of-equilibrium chemical reactions involving “activators” and “inhibitors” (e.g.,
Belousov–Zhabotinsky reaction), paving a way to the theory of pattern formations initiated
by A. Turing [1,87].

The above extensions generally employ the canonical Dirichlet or Robin boundary
conditions. Such a “persistence” can partly be explained by two mathematical reasons:
(i) the Laplace operator with either of these boundary conditions is known to be self-
adjoint (Hermitian), allowing one to rely on powerful methods of spectral theory and to
borrow numerous tools from quantum mechanics; (ii) the diffusion equation with these
boundary conditions has a straightforward probabilistic interpretation that provides more
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intuitive insights onto the studied diffusion reaction processes, offers efficient Monte Carlo
simulations, and helps to extend the macroscopic description in terms of concentrations to
single-molecule experiments. In fact, many biochemical reactions involve proteins that are
not abundant inside living cells. When the number of proteins is relatively small (e.g., a
few tens or a few hundred transcription factors in a bacterium [88]), the macroscopic notion
of concentration may be inapplicable, and the overall reaction rate may be uninformative
or even misleading, while fluctuations become critically important. Such reactions require,
therefore, a probabilistic description in terms of the survival probability of a single reactant
molecule and the probability density of the first-reaction time [89,90]. In many settings,
the survival probability of a single molecule obeys the same Equations, (5) and (8), and
hence is equal to the rescaled concentration [A](x, t)/[A]0. This equivalence bridges the
macroscopic and probabilistic descriptions, providing complementary insights and opening
efficient ways to analyze and interpret single-molecule experiments [91–101].

At the same time, the Robin boundary condition (8) remains limited to modeling
rather simple surface reactions with a constant reactivity. Consideration of time- and/or
space-dependent reactivity is one natural extension (see [102] and references therein).
Another important extension concerns reversible reactions such as binding/unbinding,
association/dissociation, and adsorption/desorption kinetics, in which the reactant can
be temporarily bound to the surface (or to another molecule). The exchange between
free particles and those bound on the surface can be incorporated through the “back-
reaction” boundary condition, also known as “generalized radiation” or the “generalized
Collins–Kimball” boundary condition [103–111]. Application of the Laplace transform
with respect to time, ˜[A](x, s) =

∫ ∞
0 dt e−st [A](x, t), reduces this boundary condition to the

Robin boundary condition (8) with s-dependent reactivity κ(s) (see details in [111]). In this
way, reversible and irreversible diffusion-controlled reactions admit essentially the same
mathematical description in the Laplace domain (in terms of s); in turn, the s-dependent
reactivity results in fundamentally different behaviors in the time domain (in terms of
t). In addition, one can further relax the assumption of an immobile bound state and
allow for diffusion on the surface. The efficiency of such intermittent search dynamics with
alternating phases of bulk and surface diffusion has been thoroughly investigated [112–121]
(see also a review in [122]).

5. Beyond the Conventional Framework

To handle more general surface reaction mechanisms such as, e.g., deactivation or
passivation of catalysts [123,124], or progressive activation of enzymes, an alternative
theoretical description of diffusion-controlled reactions was proposed [125]. This so-called
encounter-based approach originates from the theory of reflected stochastic processes
in confined domains and relies on the concept of the boundary local time `—a rescaled
number of encounters between the reactant and the catalytic surface. In this approach, one
can disentangle the respective roles of the shape and reactivity of the catalytic surface. In
fact, the concentration of reactant A can be represented as

[A](x, t) =
∞∫

0

d` e−`κ/D ρ(`, x, t), (9)

where ρ(`, x, t) describes the statistics of encounters with an inert surface. In other words,
the function ρ(`, x, t) encodes how the shape of the catalytic surface affects the diffusive
dynamics, whereas the exponential factor e−`κ/D incorporates the reactivity κ that was
implicitly imposed via the Robin boundary condition (8) in the conventional approach.
As the successful surface reaction is preceded by a sequence of failed reaction attempts at
each encounter, the exponential factor in Equation (9) can be interpreted as the exponential
probability law, P{an̂ > `} = e−`κ/D, for the random number n̂ of encounters in that
sequence. Due to the self-similar nature of Brownian motion, the number of encounters
has to be rescaled by the width a of a thin surface layer, in which the molecule can interact
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with the catalytic surface (see details in [125]). While the statistics of encounters has been
investigated for simple confinements [126–132], its shape dependence for porous media
representing industrial catalysts or biological environments remains still unknown.

Most importantly, one can replace the exponential factor in Equation (9), which incorporated
the effect of a constant reactivity κ, by another probability law P{an̂ > `} = Ψ(`), to model
more sophisticated surface reaction mechanisms with an encounter-dependent reactivity,

κ(`) = D
− d

d`Ψ(`)

Ψ(`)
. (10)

If Ψ(`) = e−`κ/D, this formula yields the constant reactivity considered above, κ(`) = κ,
and ensures the Markovian character of the binding reaction. However, another choice
of the function Ψ(`) allows one to implement the reactivity of the catalytic surface that
depends on how many times the reactant has encountered it. To illustrate this idea, let us
consider the gamma model, by choosing Ψ(`) = Γ(ν, q`)/Γ(ν, 0), where q > 0 and ν > 0
are two parameters, and Γ(ν, z) =

∫ ∞
z dx xν−1e−x is the upper incomplete gamma function.

For ν = 1, one has Γ(1, z) = e−z, thus retrieving the above setting of constant reactivity
κ = qD. Figure 3 illustrates the corresponding encounter-dependent reactivity κ(`) given
by Equation (10) (panel a), and the overall reaction rate J(t) on a spherical catalyst of radius
R (panel b) that can be found in the framework of the encounter-based approach [125].
When 0 < ν < 1, the catalytic surface is highly reactive at the beginning and then reaches a
constant reactivity qD. This situation can model a progressive passivation of the catalytic
surface by repeated encounters with the reactant, up to a constant level. As expected,
the diffusive flux is high on short timescales and then decreases to a constant steady-state
level. Note that ν = 0 formally corresponds to a perfect reaction, with Smoluchowski’s rate
given in Equation (7). The particular value ν = 1 yields the constant reactivity, independent
of the number of encounters, for which the diffusive flux is constant on short timescales,
4πR2qD[A]0, and slowly decreases to another constant on long timescales, as predicted by
Collins and Kimball [31]. In turn, if ν > 1, the catalytic surface is passive at the beginning
and then reaches a constant reactivity. This situation can model progressive activation of
that catalytic surface. Accordingly, the overall reaction rate is zero on short timescales and
then increases to a constant steady-state level. Choosing an appropriate function Ψ(`), one
can produce the desired shape of the encounter-dependent reactivity κ(`) that opens a way
to model various surface reaction mechanisms.

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

(a) (b)

Figure 3. (a) Encounter-dependent reactivity κ(`) from the gamma model with q = 1 and three values
of ν. (b) The overall reaction rate J(t) on a spherical catalyst of radius R, rescaled by Smoluchowski’s
rate JS = 4πDR[A]0, with q = 1 and three values of ν. Dotted curve represents Equation (7) for a
perfectly reactive sphere (it formally corresponds to ν = 0).

The encounter-based approach goes far beyond the conventional theory of diffusion-
controlled reactions described by the Dirichlet or Robin boundary conditions. From the
mathematical point of view, the description of a general surface reaction with an encounter-
dependent reactivity κ(`) is not reducible to the Robin boundary condition. As a con-
sequence, Laplacian eigenfunctions, that are conventionally used in spectral expansions,
need to be replaced by so-called Steklov eigenfunctions [125,133]. Though being less



Molecules 2023, 28, 7570 9 of 13

known in the context of chemical reactions, these eigenfunctions turn out to be partic-
ularly well suited for describing diffusive explorations near a catalytic surface between
successive reaction attempts. Several extensions of the encounter-based approach have
already been explored, such as (i) the inclusion of an external potential that leads to a
biased or drifted motion [134]; (ii) the effects of stochastic resetting [135,136] of the posi-
tion and of the boundary local time on diffusion-controlled reactions [137,138]; (iii) the
cooperative search by multiple independent particles and the related extreme first-passage
statistics [139]; (iv) the escape problem [140]; and (v) non-Markovian binding/unbinding
kinetics [111]. Moreover, the same concepts can be applied to describe diffusive permeation
across membranes [141–143]. Despite these recent advances, there are many open ques-
tions and promising perspectives for future developments, such as merging anomalous
bulk diffusions with generalized surface reactions, the effect of sophisticated geometric
confinements on the encounter statistics, the competition of multiple reactive centers for
capturing a limited amount of diffusing reactants, indirect coupling of different reactants
through encounter-dependent catalytic surfaces, and inference of appropriate surface
reaction models from experimental data, to name but a few.

6. Conclusions

In summary, we have reviewed the major steps in the long history of developments
in the theory of diffusion-controlled reactions. M. von Smoluchowski first recognized
the importance of the diffusion step, during which the reactants have to meet each other.
He also put forward the diffusion equation to describe the dynamics of reactants in the
bulk and boundary conditions to account for the reaction on the surface. His mechanism
of perfect reactions upon the first encounter was then improved by Collins and Kimball.
While most later theoretical efforts were dedicated to improvements of the bulk dynamics,
an encounter-based approach was recently developed to enable more general surface reac-
tion mechanisms. This approach has already shown many advantages such as probabilistic
insights into surface reactions, disentanglement of the impacts of shape and reactivity of
the catalytic surface, flexibility in characterization of diffusive explorations near the reactive
surface, etc. In particular, the concept of encounter-dependent reactivity allows one to
describe an action of reactants on the catalytic surface, and such a feedback may potentially
be relevant in various biochemical and electrochemical settings. There are still many open
questions and current developments, aiming to understand the mathematical formalism
of the encounter-based approach, relating the shape of the catalytic surface to the spectral
properties of the underlying operators, elaborating various extensions, and uncovering
potential applications in chemistry and biochemistry.
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