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Abstract: The identification of new cancer-associated genes/proteins, the characterization of their
expression variation, the interactomics-based assessment of differentially expressed genes/proteins
(DEGs/DEPs), and understanding the tumorigenic pathways and biological processes involved in BC
genesis and progression are necessary and possible by the rapid and recent advances in bioinformatics
and molecular profiling strategies. Taking into account the opinion of other authors, as well as based
on our own team’s in vitro studies, we suggest that the human jumping translocation breakpoint
(hJTB) protein might be considered as a tumor biomarker for BC and should be studied as a target for
BC therapy. In this study, we identify DEPs, carcinogenic pathways, and biological processes associ-
ated with JTB silencing, using 2D-PAGE coupled with nano-liquid chromatography tandem mass
spectrometry (nLC-MS/MS) proteomics applied to a MCF7 breast cancer cell line, for complementing
and completing our previous results based on SDS-PAGE, as well as in-solution proteomics of MCF7
cells transfected for JTB downregulation. The functions of significant DEPs are analyzed using GSEA
and KEGG analyses. Almost all DEPs exert pro-tumorigenic effects in the JTBlow condition, sustaining
the tumor suppressive function of JTB. Thus, the identified DEPs are involved in several signaling and
metabolic pathways that play pro-tumorigenic roles: EMT, ERK/MAPK, PI3K/AKT, Wnt/β-catenin,
mTOR, C-MYC, NF-κB, IFN-γ and IFN-α responses, UPR, and glycolysis/gluconeogenesis. These
pathways sustain cancer cell growth, adhesion, survival, proliferation, invasion, metastasis, resistance
to apoptosis, tight junctions and cytoskeleton reorganization, the maintenance of stemness, metabolic
reprogramming, survival in a hostile environment, and sustain a poor clinical outcome. In conclusion,
JTB silencing might increase the neoplastic phenotype and behavior of the MCF7 BC cell line. The
data is available via ProteomeXchange with the identifier PXD046265.

Keywords: breast cancer (BC); MCF7; JTB protein silencing; overexpressed JTB interactome; down-
regulated JTB interactome; tumorigenic pathways

1. Introduction

Discovering and validating novel biomarkers, especially for early cancer diagnosis,
as well as molecular targets for advanced therapies in breast cancer (BC), necessitate
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the handling of accurate gene expression datasets [1]. The identification of new cancer-
associated regulatory genes/proteins, the characterization of their expression variations, the
interactomics-based assessment of differentially expressed genes/proteins (DEGs/DEPs),
and understanding the tumorigenic pathways and biological processes involved in BC
genesis and progression are possible by the rapid and recent advances in bioinformatics and
molecular profiling strategies or analytical techniques, especially based on high-throughput
sequencing and mass spectrometry (MS) developments.

In 1999, Hatakeyama et al. reported the human jumping translocation breakpoint
(hJTB) as a novel transmembrane protein gene at locus 1q21, a region called the epidermal
differentiation complex (EDC), involved in unbalanced jumping translocation, suggesting
the JTB’s association with tumor progression [2]. Moreover, Tyszkiewicz et al. (2014)
showed that the EDC molecules were involved in important mechanisms in adenocarci-
nomas [3], while other authors showed that chromosomal translocations were a hallmark
for cancer [4], jumping translocations (JTs) being usually identified in tumors [5]. In 2007,
Kanome et al. stated that JTB is a transmembrane protein with an unknown function;
however, the authors observed that JTB expression was suppressed in many tumor types,
emphasizing its role in the malignant transformation of cells [6]. Platica et al. (2000)
showed that hJTB cDNA had a 100% homology with prostate androgen-regulated (PAR)
gene isolated from an androgen-resistant prostate cancer cell line [7]. The same authors
reported that PAR/JTB expression was upregulated in all studied prostatic carcinoma cell
lines compared with normal prostatic tissue, in androgen-resistant prostate cancer cell lines
in comparison with androgen-sensitive prostate cells, in MCF7 and T47D BC cell lines, as
well as in all the primary breast tumors studied compared to their normal counterparts.
Moreover, Platica et al. (2011) observed that the downregulation of PAR levels in DU145
cells resulted in defects in centrosome segregation, failed cytokinesis and chromosome
alignment, and an increased number of apoptotic cells, polyploidy, and aberrant mitosis
that could lead to genomic instability and tumorigenesis [8]. These authors suggested
that the PAR overexpression in several human cancers might be a putative target for ther-
apy. Pan et al. (2009) showed that JTB may play a critical role in liver carcinogenesis [9].
Functionally, JTB has been reported as a regulator of mitochondrial function, cell growth,
cell death and apoptosis, as well as being a protein involved in cytokinesis/cell cycle
activities [6,8].

MCF7 is a middle aggressive and non-invasive BC cell line that has been used for
membrane protein enrichment proteomic analyses [10] as well as for the identification
of dysregulated signaling pathways and cellular targets of different compounds with
anti-tumorigenic activity [11]. We also show that the upregulated expression of DEPs in
the JTBlow condition, investigated by SDS-PAGE followed by nLC-MS/MS proteomics
in a transfected MCF7 BC cell line, promotes cancer cell viability, motility, proliferation,
invasion, the ability to survive in hostile environments, metabolic reprogramming, and the
escaping of tumor cells from host immune control, leading to a more invasive phenotype
for MCF7 cells. Several downregulated DEPs in a low-JTB condition also promote the
invasive phenotype of MCF7 cells, sustaining cell proliferation, migration, invasion, and
tumorigenesis [12]. Several DEPs identified during JTB silencing by in-solution digestion
followed by nLC-MS/MS that were complementary to the initial in-gel based ones [12],
especially upregulated proteins, are known to emphasize pro-tumorigenic activities in a
downregulated state [13].

Taking into account the previously cited references [2,6–9], as well as based on our own
team’s studies [12–15], we suggest that the JTB protein might be a tumor biomarker for BC
and should be studied as a target for cancer therapy. In this study, we identify the DEPs and
carcinogenic pathways associated with JTB silencing, using 2D-PAGE coupled with nano-
liquid chromatography-tandem mass spectrometry (nLC-MS/MS) proteomics applied
to the MCF7 breast cancer cell line, for complementing and completing our previous
results based on SDS-PAGE [12], as well as the in-solution proteomics of MCF7 cells
transfected for JTB downregulation [13]. We concluded that almost all DEPs exert pro-
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tumorigenic effects in JTBlow conditions, sustaining the tumor suppressive function of JTB.
The function of DEPs has been analyzed using GSEA and KEGG, while STRING analysis
has been applied to construct the protein-protein interaction network of the JTBlow-related
proteins that exert a PT activity. The identified DEPs are involved in several signaling and
metabolic pathways and biological processes that exert pro-tumorigenic (PT) roles: EMT,
tight junction, cytoskeleton organization, ERK/MAPK, PI3K/AKT, Wnt/β-catenin, mTOR,
c-MYC, NF-κB, IFN-γ and IFN-α response, UPR, and metabolic reprogramming.

2. Results and Discussion

Using 2D-PAGE coupled with nLC-MS/MS proteomics, the present study identified
45 significantly dysregulated proteins, 37 upregulated and 8 downregulated, in the MCF7
BC cell line transfected for JTB silencing. The workflow for cellular proteomics followed by
2D-polyacrylamide gel (2D-PAGE) coupled with nLC-MS/MS analysis of the cell lysates is
presented in the Figure 1.
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Figure 1. The workflow for cellular proteomics followed by 2D-polyacrylamide gel (2D-PAGE)
coupled with nLC-MS/MS analysis of the cell lysates.

There were 131 dysregulated spots in the control_shRNA vs. sh_JTB and 153 differ-
ences in the control vs. sh_JTB (Figures 2 and 3). A total of 284 spots were selected for
Nano LC- MS/MS analysis, as previously described [16].

We only analyzed proteins that have a protein score of above 40 and p-value < 0.05.
HSPB1, HSPA4, MCM6, ACTB, ACTN1, PFN2, TUBA1A, EEF2, PCK1, PCK2, GPI, FARSB,
GARS1, LARS1, RARS1, PSMC6, CCT2, CCT3, IFIT1, PTBP1, DDX19A, UTY, NCAM2,
RHBDD1, CS, LAMTOR3, OGA, ZNF114, PA2G4, SRM, GSTM3, NCKAP1, PRDX3, REB8A,
RAB8B, RAB15 and RAB35 are overexpressed, while TUBB4B, CAPN2, ELFN2, SLC9AR1,
ANXA4, YWHAZ, YWHAE, and PSMB9 proteins were found to be significantly down-
regulated. GSEA analysis was performed for the downregulated JTB condition using
the H (hallmark gene sets) collection in MSigDB. Analysis of the H collection revealed
four upregulated pathways, including proteins important for interferon alpha response
(IFN-α), interferon gamma response (IFN-γ), Myc targets V1, and unfolded protein re-
sponse (UPR). Two downregulated pathways comprised proteins involved in estrogen
response late and estrogen response early pathways (Table 1). We also performed Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis and here we emphasized the en-
riched biological processes in pro-tumorigenic proteins identified in downregulated JTB
conditions using GeneCodis website (https://genecodis.genyo.es/, accessed on 22 October
2023). There were 25 upregulated and two downregulated proteins with pro-tumorigenic
(PT) potential, which were then submitted for protein-protein interaction (PPI) network
construction with Search Tool for the Retrieval of Interacting Genes/Proteins (STRING)
database (https://string-db.org/, accessed on 22 October 2023), to analyze the specific
interaction network associated with the JTBlow condition in the transfected MCF7 BC cell
line. A total of 27 nodes and 69 edges were mapped in the PPI network, with an average

https://genecodis.genyo.es/
https://string-db.org/
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node degree of 5.11, an average local clustering coefficient of 0.632, and a PPI enrichment
p-value 6.44 × 10−12.
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Figure 3. Images of sh_JTB (left), control_shRNA (middle), control (right) silver stained 2D poly-
acrylamide gels. The circles on each 2D-polyacrylamide gel shows the location of Isoelectric focusing
internal standard Tropomyosin of Mw: 33000 and a pI of 5.2.

Table 1. Significant up and downregulated pathways in the downregulated JTB condition in the
MCF7 BC cell line, according to GSEA with FDR < 25%.

Pathways NES FDR q-Val

Upregulated INTERFERON_ALPHA_RESPONSE (IFN-α) 1.52 0.223
INTERFERON_GAMMA_RESPONSE (IFN-γ) 1.47 0.165

MYC_TARGETS_V1 1.04 0.971
UNFOLDED_PROTEIN_RESPONSE 1 0.831

Downregulated ESTROGEN_RESPONSE_LATE −1.17 1
ESTROGEN_RESPONSE_EARLY −1.07 0.948

To emphasize the role of the JTB-interactome, we analysed the pro-tumorigenic (PT)
and anti-tumorigenic (AT) function of these proteins, as well as the neoplastic dysregulated
pathways and biological processes (Table 2).
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Table 2. Deregulated DEPs, neoplastic roles, and biological processes expressed in response to JTB downregulation in MCF7 BC cell line.

Gene Name Gene Description Role Expression in Malignancies and
Putative Neoplastic Effects Pathways Neoplastic Condition

Proteins enriched in phenotype of low JTB expression condition

HSPB1/HSP27 Heat shock 27 kDa
protein 1

protein folding/CMPF,
cell adhesion, cell

migration, cytoskeleton
dependent intracellular
transport, cell death in

response to OS,
programmed cell death

overexpressed in many
cancers [17]: including

BC [18]
PT APOPTOSIS, regulates EMT

process and NF-κB activity [18]

poor clinical outcome, cell
invasion, metastasis,

resistance to apoptosis [17];
participates in maintenance of

BCSCs [18]

HSPA4/HSP70/Apg-2

Heat shock 70 kDa
protein family A (HSP70)

member 4 isoform a
variant

molecular chaperone,
induced by oncogenic

stress, autophagy,
regulation of protein

ubiquitination, cadherin
binding, cell adhesion

molecule binding, MHC
class II protein complex

binding [19]

overexpressed in many
cancers, including HCC
[19], CRC [20], HNSC

[21], involved in
progression of BC [22],

GC [23]

PT

MTORC1_SIGNALING;
associated with CSCs proprieties

via chaperones for
EMT-associated proteins,

inducing migration [23]; silencing
reduced activation of PI3K/Akt

signaling and increase in
apoptosis [20]; activates mTOR

pathway [21]

facilitates cancer cell survival,
inhibits apoptosis, promotes

proliferation, immune
regulation [19], accumulation
of misfolded proteins, ROS,

and DNA damage [21],
considered as a

necroptosis-related gene in BC
that activates cell cycle [22]

MCM6
Minichromosome

maintenance complex
component 6

significant DNA
replication regulator,

plays a key role in cell
cycle progression [24]

overexpressed in many
cancers [25]: BC, CRC,

HCC [25], glioma,
endometrial

adenocarcinoma,
cervical cancer, Merkel

cell carcinoma, lung
cancer [24]

PT
promotes EMT and activates

MEK/ERK signaling, sustaining
carcinogenesis [24,25]

sensitive, specific biomarker
for GSTM cancer, involved in
cell proliferation, metastasis,
migration, invasion, immune

response [24,25]

POTEF/POTEACTIN/
ACTB

POTE ankyrin domain
family member

F/Beta-actin

cytoskeleton protein that
belongs to the actin
family, involved in
motility, polarity,

chemotaxis andimmune
cell infiltration [26]

expressed in many
cancers: BC cell lines,

overexpressed in CRPC
[27]

PT

AJ; represses the AT effect of
Toll-like receptor (TLR) signaling
pathway [27,28]; involved in cell

migration by NF-κB and
Wnt/β-catenin pathway [26]

promotes cell growth [27],
migration, invasion [26]
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Table 2. Cont.

Gene Name Gene Description Role Expression in Malignancies and
Putative Neoplastic Effects Pathways Neoplastic Condition

ACTN1 Alpha-actinin-1
(isoform X5)

actin cross-linking
protein involved in

cytokinesis, cell
adhesion and
migration [29]

overexpressed in BC
tissue, BL-BC cell
lines [30], GC [29]

PT

AJ; EMT via
AKT/GSK3β/β-catenin pathway

and FAK/Src/JAK2/STAT3
signaling [29]

promotes cell proliferation,
invasion, migration, and

inhibits apoptosis [29]; loss of
polarity by cytoskeleton

reorganization and
E-cadherin-based adhesion,
lack of ER expression and

poor survival in BL-BC [30]

PFN2 Profilin-2 (isoform b)

actin binding protein
involved in cytoskeleton

organization, vesicle
mediated transport,

signaling, cell junction
organization, cell

motility

overexpressed in TNBC
[31], ESCC [32] PT EMT [31]

promotes cell proliferation,
migration and invasion of

TNBC cells [31]

EEF2 Eukaryotic elongation
factor 2

translation elongation
factor involved in
polypeptide chain

elongation step, cell
cycle progression

highly expressed in
various malignant

tumors: BC [33], GC,
CRC, esophageal,

pancreatic, PCa, HNSCC,
GBM [34], LSCC tissues

and cell lines [35]

PT

UPR; promotes G2/M progression
in cell cycle activating Akt

signaling [34], CDC2/Cyclin B1
and EMT-related proteins [35]

associated with node
positivity [33]; plays an

oncogenic role, promotes
cancer cell growth [34],
migration, invasion [35]

1KHB/PCK1/
PEPCK-C (cytoplasmic

isoenzyme)

Phosphoenolpyruvate
carboxykinase 1 (PEPCK)

Complex With
Nonhydrolyzable GTP

Analog, Mad Data
(chain A)

rate-limiting
gluconeogenesis

enzyme

oncogene overexpressed
in colon cancer and

melanoma [36];
downregulated and
tumor suppressor in

gluconeogenic tissues
(liver and kidney):

HCC [36] and
ccRCC [37]

PT

GLYCOLYSIS; acts via
AMPK/p27Kip1 axis [36];

depletion promotes EMT in
HCC [38]

promotes cell proliferation via
mTORC1 (oncogenic

function) [39]; AT in kidney
and liver: suppressed ccRCC
cell growth and metastasis,
inhibited tumorigenesis by
blocking aerobic glycolysis

pathway [37]; suppresses liver
tumor growth, cell cycle

progression and
proliferation [36]
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Table 2. Cont.

Gene Name Gene Description Role Expression in Malignancies and
Putative Neoplastic Effects Pathways Neoplastic Condition

PCK2/PEPCK-M
(mitochondrial

isoenzyme)

Phosphoenolpyruvate
carboxykinase

rate-limiting
gluconeogenesis enzyme

overexpressed many
cancers, including ER+

BC [40], lung, prostate,
thyroid, bladder, BC,
cervical cancer [41]

PT

REACTOME_GLUCONEOGENESIS;
activation of mTORC1 and E2F1

pathways [40]; silencing
contributes to cellular senescence,

inhibiting EMT in BC cells [42]

promotes tumor growth,
proliferation and cell cycle

progression [40]

FARSB/HSPC173 Phenylalanyl-tRNA
ligase beta subunit

cytoplasmic
aminoacyl-tRNA

synthetase (ARS/AARS)
involved in tRNA

metabolic process, amino
acid metabolic process,

protein-containing
complex assembly

overexpressed in in
tumor samples

compared to adjacent
normal tissues [43]:

GC [44]

PT aminoacyl-tRNA synthesis
pathway [44]

promotes cancer progression,
poor prognosis,

metastasis [44]; worse patient
survival in BC [43]

GARS1 Glycyl-tRNA synthetase
1

cytoplasmic and
mitochondrial ARS

overexpressed in tumor
samples compared to

adjacent normal tissues
[43], displays

androgen-dependent
transcriptional initiation

in several
hormone-responsive

cells, overexpressed in
PCa [45]

PT may deactivate ERK signaling
pathway [45]

worse patient survival in
BC [43]; could induce tumor

regression [45]

LARS1 Leucyl-tRNA synthetase
1 (Editing Domain) cytoplasmic ARS

overexpressed in some
cancers: myeloid

leukemia, pancreatic
cancer, renal, cervical,
skin cancer [45], lung
cancer cell lines and

tissues [46]

PT senses intracellular leucine levels
to activate mTORC1 pathway [45]

lower patient survival in
BC [43], promotes cell

proliferation, growth [45], and
migration [46]
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Table 2. Cont.

Gene Name Gene Description Role Expression in Malignancies and
Putative Neoplastic Effects Pathways Neoplastic Condition

RARS1 Arginyl--tRNA
synthetase 1

cytoplasmic ARS
involved in protein

synthesis

important tumorigenic
activity, overexpressed
in hepatoma cells [47],

associated with an
increased risk of BC [45]

PT impairment of AIMP1/EMAPII
secretion in MCF7 cells [48]

lower patient survival in
BC [43], increases growth rate

in hepatoma cells, induces
stem cell-like features in head

and neck tumors [47]

PSMC6
Proteasome subunit
p42/proteasome 26S

subunit ATPase 6

protein catabolic process,
regulation of

DNA-template
transcription,

protein-containing
complex assembly

highly upregulated in
LUAD [49], BC tissues,
especially in luminal

cancer [50]

PT

MTORC1_SIGNALING; REAC-
TOME_REGULATION_OF_

MITOTIC_CELL_CYCLE;
activation of Wnt signaling via
degrading AXIN proteins [49]

oncogenic effect [50], poor
prognosis, silencing inhibits
cell growth, migration and

invasion [49]

CCT2/CCTβ Chaperonin containing
TCP1 Subunit 2

involved in cell cycle
regulation, protein

folding and binding
biological processes [51]

overexpressed in various
tumors and cell lines,

such as HER2+ BC, liver,
prostate, cholecyst, lung,

CRC, BC [51],
glioblastoma [52]

PT P53 signaling [51]

worse prognosis, especially in
luminal A subtype, promotes
cell growth/survival, invasion

and proliferation [51]

CCT3/TRiC

Cytosolic chaperonin
containing t-complex
polypeptide 1 (TCP1)
subunit 3/TCP1 ring

complex (hTRiC5),
partial

molecular chaperone
involved in proteostasis,
folding of tubulin and

actins and many proteins
involved in cancer [53],

cell division,
proliferation

andapoptosis [52]

overexpressed in some
tumors: BC, HCC,
LUAD and LUSC,

NSCLC, cervical and
CRC, AML, multiple
myeloma, papillary
thyroid carcinoma,
melanoma, GC [52]

PT

might regulate IGF-1 signaling;
actin cytoskeletal signaling, and
PTEN signaling, Wnt/β-catenin,

JAK2/STAT3, PI3K/Akt [52]

oncogene, promotes cell
growth, survival, proliferation,

cell cycle progression and
anti-apoptosis [52]

IFIT1

Interferon-induced
protein with

tetratricopeptide repeats
1 (isoform 2)

inflammation-related
protein, RNA-binding
protein modulated by

JAK/STAT pathway [54],
involved in regulation of

translation [55]

overexpressed in
PDAC [54], OSCC [56] PT

INTERFERON_GAMM_RESPONSE;
UPR; EMT [56], Wnt/β-catenin

activation [54], increasing levels of
p-EGFR and p-Akt [56]

increases cell proliferation,
migration, invasion [54],

tumor growth, regional and
distant metastasis [56]
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Table 2. Cont.

Gene Name Gene Description Role Expression in Malignancies and
Putative Neoplastic Effects Pathways Neoplastic Condition

PTBP1/hnRNP1
Polypyrimidine

tract-binding protein 1
(isoform a)

RNA-binding protein,
key factor in the control

of RNA metabolism,
regulates mRNA

alternative splicing (AS)
events, mRNA stability,
mRNA localization [57]

overexpressed in human
epithelial ovarian

tumors, BC tissues and
cell lines,

glioblastomas [57],
LUAD tissues and cell

lines [58]

PT

regulates PTEN-PI3K/Akt and
autophagy [57]; enhances EGFR

signaling, MAPK, hypoxia
inducible factor-1α pathways [59];
associated with HSP progress [58]

associated with breast
tumorigenesis, promotes

tumor cell growth, invasion
and maintenance of metastasis
[57], regulates apoptosis and

cell proliferation [59]

DDX19A
DEAD-box helicase

19A/ATP-dependent
RNA helicase DDX19A

RNA helicases involved
in RNA metabolic
process including

transcription, RNA
transport, RNA
degradation [60]

overexpressed in
CSCC [60], BC cell

lines [61]
PT induces EMT [60]

promotes cell migration,
invasion, metastasis, NOX1

expression and ROS
production [60]

GPI Glucose-6-phosphate
isomerase/neuroleukin

cytoplasmic
glycolytic-related

enzyme, secreted in
ECM of cancer cells it is
called autocrine motility

factor (AMF) [62] and
functions as a cytokine
or growth factor [63]

overexpressed in BC [63],
LUAD/NSCLC,

glioblastoma,
ccRCC [64], GC [62]

PT

REACTOME_GLUCONEOGENESIS;
OXPHOS; glycolysis and

gluconeogenesis [64], correlated
with cell cycle regulatory genes,

immune cell infiltration, gene
alteration, ferroptosis genes [63];

AMF induces EMT [65]

involved in cell cycle, cell
proliferation, correlates with

immune infiltration, cell
migration, invasion [64];

silencing suppressed
proliferation, migration,
invasion, glycolysis, and
induced apoptosis [62]

TUBA1A Tubulin alpha-I a

cell division, cell
movement, microtubule

based process, cell
junction organization,

cytoskeleton
organization and

cytoskeleton dependent
intracellular transport

upregulated in BC
tissues [66], GC [67] PT

involved in infiltration of
macrophages to the tumor

microenvironment [67], involved
in EMT related to re-organization

of cell-cell contact [68]

overexpression was correlated
with poor overall survival and
a more aggressive phenotype

in GC [67]
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Table 2. Cont.

Gene Name Gene Description Role Expression in Malignancies and
Putative Neoplastic Effects Pathways Neoplastic Condition

UTY/KDM6C

Ubiquitously transcribed
tetratricopeptide repeat

protein Y-linked
transcript variant 83

member of lysine
(K)-specific dimethylase

(KDM6) family that act as
dynamic regulators of

gene expression by histone
demethylation [69],

chromatin organization,
anatomical structure
development, gene

transcription
regulation [70]

not controversial

REACTOME_CHROMATIN_
MODIFYING_ENZYMES,

transcriptional dysregulation in
cancer (KEGG)

oncogenic or tumor
suppressive roles [70]

NCAM2 Neural cell adhesion
molecule 2

involved in cell adhesion,
differentiation and

anatomical structure
development

overexpressed in some
prostate and BC cell

lines, such as
ER-dependent BC cell

lines MCF7 and
T47D [71]

not known not known not known

RHBDD1

Rhomboid-related
protein 4 isoform

X1/rhomboid
domain-containing

protein 1

intramembrane/cytoplasmic-
cleaving serine protease
involved in intracellular

protein transport,
programmed cell death,

protein catabolic process,
cell differentiation, cell

growth, protein
maturation, participates in

ER quality control
system [72] and regulation

of mitochondrial
membrane

remodeling [73]

highly upregulated in
BC, CRC tissue and cell

lines [72]
PT positive correlation with p-Akt

and CDK2 [72], c-Jun [73]

important in tumorigenesis,
poor prognosis in ER+,

ER+PR+, HER2+, and TNBC,
inhibits apoptosis by

activation of c-Jun and Bcl-3
[73]; deletion suppresses BC

cell survival, migration,
invasion, cycle progression

and G1/S phase transition and
increases apoptosis and

ERAD [72]
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Putative Neoplastic Effects Pathways Neoplastic Condition

CS Citrate synthase

rate-limiting respiratory
enzyme in the TCA cycle,

involved in cell lipid
metabolism (conversion
of glucose to lipids) and

mitochondrial
function [74]

overexpressed in various
cancers: PCa [74],
pancreatic ductal

carcinoma [75], ovarian
carcinoma [76];

downregulated in
human cervical

carcinoma cells [77]

PT
OXPHOS; lipid metabolism

signaling [74]; downregulation
could induce EMT [77]

aggressive tumor progression,
poor prognosis, increases cell
proliferation, growth, colony

formation, migration,
invasion, and cell cycle [74];

silencing induces reduction of
cell proliferation, invasion,
migration, and enhances
apoptosis [76], cells being

unable to grow or proliferate
in response to extracellular

growth factors [78]

LAMTOR3/
MAPKSP1/MP1

Late
endosomal/lysosomal

adaptor, MAPK and
MTOR activator

3/mitogen activated
protein kinase scaffold

protein 1/MEK partner 1

member of the Ragulator
complex involved in
multiple signaling

pathways that acts as a
scaffold protein

complex [79]

overexpressed in ER+
and ER- BC cell lines and

in non-tumorigenic
mammary epithelial cell

lines [80];
downregulated in

KIRC [79]

PT

considered to be a convergence
point for MAPK and mTOR

pathways [81]; targeting
MEK1/MP1/ERK1/BCL2 axis

may improve clinical outcome of
MLCC patients [82]

required for pro-survival
signaling from PI3K/AKT

pathway in ER+ BC cells [80];
upregulation induces BCL2
expression (anti-apoptotic

protein) [82]

OGA Protein O-GlcNAcase
(isoform a)

involved in protein
glycosylation and

protein catabolic process

overexpressed in
numerous cancers [83] PT

drives aerobic glycolysis and
tumor growth by inhibiting

PKM2 [83]

enhances tumor
progression [83];

ZNF114 ZNF114 protein, partial

DNA-binding protein
involved in transcription;
member of KRAB-ZEPs
family of transcription

regulators [84]

overexpressed in
ccRCC [85] PT

pluripotency maintenance;
repression of differentiation gene

DPYSL4 [86]

involved in maintenance of
cell pluripotency and

stemness [84,86]; shorter
overall survival [85]
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Gene Name Gene Description Role Expression in Malignancies and
Putative Neoplastic Effects Pathways Neoplastic Condition

PA2G4/EBP1

Proliferation associated
protein

2G4/ErbB3-binding
protein 1

found in cytoplasm and
nucleus, regulates cell

growth and
differentiation, being a
ribosomal constituent,

transcriptional regulator,
RNA/DNA-binding

protein, mediates rRNA
processing, DNA

transcription, mRNA
translation, protein
stability and signal
transduction [87]

overexpressed in HCC,
cervical cancer, CC, NPC,

salivary ACC,
downregulated in

HER2+ BC and bladder
cancer [87]

PT

tumor formation via
Ebp1/p38/HIF1α signaling and

proto-oncogene MDM2-mediated
downregulation of p53, promotes

EMT [87]

intensively involved in
tumorigenesis and cancer
progression/metastasis,

promotes cell proliferation
and soft agar colony

generation [87]

SRM spermidine synthase

essential polyamine for
cell proliferation,
differentiation,

development [88],
regulation of gene

expression, apoptosis,
cell cycle progression

and signaling
pathways [89]

biosynthesis is
upregulated in BC and
contribute to disease

progression [89],
overexpression in

CRC [90]

PT

MYC_TARGETS_V2; interferes
with mTOR and RAS oncogenic
pathways [88], c-MYC target [91]

and C/ERPβ may serve as
regulators of SRM [90]

cell growth [89]

GSTM3 Glutathione
S-transferase mu3

enzyme involved in
xenobiotic

metabolism/detoxification,
apoptosis inhibition [92],

regulates ROS and
participates in
OS-mediated

pathology [93]

mRNA expression level
high in HER2+ or ER+
BC [93], overexpressed
in cervical cancer, colon

cancer [92]

PT

EMT inducer [94], cellular stress
response via NF-κB and MAPK

pathway during tumor
progression [92]

cancer cell maintenance,
survival and tumor

progression [92]
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Putative Neoplastic Effects Pathways Neoplastic Condition

NCKAP1/NAP1

Noncatalytic region of
tyrosine kinase

(Nck)-associated protein
1

associates with Src
homology 3 (SH3)

domain of NCK protein
that localizes along the

lamellipodia and
mediates contact-cell
dependent migration

[95], member of WASF3
regulatory complex [96];
involved in cytoskeleton

organization through
actin polymerization,

programmed cell death,
signaling, cell

differentiation and
protein-containing
complex assembly

overexpressed in NSCLC
[95]; downregulated in

ccRCC [97]
PT

ribosomal signaling, OXPHOS,
TGF-β, EMT-related signaling

pathways [97]; involved in
HSP90-mediated invasion and

metastasis by provoking MMP9
activation and EMT [95]

overexpression is associated
with poorer survival in BC
patients; essential for cell

motility, adhesion, invasion
and metastasis [95];

knockdown in BC cell lines,
MDA-MB-231 and Hs578T,

leads to a significant reduction
in invasion and suppresses

metastasis [96]; tumor
suppressive in ccRCC [97] and

HCC [98]

PRDX3

Thioredoxin-dependent
peroxide reductase,

mitochondrial isoform a
precursor

mitochondrial member
of the antioxidant family

of thioredoxin
peroxidase [99] required

for mitochondrial
homeostasis [100]

overexpressed in HCC,
malignant mesothelioma,

BC, PCa, lung cancer,
cervical carcinoma [99];

overexpression
associated with ER and

PR [100]

PT

OXPHOS; defense against H2O2
produced by mitochondrial
respiratory chain [99], c-Myc

target gene [100]

tumor promoting effects [99],
involved in regulation of cell
proliferation, differentiation

and antioxidant function,
overexpression protects cells

from oxidative stress and
apoptosis [100]
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Putative Neoplastic Effects Pathways Neoplastic Condition

RAB8A Ras-related protein
Rab-8A

intracellular protein
transport, intracellular
membrane trafficking,

autophagy,
vesicle-mediated

transport, signaling, cell
differentiation,

membrane organization

overexpressed in BC
tissues [101] PT activates AKT and ERK1/2

signaling pathways [101]

increases cell growth,
proliferation, migration,

invasion [101]

RAB8B Ras-related protein
Rab-8B

member of the Rab small
G protein family,

immune system process,
intracellular trafficking,

peroxisome organization,
vesicle-mediated

transport, signaling, cell
junction organization,

membrane organization,
protein localization to

plasma membrane

overexpressed in
TC [102] PT required for Wnt/β-catenin

signaling [103]

overexpression and loss of
functioning adherence

junction accelerate
tumorigenesis in testis [102]

RAB15 Ras-related protein
Rab-15 (isoform AN2)

involved in trafficking of
cargos through the apical

recycling endosome
(ARE) to mediate
transcytosis [104]

overexpressed in liver
cancer cells [105] PT regulates the endocytic recycling

pathway [106]

associated with the
susceptibility of cells to DNA

damage-induced cell
death [105]

RAB35 Ras-related protein
Rab-35 (isoform 1)

Rab GTPase located in
plasma

membrane/endosomes,
involved in vesicular

trafficking, actin
dynamics, cytokinesis,
apical-basal polarity,

endocytosis,
phagocytosis, autophagy,

exosome release [107]

overexpressed in
OC [107] PT activator of PI3K/AKT

pathway [107]

oncogenic protein, enhances
BC cells invasion and

metastasis [107]
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Proteins with downregulated expression in phenotype of low JTB expression condition

TUBB4B tubulin beta-4B chain

constituent of
microtubules involved in

mitotic cycle, immune
system process and

cytoskeleton
organization

overexpressed in
membranes of stem cells
enriched cultures, PCa,

OC, glioblastoma,
metastatic CRC [108]

PT

downregulation is essential for
the initiation of EMT [108], for

microtubule-VIM interaction and
contributes to the maintenance of
polarity in migrating cells [108]

decreased level correlates with
increased cell migration [109]

CAPN2 Calpain 2/m-calpain

calcium-dependent,
non-lysosomal cysteine

protease involved in
lipid metabolic process,

cytoskeleton
organization,

programmed cell death,
cell differentiation,

protein catabolic process,
protein maturation and

anatomical structure
development

overexpressed in various
malignancies: CRPC cell
lines (DU145, PC3), BL

and TNBC [110],
RCC [111], PC [112]

AT

acts via AKT/mTOR signaling
pathway [111], and regulates

Wnt/β-catenin signaling
pathway-mediated EMT [112];

silencing may inhibit
EMT [111,112]

oncogene involved in
carcinogenesis and tumor

progression, and metastasis
silencing inhibits cell

proliferation, migration and
invasion by reducing MMP-2

and MMP-9 activation and
regulation of invadopodia

dynamics [111]

ELFN2/LRRC62

Extracellular leucine rich
repeat and fibronectin

type III
domain-containing

2/protein phosphatase 1
regulatory subunit 29

putative oncogene,
hypomethylation

gene [113]

overexpressed in GC
tissues and cell

lines [114]; oncogene in
GBM [113]

AT

interacts with AurkA and
eukaryotic translation initiation

factor 2 subunit alpha (EIF2α) and
regulates the kinase activity of

AurkA to promote cell
autophagy [113]

knockdown inhibits cell
proliferation, migration,

invasion, increases E-cadherin
and decreases

N-cadherin [114]

SLC9AR1/
NHERF1/ERB50

Solute carrier (SLC)
family 9 (Na(+)/H(+)
exchanger), member 3

regulator
1/sodium-hydrogen
exchanger regulatory

factor 1/ERM-binding
phosphoprotein

multifunctional
cytoplasmic adaptor
involved in growth

factor signaling [115];
interacts with several
proteins related to the
estrogen pathway and
tumorigenesis: EGFR,
PTEN, PDGFR, beta
catenin, EZR [116]

in BC acts as a tumor
suppressor protein;

oncogene in glioma and
other cancers;

overexpressed in PCa
tissue and cell lines [117]

AT/PT

MTORC1_SIGNALING;
ESTROGEN_RESPONSE_LATE;

downregulation is associated with
Wnt/β-catenin inactivation [118];

knockdown enhances
PDGF-induced cytoskeletal

rearrangements and chemotactic
migration of cells [119];

AKT-associated protein [115]

knockdown suppresses
proliferation and migration of

metastatic PCa cells and
promotes apoptosis [117]
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ANXA4 Annexin 4/lipocortin
IV/endonexin I [120]

intracellular Ca2+ sensor
that modulates

membrane permeability
and membrane

trafficking, participates
in cell growth,

apoptosis [121], cell
cycle and

anticoagulation [122]

overexpressed in various
tumors: chemoresistant

LC, ESCC, GC, CRC,
PCC, gallbladder, HCC,
cholangiocarcinoma, BC,
RCC, OCCC, laryngeal
and PCa, MM [121,123],

cervical cancer [120]

AT
overexpressed, is related to AKT,

CDK1, and tumor suppressor
p21 [122]

knockdown attenuates
migration in OC and BC

cells [121]

YWHAE 14-3-3 protein epsilon

mitochondrial import
stimulation factor L

subunit [124] involved in
mitotic cell cycle,

intracellular protein
transport,

nucleocytoplasmic
transport, signaling, cell

differentiation, cell
motility and

transmembrane
transport

overexpressed in BC
tissue [124] AT MITOTIC_SPINDLE;

MYC_TARGETS_V1

knockdown reduces
expression of Snail and

Twist [124]

YWHAZ

tyrosine
3-monooxygenase/

tryptophan
5-monooxygenase

activation protein zeta

central hub protein
involved in many signal

transduction
pathways [125]

oncogene overexpressed
in multiple cancers:
HCC, CRC, LUAD,
BC [125], urothelial

carcinomas [126]

AT UPR

knockdown decreases cell
growth, proliferation,

invasion, enhances apoptosis
and tamoxifen-induced

inhibition of cell viability [125]
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Putative Neoplastic Effects Pathways Neoplastic Condition

PSMB9/LMP2
Proteasome 20S subunit

9 beta/low molecular
weight protein 2

immunoproteasome
functions; major enzyme
in ubiquitin-dependent

protein degradation and
inactivation [127]

overexpressed in tumor
tissues: LGG [127];

deficient in uLMS [128]
PT

INTERFERON_ALPHA_RESPONSE;
INTER-

FERON_GAMMA_RESPONSE;
downregulation is associated with
inhibition of pathways related to
formation and development of
ECM through proto-oncogene
tyrosine-protein kinase (SRC)

gene

defective expression
contributes to abnormal cell

proliferation and tumor
progression [128]

Abbreviations: ACC—adenoid cystic carcinoma; AJ—APICAL_JUNCTION; AT—anti-tumorigenic; BC—breast cancer; BCSCs—breast cancer stem cells; CC—colon cancer;
ccRCC/KIRC—clear cell renal cell carcinoma/kidney renal clear cell carcinoma; CDK2—cyclin-dependent kinase 2; CMPF—chaperone-mediated proteins folding; CRC—colorectal
cancer; CRPC— castration-resistant prostate cancer; CSCC—cervical squamous cell carcinoma; DCIS—ductal carcinoma in situ; EMT—epithelial–mesenchymal transition pathway;
ERAD—endoplasmic reticulum-associated degradation; ERK—extracellular signal-regulated kinase; ESCC—esophageal squamous cell carcinoma; EZRezrin; FAK—focal adhesion
kinase; GBM—glioblastoma multiforme; GC—gastric cancer; HCC—hepatocellular carcinoma; HNSC—head and neck squamous carcinoma; IAP—inhibitory of apoptosis proteins;
KRAB-ZEPs—Krűppel-associated box domain zinc finger proteins; LC— lung cancer; LGG—low grade glioma; LSCC—lung squamous cell carcinoma; LUAD—lung adenocarcinoma;
LUSC—lung squamous cell carcinoma; MAPK—mitogen-activated protein kinase; MDM2—mouse double minute 2 homolog/E3 ubiquitin-protein ligase; MM—malignant mesothe-
lioma; MMP9—metalloproteinase 9; mTOR—mammalian target of rapamycin; NOX1—NADPH oxidase 1; NPC—nasopharyngeal carcinoma; NSCLC—non-small-celllung cancer;
OCCC—ovarian clear cell carcinoma; OSCC—oral squamous cell carcinoma; OXPHOS—oxidative phosphorylation pathway; PCC—pancreatic cancer; PCa—prostate cancer;
PDAC—pancreatic ductal adenocarcinoma; PT—pro-tumorigenic; PTEN—phosphatase and tensin homolog; ROS—reactive oxygen species pathway; TC—testicular cancer;
TCA—tricarboxylic acid; TGF-β—transforming growth factor beta; uLMS—uterine leiomyosarcoma; UPR—unfolded protein response; VIM—vimentin.
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Analyzing the data from Table 2, we observed that 38 DEPs emphasize a pro-tumorigenic
(PT) role and 5 DEPs are known to have anti-tumorigenic (AT) activity in the MCF7 BC cell
line transfected for JTB downregulation.

2.1. JTB Silencing Is Associated with Neoplastic Abilities of MCF7 Transfected Cells

The epithelial-mesenchymal transition (EMT) process facilitates the local invasion
in cancer. We identified a plethora of upregulated and downregulated DEPs directly or
indirectly involved in EMT process: HSPB1, HSPA4, MCM6, ACTN1, PFN2, EEF2, IFIT1,
DDX19A, GPI, TUBA1A, CS, PA2G4, GSTM3, NCKAP1, and TUBB4B (Table 2). According
to previously published data, HSPB1 and HSPA4 are members of the HSP family that
promote EMT in association with the increased invasiveness of cancer cells [13]. Also, the
EMT process is subjected to metabolic regulation, while the metabolic pathways adapt
to cellular changes during the EMT. The mammalian or mechanistic target of rapamycin
(mTOR) pathway becomes aberrant in various types of cancer. The hyperactivation of
mTOR signaling pathway promotes cell proliferation and metabolic reprogramming that
initiates tumorigenesis and progression [129]. HSPA4, PCK1, PCK2, LARS1, PSMC6, LAM-
TOR3, SRM, and SLC9AR1 proteins are involved in mTOR pathway activation in MCF7
cells transfected for JTB silencing. The mitogen-activated protein kinase (MAPK) signaling
pathway regulates proliferation, differentiation, apoptosis and stress responses, while the
overexpression of extracellular signal-regulated kinases ERK1 and ERK2 is critical in cancer
development and progression [130]. We identified MCM6, PCK1, LAMTOR3, GSM3, and
REB8A as pro-tumorigenic proteins involved in ERK/MAPK signaling pathways in the
JTBlow condition. Also, the phosphatidylinositol-3-kinase (PI3K/AKT) pathway is one of
the most hyper-activated intracellular pathways in many human cancers, contributing to
carcinogenesis, cell proliferation, invasion and metastasis [131]. HSPA4, CCT3, PTBP1, and
RAB35 are pro-tumorigenic proteins involved in PI3K/AKT pathway. The Wnt/β-catenin
signaling pathway facilitates cancer stem cell renewal, cell proliferation and differentia-
tion, being involved in carcinogenesis and therapy response [132]. Several DEPs, such as
POTEF/ACTB, PSMC6, CCT3, IFIT1, and RAB8B are dysregulated proteins involved in
Wnt/β-catenin signaling pathway, which emphasize pro-tumorigenic activities. NF-κB is
an important signaling pathway involved in cancer development and progression, which
controls the expression of several target genes and mediates cancer cell proliferation, sur-
vival and angiogenesis [133]. Thus, HSPB1/HSP27 and POTEF have been identified as
proto-oncogenic proteins involved in this pathway. The unfolded protein response (UPR)
is known as a pro-survival mechanism involved in progression of several cancers, such as
BC, prostate cancer, and glioblastoma multiforme [134]. Here, JTB silencing was associated
with UPR-related proteins, such as EEF2 and IFIT1.

The vesicle transport regulators play key roles in tumor progression, including uncon-
trolled cell growth, invasion and metastasis [104]. Ras-related proteins, small GTP-binding
proteins of the Rab family, are dysregulated in malignant cells, affecting intracellular and
membrane traffic, as well as proliferation and metastasis, reducing the survival rate of pa-
tients [101]. Ras-related protein Rab-8A (RAB8A) and Ras-related protein Rab-8B (RAB8B)
were significantly upregulated in this experiment. Gene ontology enrichment analysis
identified the following biological processes enriched in these upregulated proteins: vesicle
docking involved in exocytosis, regulation of exocytosis, regulation of protein transport,
protein secretion, protein import into peroxisome membrane, Golgi vesicle fusion to tar-
get membrane, protein localization to plasma membrane and cell junction organization.
RABA8 was reported as overexpressed in BC tissues [101], while RAB8B was upregulated
in TC [102]. The RAB8A silencing inhibits the proliferation, migration and invasion of BC
cells through suppression of AKT and ERK1/2 phosphorylation [101]. RAB8B is required
for the Wnt/β-catenin signaling pathway [103], while its overexpression promotes the
activity and internalization by caveolar endocytosis of LRP6, a member of the low-density
lipoprotein receptor superfamily of cell-surface receptors, which is involved in cell prolifer-
ation, migration, and metastasis [135]. RAB15 is involved in trafficking cargo through the
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apical recycling endosome (ARE) to mediate transcytosis [104]. It is overexpressed in liver
cancer cells [105] and is associated with the susceptibility of cells to DNA damage-induced
cell death [105]. RAB35 is an oncogenic protein that enhances the invasion and metastasis
of BC cells [107].

KEGG pathway analysis (Figure 4) also emphasized the following enriched pathways
in the MCF7 BC cell line transfected for JTB downregulation: KEGG_Tight junction and
KEGG_Regulation of actin cytoskeleton. De Abreu Pereira et al. (2022) showed that
highly expressed proteins and biological processes in HCC-1954 (HER2+), a very invasive
and metastatic BC cell line, are classified as tight junctions and cytoskeleton proteins, as
compared to an MCF7 BC cell line that emphasized proteins related to proteasome and
histones in correlation with the higher rate of mutation in MCF7 BC cells [10].
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B. Gene ontology (GO) enrichment analysis of proteins in MCF7 BC cell line transfected for JTB
downregulation: biological processes (BP) enriched in PT proteins. The analysis was performed using
GeneCodis website (https://genecodis.genyo.es/, accessed on 22 October 2023).

2.2. Glucose Metabolism Reprogramming in JTB Downregulated Condition

Multiple cancer cell metabolic pathways are reprogrammed and adapted to sustain
cell proliferation, tumor growth, and metastasis in tumor progression, especially under
a nutrient deprivation condition. KEGG pathway analysis (Figure 4) emphasized sev-
eral metabolic enriched pathways in the MCF7 BC cell line transfected for JTB downreg-
ulation: TCA cycle (KEGG_Citrate cycle/TCA cycle) and Glycolysis/Gluconeogenesis
(KEGG_Glycolysis/Gluconeogenesis), while GO analysis showed as upregulated: gluco-
neogenesis (GO_BP Gluconeogenesis) and pyruvate metabolism (GO_BP_Glycerol biosyn-
thetic process from pyruvate). The highlighted dysregulation of propionate metabolism
(GO_BP Propionate catabolic process) is also known to contribute to a pro-aggressive state
in BC cells, increasing cancer cell metastatic ability [136]. Phosphoenolpyruvate (PEP)

https://genecodis.genyo.es/
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carboxykinases (PCK1/PEPCK-C, cytosolic isoform, and PCK2/PEPCK-M, mitochondrial
isoform) have been shown to be multifunctional enzymes, critical for the growth of certain
cancers [137], sustaining cell cycle progression and cell proliferation [39,40]. Thus, in the
absence of glucose, cancer cells may synthesize essential metabolites using abbreviated
forms of gluconeogenesis, as a reverse phase of glycolysis, especially by PCK1 and PCK2
expression [137], both well known for their key roles in gluconeogenesis and regulation of
TCA cycle flux [39]. PCK1 has been reported as a tumor-suppressor in cancers arising from
gluconeogenic tissues/organs, such as liver and kidney, while it acts as a tumor promoter
in many human cancers arising in non-gluconeogenic tissues [138]. Consequently, PCK1
was reported as an overexpressed oncogene in colon, thyroid, breast, lung, urinary tract,
and melanoma cancers [36], while it was found as a downregulated tumor suppressor
in tumors arising in gluconeogenic tissues of liver and kidney, such as in HCC [36], and
ccRCC [37]. Here we showed that MCF7 cells transfected for JTB downregulation markedly
upregulated cytosolic PCK1, which was described as a molecular hub that regulates glycol-
ysis, TCA cycle and gluconeogenesis to increase glycogenesis via gluconeogenesis [139].
PCK1, as a key rate-limiting enzyme in gluconeogenesis, catalyzes the conversion of ox-
aloacetate (OAA) to PEP (GO_BP oxaloacetate metabolic process) [138] and links the TCA
and glycolysis/gluconeogenesis [40]. The expression of PGK1 leads to the biosynthesis of
glucose-6-phosphate (G6P) that can be used by different pathways, including conversion
to glucose, glycolysis, pentose phosphate pathway (PPP) or glycogenesis [139]. Glucose-
6-phosphate isomerase (GPI) that interconverts G6P and fructose-6-phosphate (F6P) is
also overexpressed in the downregulated JTB condition (GO_BP Gluconeogenesis). Cy-
toplasmic GPI is a glycolytic-related enzyme secreted in the extracellular matrix (ECM)
of cancer cells, where it is called an autocrine motility factor (AMF) [62], and functions
as a cytokine or growth factor [63]. GPI is overexpressed in BC [63], LUAD/NSCLC,
glioblastoma, ccRCC [64], and GC [62]. This glycolytic enzyme is involved in cell cycle,
cell proliferation, correlates with immune infiltration, cell migration and invasion [64],
while silencing suppressed proliferation, migration, invasion, glycolysis, and induced
apoptosis (GO_BP Negative regulation of cysteine-type endopeptidase activity involved in
apoptotic process) [62]. PCK1 also enhances the PPP, which produces ribose-5-phosphate
for nucleotide synthesis and NADPH for biosynthetic pathways [138]. Abundant NADPH
ensures high levels of reduced glutathione (GSH) [139], known for its important intracellu-
lar antioxidant role, which acts as a regulator of cellular redox state as well as a controller
of cell differentiation, proliferation, apoptosis, ferroptosis and immune function [140].

Cancer cells utilize glutamine metabolism for energy generation as well as to syn-
thesize molecules that are essential for cancer growth and progression [141], such as
nucleotides and fatty acids, which regulate redox balance in cancer cells [142]. PEPCKs
increase the synthesis of ribose from non-carbohydrate sources, such as glutamine [39] as
well as the serine and other amino acid synthesis [143]. Also, PCK1 helps regulate triglyc-
eride/fatty acid cycle (GO_BP Regulation of lipid biosynthetic process) and development
of insulin resistance (GO_BP Cellular response to insulin stimulus), being involved in glyc-
eroneogenesis (GO_BP Glycerol biosynthetic pathway from pyruvate) and re-esterification
of free fatty acids [144]. PEPCK-M is reported as a key mediator for the synthesis of glyc-
erol phosphate from non-carbohydrate precursors, being important to maintain level of
glycerophospholipids as major constituents of bio-membranes [145]. The effects of PEPCK
on glucose metabolism and cancer cell proliferation are partially mediated by activation of
mechanistic target of rapamycin (mTORC1) [39], which is regulated by glucose, growth
factors and amino acids and is coupled to the insulin/IGF-1 (insulin-like growth factor
1) signaling pathway [146]. Thus, the mitochondrial phosphoenolpyruvate carboxyki-
nase (PEPCK-M/PCK2), known to enhance cell proliferation and response to stress or
nutrient/glucose restriction/deprivation in cancer cells (GO_BP Response to starvation)
compared to PCK1 that functions primarily in gluconeogenesis, promotes tumor growth in
ER+ BC through regulation of mTOR pathway (GO_BP Positive regulation of mTOR signal-
ing) [40]. AMP-activated protein kinase (AMPK) is an ”energy sensor”/metabolic regulator
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involved in lipogenesis, glycolysis, TCA cycle, cell cycle progression, and mitochondrial
dynamics [147]. PCK1 dysregulation may promote cell proliferation via inactivation of
AMPK (KEGG_AMPK signaling pathway), known as a tumor suppressor [36] but was
recently reconsidered as a putative oncogene [148]. PCK1-directed glycogen metabolic
program regulates differentiation and maintenance of CD8+ T cells that are essential for
protective immunity against cancer [139] (GO_BP Positive regulation of memory T cell
differentiation). PEPCK is known to be activated in response to acidosis. The acid-induced
PEPCK provides glucose for acid-base homeostasis (GO_BP Positive regulation of tran-
scription from RNA polymerase II promoter in response to acidic pH) [149]. In conclusion,
PCK enzymes are involved in gluconeogenesis, glyceroneogenesis, serine biosynthesis,
and amino acid metabolism, targeting the increase of glucose level that contributes to the
development and progression of many types of cancer arising in non-gluconeogenic tis-
sues/organs [150]. 25 upregulated DEPs with PT activity (HSPB1, HSPA4, ACTB, ACTN1,
PFN2, EEF2, PCK1, PCK2, FARSB, GARS1, LARS1, RARS1, PSMC6, CCT2, IFIT1, PTBP1,
GPI, TUBA1A, UTY, CS, PA2G4, NCKAP1, PRDX3, RAB8A, and RAB35) and two down-
regulated DEPs (TUBB4B and PSMB9) were submitted for PPI network construction with
STRING database (https://string-db.org/, accessed on 22 October 2023), to highlight the
specific interaction network associated with the JTBlow condition in transfected MCF7 BC
cell line (Figure 5). This enrichment indicates that these proteins with PT potential are
biological connected, as a group.
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Figure 5. Interaction network of pro-tumorigenic (PT) proteins in MCF7 BC cell line transfected for
JTB silencing, by means of STRING on-line database (https://string-db.org/, accessed on 22 October
2023). A total of 27 nodes and 69 edges were mapped in the PPI network with a PPI enrichment
p-value of 6.44 × 10−12.
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The main results of this experiment are synthetized in the Figure 6.
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Figure 6. DEPs and their pro-tumorigenic (PT) activity in MCF7 BC cell line transfected for JTB
silencing.

3. Materials and Methods

MCF7 cell culture, the transfection of hJTB plasmids and the collection of cell lysates
was described previously [12] and briefly described below.

3.1. Cell Culture

MCF7 cell lines were purchased from American Type Culture Collection (HTB-22
ATCC) and grown in RPMI medium supplemented with 10% FBS, 0.2% Gentamicin, 1%
Penicillin-Streptomycin and 0.2% Amphotericin (growth media) at 37 ◦C. The cells were
grown until they reached 70–80% confluency and were transiently transfected with JTB
shRNA plasmid for downregulation.

3.2. Plasmids for Downregulation

Four plasmids were custom made by Creative Biogene, Shirley, NY, USA. Three shRNA
plasmids containing GCTTTGATGGAACAACGCTTA sequence, with forward sequencing
primer of 5′-CCGACAACCACTACCTGA-3′ and reverse primer of 5’-CTCTACAAATGTG-
GTATGGC-3′, GCAAATCGAGTCCATATAGCT sequence, with forward primer 5′-CCGAC-
AACCACTACCTGA-3′ and reverse primer of 5′-CTCTACAAATGTGGTATGGC-3′, and
GTGCAGGAAGAGAAGCTGTCA sequence with 5′-CCGACAACCACTACCTGA-3′ and
reverse primer of 5′-CTCTACAAATGTGGTATGGC-3’, all targeting the hJTB mRNA respec-
tively. The fourth plasmid was a control plasmid with a scramble sequence GCTTCGCGC-
CGTAGTCTTA with forward primer 5′-CCGACAACCACTACCTGA-3′ and reverse primer
of 5′-CTCTACAAATGTGGTATGGC-3′. These plasmids were further customized to have
an eGFP tag with Puromicin antibiotic resistance gene.
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3.3. Transfection into MCF7 Cells

As stated in [12], Lipofectamine™ 3000/DNA and DNA/Plasmid (10 µg/µL) com-
plexes were prepared in Opti-MEM Reduced Serum Media (Invitrogen, Waltham, MA,
USA) for each condition and added directly to the cells in culture medium. Cells were
allowed to grow for 48–72 h after which they were collected. 70% transient transfection
efficiency was confirmed by visualizing the green fluorescence emitted by the eGFP using
a confocal microscope (Figure S1).

3.4. Western Blot Analysis

Cell lysates from both the control and downregulated JTB condition were collected
using a lysis buffer. The lysates were then incubated on ice for 30 min and centrifuged
at 14,000 rpm for 20 min. The protein samples were quantified using Bradford Assay.
Lysates containing 20 µg of proteins were run in a 14% SDS-polyacrylamide gels and
transferred to nitrocellulose membranes. The blots were incubated with blocking buffer
containing 5% milk and 0.1% tween-20 overnight at 4 ◦C with shaking. Primary antibody
(JTB Polyclonal Antibody—PA5-52307, Invitrogen, Waltham, MA, USA) was added and
incubated for 1 h with constant shaking. Secondary antibody (mouse anti-rabbit IgG-HRP
sc-2357, Santa Cruz Biotechnology, Inc., Dallas TX, USA) was added and incubated for 1 h
with constant shaking. After each incubation, the blots were washed thrice with TBS-T (1X
TBS buffer, containing 0.05% tween-20) for 10 min each with constant shaking. Finally, the
enhanced chemi-luminescent substrate (Pierce™ ECL Western Blotting Substrate—32106,
ThermoFisher, Waltham, MA, USA) was added and the blot was analyzed using a CCD
Imager. For normalization, mouse GAPDH monoclonal antibody (51332, cell-signaling
technology, Danvers, MA, USA) was added and incubated for 1 h, followed by the addition
of goat anti-mouse IgG-HRP (sc-2005, Santa Cruz Biotechnology) and the addition of ECL
substrate. Image J software was used for the detection and comparison of the intensity of
the bands (Figure S2).

3.5. 2D-PAGE & Proteomic Analysis

We used three biological replicates for the downregulated JTB condition. Two controls
were used for the comparison: control (n = 3), control_shRNA (n = 3) and sh_JTB (n = 3).
These conditions were analyzed in 2D-PAGE by Kendrick Labs, Inc. (Madison, WI, USA)
and nanoLC-MS/MS as previously described [13]. The computer comparison was done
for the average of three samples (3 vs. 3)—control_shRNA vs. sh_JTB (n = 3) and Control
vs. sh_JTB (n = 3). The dysregulated spots were selected based on the criteria of having a
fold increase or decrease of ≥1.7 and p value of ≤0.05. The data processing was done using
PLGS software (v. 2.4) to convert them to pkl files and Mascot Daemon software (v. 2.5.1)
was used to identify the dysregulated proteins. Finally, Gene Set Enrichment Analysis
(GSEA) analysis was done to identify the identify the dysregulated pathways as previously
described [13].

3.6. Data Sharing

Mascot data will be provided upon request, according to Clarkson University Material
Transfer Agreement. The mass spectrometry data have been deposited to the ProteomeX-
change Consortium via PRIDE partner repository with the dataset identifier PXD046265.4.

4. Conclusions

The jumping translocation breakpoint (JTB) protein has been reported as a regulator of
mitochondrial function, cell growth, cell death and apoptosis, as well as a protein involved
in cytokinesis/cell cycle. Some authors detected JTB as an overexpressed gene/protein in
several malignant tissues and cancer cell lines, including liver cancer, prostate cancer, and
BC, showing that this gene may suffer from unbalanced jumping translocation that leads to
aberrant products, highlighting that the JTB downregulation/silencing increases cancer
cell motility, anti-apoptosis, and promotes genomic instability and tumorigenesis. We also
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showed that the upregulated expression of DEPs in the JTBlow condition, investigated by
SDS-PAGE followed by nLC-MS/MS proteomics in transfected MCF7 BC cell line, may
promote cancer cell viability, motility, proliferation, invasion, ability to survive into hostile
environment, metabolic reprogramming, escaping of tumor cells from host immune control,
leading to a more invasive phenotype for MCF7 cells. Several downregulated DEPs in
the JTBlow condition also promoted the invasive phenotype of MCF7 cells, sustaining cell
proliferation, migration, invasion, and tumorigenesis. A plethora of DEPs identified during
JTB silencing by in-solution digestion followed by nLC-MS/MS have been complementary
and completed the list of DEPs identified by SDS-PAGE proteomics [12]. In this last case
especially, upregulated proteins emphasized pro-tumorigenic activities in downregulated
JTB state [13].

Using 2D-PAGE coupled with nLC-MS/MS proteomics, the present study identified
45 significantly dysregulated proteins, of which 37 were upregulated and 8 downregulated,
in MCF7 BC cell line transfected for downregulated JTB condition. HSPB1, HSPA4, MCM6,
ACTB, ACTN1, PFN2, TUBA1A, EEF2, PCK1, PCK2, GPI, FARSB, GARS1, LARS1, RARS1,
PSMC6, CCT2, CCT3, IFIT1, PTBP1, DDX19A, UTY, NCAM2, RHBDD1, CS, LAMTOR3,
OGA, ZNF114, PA2G4, SRM, GSTM3, NCKAP1, PRDX3, REB8A, RAB8B, RAB15 and
RAB35 have been overexpressed, while TUBB4B, CAPN2, ELFN2, SLC9AR1, ANXA4,
YWHAZ, YWHAE, and PSMB9 proteins were found to be significantly downregulated.
GSEA revealed four upregulated pathways, including proteins important for interferon
alpha (IFN-α) response, interferon gamma (IFN-γ) response, Myc targets V1, and unfolded
protein response (UPR). Two downregulated pathways comprised proteins involved in
estrogen response late and estrogen response early pathways. Almost all DEPs identified
in this experiment exert pro-tumorigenic effects in the JTBlow condition, sustaining the
tumor suppressive function of JTB. Thus, the identified DEPs are involved in several
signaling and metabolic pathways that exert pro-tumorigenic roles: EMT, ERK/MAPK,
PI3K/AKT, Wnt/β-catenin, mTOR, C-MYC, NF-κB, IFN-γ and IFN-α response, UPR, and
glycolysis/gluconeogenesis. These pathways sustain cancer cell growth, adhesion, survival,
proliferation, invasion, metastasis, resistance to apoptosis, cytoskeleton reorganization,
maintenance of stemness, metabolic reprogramming, survival in a hostile environment,
and a poor clinical outcome. In conclusion, JTB silencing might increase the neoplastic
phenotype and behavior of MCF7 BC cell line.

Analysis of upregulation of JTB was systematic, complementary and comprehensive:
in-solution digestion, 1-D-PAGE and 2D-PAGE, followed by proteomics. Analysis of JTB
silencing was also systematic, complementary and comprehensive: in-solution digestion
and 1D-PAGE, and now 2D-PAGE, followed by proteomics. Additional, complementary
or better methods can also be used, at the sample level, or at the instrumentation level.
The current in-solution and gel-based analysis can be complemented, among others, by
peptidomics analysis, phsosphoproteomics analysis, or analysis of stable and transient
protein-protein interactions. At the instrumentation level, 2D-UPLC could be one option,
and newer, more performant mass spectrometers could also be used.

Overall, taking into account the opinion of other authors, as well as based on our
own team’s in vitro studies, we suggest that JTB protein might be considered as a tumor
biomarker for BC and should be studied as a target for BC therapy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28227501/s1, Figure S1. Confocal microscope images
showing conformation of transient transfection for control (A) and JTB downregulated condition
(B). Left panel is the Bright Field (BF) mode, middle panel is the GFP mode and the right panel is
a merge between BF and GFP modes. Figure S2. Downregulation confirmation of hJTB compared
to control samples with (A) showing the downregulation of JTB protein at ~45 kDa in MCF7 cells
treated with sh plasmids compared to control using commercially available full length hJTB antibody
from Invitrogen; (B) shows GAPDH used as the loading control at 37 kDa.
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