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Abstract: Pyrazine is a six-membered heterocyclic ring containing nitrogen, and many of its deriva-
tives are biologically active compounds. References have been downloaded through Web of Science,
PubMed, Science Direct, and SciFinder Scholar. The structure, biological activity, and mechanism
of natural product derivatives containing pyrazine fragments reported from 2000 to September
2023 were reviewed. Publications reporting only the chemistry of pyrazine derivatives are beyond
the scope of this review and have not been included. The results of research work show that
pyrazine-modified natural product derivatives have a wide range of biological activities, including
anti-inflammatory, anticancer, antibacterial, antiparasitic, and antioxidant activities. Many of these
derivatives exhibit stronger pharmacodynamic activity and less toxicity than their parent compounds.
This review has a certain reference value for the development of heterocyclic compounds, especially
pyrazine natural product derivatives.
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1. Introduction

Heterocyclic structures are common in clinical drugs used to treat diseases. Such
drugs typically contain nitrogen, oxygen, and sulfur, which can accept electrons and form
hydrogen bonds. These properties enhance the target binding ability of the compound
compared to that of hydrocarbons. Heterocyclic compounds are a common class of impor-
tant compounds in medicinal chemistry and are often used in the synthesis of drugs and
other active molecules [1–4]. Many natural products also contain different kinds of hetero-
cyclic structures. The heterocyclic ring of pyrazine (Figure 1) consists of a six-membered
aromatic structure containing two nitrogen atoms, arranged in a 1,4 orientation in the
carbon skeleton.

The base of pyrazine (pKa 0.65) is weaker than both pyrazine (pKa 2.3) and pyrimidine
(pKa 1.3). Pyrazine can be expressed as a resonance hybrid of some typical structures as
shown in Figure 1, which has a resonance energy of 24.3 Kcal/mol and a dipole moment of
zero due to the symmetry of the pyrazine molecule. The electron density data show that
the electron density of nitrogen atoms increases while that of carbon atoms decreases [5].
Pyrazine is widely used in the synthesis of biologically active ingredients and catalysts,
which makes pyrazine a hot topic in pharmaceutical chemistry research. In addition,
pyrazine compounds include a variety of pharmacological effects, including antipyretic,
anti-inflammatory, analgesic, anticancer, antibacterial, and antioxidant activities [6].

Pyrazine derivatives have been extensively studied as a disorder mediator, and Table 1
shows marketed drugs containing pyrazine structures that have been shown to have
biological activity relevant to disease treatment. Many phenazine drugs and compounds
containing fragments of pyrazine were also reported that have shown potential therapeutic
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value, including several that are clinically used to treat human diseases. These results
suggest that pyrazine plays an important role in drug discovery [4,7]. 
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Figure 1. Structure and pharmacological activity of pyrazine. 
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Table 1. Cont.

Drug Structure Biological Activity Refs.
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Table 1. Cont.

Drug Structure Biological Activity Refs.
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Here, we review the pharmacological activities and mechanisms of action of natural 
products containing pyrazine structures. References are available at Web of Science, Pub-
Med, Science Direct, and SciFinder Scholar. In this paper, the biological activities of natu-
ral product derivatives containing pyrazines were reviewed and their mechanism of ac-
tion was also discussed. 

2. Natural Product–Pyrazine Hybridization 
2.1. Acrylic and Cinnamic Acid–Pyrazine Hybridization 

Hepatitis C virus (HCV) is an RNA virus that is spread primarily through contami-
nated blood. Beaulieu et al. reported the discovery and optimization of specific allosteric 
inhibitors of NS5B RNA-dependent RNA polymerase (RdRp) encoded by the HCV virus. 
Derivative 1 (Figure 2) was obtained by introducing pyrazines into C-2 indole substitu-
ents. Compound 1 showed good inhibitory activity against RdRp (IC50 = 58 µM) and good 
permeability, solubility, and lipophilicity of caco-2 [69]. 

Rong et al. identified two cinnamate–pyrazine derivatives 2 and 3 with IC50 values of 
0.69 and 1.2 µM by using HCV NS5B RdRp for compound library screening [70]. 

RhoA is a member of Rho GTPase, a subgroup of the Ras superfamily of small GTP-
binding proteins. RhoA, as an important regulator of various cell signaling pathways, 
plays an important role in cytoskeletal organization, transcription, and cell cycle progres-
sion. RhoA may be a suitable therapeutic target for the treatment of cardiovascular dis-
ease. Ma et al. reported on RhoA inhibitors containing cinnamic acid. Compounds 4 and 
5 showed high RhoA inhibitory activity with IC50 values of 1.51 and 1.81 µM [71]. 

Deng et al. reported the RhoA inhibitors of cinnamic acid. Compounds 6–9 showed 
high RhoA inhibitory activity with IC50 values of 1.51, 3.28, 2.58, and 2.62 µM. Pharmaco-
logical analysis showed that compound 6 had a significant vasodilation effect on PE-in-
duced thoracic aortic ring constriction [72]. 

A series of Pim-2 kinase inhibitors were identified by Qian et al. through high-
throughput screening. Compounds 10 and 11 showed stronger inhibition of Pim-2 kinase 
with IC50 values of 10 and 12 nM. Compound 11 had a stronger inhibitory effect on Pim-1 
kinase with an IC50 value of 13 nM [73]. 
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inhibitors of NS5B RNA-dependent RNA polymerase (RdRp) encoded by the HCV virus. 
Derivative 1 (Figure 2) was obtained by introducing pyrazines into C-2 indole substitu-
ents. Compound 1 showed good inhibitory activity against RdRp (IC50 = 58 µM) and good 
permeability, solubility, and lipophilicity of caco-2 [69]. 

Rong et al. identified two cinnamate–pyrazine derivatives 2 and 3 with IC50 values of 
0.69 and 1.2 µM by using HCV NS5B RdRp for compound library screening [70]. 

RhoA is a member of Rho GTPase, a subgroup of the Ras superfamily of small GTP-
binding proteins. RhoA, as an important regulator of various cell signaling pathways, 
plays an important role in cytoskeletal organization, transcription, and cell cycle progres-
sion. RhoA may be a suitable therapeutic target for the treatment of cardiovascular dis-
ease. Ma et al. reported on RhoA inhibitors containing cinnamic acid. Compounds 4 and 
5 showed high RhoA inhibitory activity with IC50 values of 1.51 and 1.81 µM [71]. 

Deng et al. reported the RhoA inhibitors of cinnamic acid. Compounds 6–9 showed 
high RhoA inhibitory activity with IC50 values of 1.51, 3.28, 2.58, and 2.62 µM. Pharmaco-
logical analysis showed that compound 6 had a significant vasodilation effect on PE-in-
duced thoracic aortic ring constriction [72]. 
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Selectivity for the µ opioid
receptor; analgesic [68]

Here, we review the pharmacological activities and mechanisms of action of natu-
ral products containing pyrazine structures. References are available at Web of Science,
PubMed, Science Direct, and SciFinder Scholar. In this paper, the biological activities of
natural product derivatives containing pyrazines were reviewed and their mechanism of
action was also discussed.

2. Natural Product–Pyrazine Hybridization
2.1. Acrylic and Cinnamic Acid–Pyrazine Hybridization

Hepatitis C virus (HCV) is an RNA virus that is spread primarily through contami-
nated blood. Beaulieu et al. reported the discovery and optimization of specific allosteric
inhibitors of NS5B RNA-dependent RNA polymerase (RdRp) encoded by the HCV virus.
Derivative 1 (Figure 2) was obtained by introducing pyrazines into C-2 indole substituents.
Compound 1 showed good inhibitory activity against RdRp (IC50 = 58 µM) and good
permeability, solubility, and lipophilicity of caco-2 [69].

Rong et al. identified two cinnamate–pyrazine derivatives 2 and 3 with IC50 values of
0.69 and 1.2 µM by using HCV NS5B RdRp for compound library screening [70].

RhoA is a member of Rho GTPase, a subgroup of the Ras superfamily of small GTP-
binding proteins. RhoA, as an important regulator of various cell signaling pathways, plays
an important role in cytoskeletal organization, transcription, and cell cycle progression.
RhoA may be a suitable therapeutic target for the treatment of cardiovascular disease. Ma
et al. reported on RhoA inhibitors containing cinnamic acid. Compounds 4 and 5 showed
high RhoA inhibitory activity with IC50 values of 1.51 and 1.81 µM [71].

Deng et al. reported the RhoA inhibitors of cinnamic acid. Compounds 6–9 showed
high RhoA inhibitory activity with IC50 values of 1.51, 3.28, 2.58, and 2.62 µM. Pharmacolog-
ical analysis showed that compound 6 had a significant vasodilation effect on PE-induced
thoracic aortic ring constriction [72].
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A series of Pim-2 kinase inhibitors were identified by Qian et al. through high-
throughput screening. Compounds 10 and 11 showed stronger inhibition of Pim-2 kinase
with IC50 values of 10 and 12 nM. Compound 11 had a stronger inhibitory effect on Pim-1
kinase with an IC50 value of 13 nM [73].

Zhang et al. synthesized cinnamic acid–pyrazine derivatives to enhance the bioactivity
of cinnamic acid derivatives in neural function and neurovascular protection. The activity
of the human microvascular endothelial cell line (HMEC-2) and the human neuroblastoma
cell line (SH-SY5Y) against free radical damage increased under the action of compounds
12–15. Compound 15 showed the strongest activity in HBMEC-2 cells with EC50 values of
3.55 µM, respectively. Compounds 12–14 showed the strongest activity in SH-SY5Y cells,
with EC50 values of 3.68, 3.74, and 3.62 µM, respectively [74].

Compounds 16 and 17 showed strong inhibitory activity against cholinesterase (ChE).
Compound 16 showed the strongest inhibitory effect on BuChE with an IC50 of 2.3 nM.
Compound 17 had the strongest inhibitory effect on AchE with an IC50 of 2.6 nM. Unfortu-
nately, compound 17 had weak inhibition on the self-aggregation of Aβ42 [75].

Wang et al. synthesized a series of ligustrazine–cinnamic acid derivatives as potential
neuroprotective agents. Among them, 18 and 19 showed good neuroprotective activity
(EC50 = 5.44 and 3.68 µM). Compound 19 can inhibit the apoptosis of PC12 cells by blocking
the mitochondrial apoptosis pathway by up-regulating the ratio of Bcl-2/Bax, down-
regulating the expression of cytochrome-C (Cyt-c), and inhibiting the activities of caspase-9
and caspase-3 [76].

Chen et al. synthesized a series of novel ligustrazine acyloxy cinnamic acid deriva-
tives and studied their in vitro inhibitory effect on adenosine diphosphate (ADP)-induced
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platelet aggregation and their protective effect on H2O2-induced oxidative damage of
ECV-304 cells. Compounds 20 and 21 (Figure 3) had the highest protective effect on the
proliferation of injured ECV-304 cells (EC50 = 0.046 and 0.020 µM), and compound 22 had
the highest antiplatelet aggregant activity (EC50 = 0.054 µM) [77].
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Chen et al. evaluated the inhibitory effect of compound 23–25 on ADP-induced platelet
aggregation in vitro and investigated the protective effect of H2O2-induced oxidative
damage in Ea.hy926 cells. Compounds 24 and 25 showed the highest protective effect on
the proliferation of injured Ea.hy926 cells (EC50 = 2.2 and 1.7 µM). Compound 23 was the
most active antiplatelet aggregator (IC50 = 9.6 µM) [78].

Chen et al. synthesized a series of ligustrazine–cinnamic acid derivatives based on the
structural characteristics of platelet aggregation inhibitor ozagrel. In particular, compounds
26–28 (IC50 between 57–161 µM) have a higher platelet aggregation activity than ozagrel
(IC50 = 360 µM) [77].

To further investigate the antiplatelet aggregation activity of trimethylpyrazine-2-
carbonyloxy-cinnamic acids and esters. Chen et al. designed, synthesized, and evaluated
a series of new compounds (24, 25, 29, and 30); 25 and 29 were the most effective platelet
aggregation inhibitors with IC50 values of 9.6 and 24.4 µM, respectively, much higher than
ozagrel (IC50 = 144.1 µM). Chen et al. then tested the protective effect of the compound
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against hydrogen peroxidation-damaged Ea.hy 926 cells. The corresponding ligustrazine–
cinnamic acids/ethyl esters (17, 31–33) had higher activity (IC50 = 2.2, 8.8, 21.4, and 1.7 µM)
than ligustrazine (IC50 = 83.4 µM) [78].

The cinnamic acid–ligustrazine derivative 34 (Figure 4) showed significant inhibitory
effects on BEL-7402 and A549 cell lines with IC50 values of 9.400 and 7.833 µM [79].
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Li et al. reported that ligustrazine–cinnamic acid derivatives showed protective effects
against CoCl2-induced neurotoxicity in differentiated PC12 cells. The most active com-
pound is 35 (EC50 = 25 µM), which exceeds the activity of ligustrazine (EC50 = 60 µM) [80].

Balasubramaniam et al. reported the design, synthesis, and evaluation of pyrimidine-
based histone deacetylase inhibitors (HDACis). Compound 36 proved to be the most potent
inhibitor, producing 100% inhibition at 100 µM, 90% inhibition at 10 µM, and 44% inhibition
at 1 µM [81].

Paeonol has been shown to have anti-inflammatory activity, but its anti-inflammatory
activity is poor, with only 14.74% inhibitory activity at 20 µM. Hu et al. designed and
synthesized a series of paeonol derivatives and screened their anti-inflammatory activ-
ities. Compound 37 containing pyrazine structure showed 56.32% inhibitory activity
against lipopolysaccharide (LPS)-induced nitric oxide (NO) overexpression in RAW264.7
macrophages at 20 µM [82].

Piperlongumine selectively targets a wide range of cancer cells and induces their death
by triggering multiple pathways, including apoptosis, necrosis, and autophagy. Zuo et al.
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synthesized its analog 38–40 by substituting the pyrazine ring for trimethoxyphenyl. These
compounds improved water solubility and showed potent anticancer activity against the
HCT116 cell line with IC50 values of 3.19–8.90 µM [83].

Piperlongumine and ligustrazine have anti-proliferative effects on various types of can-
cer cells by up-regulating the levels of reactive oxygen species (ROS). Qian et al. designed
and synthesized piperlongumine–ligustrazine derivatives and evaluated their bioactivities
in vitro and in vivo. Derivative 41 had a more prominent inhibitory effect on the prolifera-
tion of drug-sensitive/drug-resistant cancer cells, and the IC50 value was lower than that
of piperlongumine. The IC50 value of 41 pairs of resistant BEL-7402/5-FU cells was 0.9 µM,
which was about 9 times higher than that of piperlongumine (IC50 = 8.4 µM). Mechanism
studies have shown that derivative 41 regulates the DNA damage protein H2AX and
autophagy-related proteins LC3, beclin-1, and p62 in drug-resistant BEL-7402/5-FU cells.
TrxR activity was inhibited, ROS levels increased, mitochondrial transmembrane potential
decreased, and DNA damage and autophagy were dose dependent. Finally, compound 41
showed strong in vivo antitumor activity at 5 mg/kg, with a tumor inhibition rate of 76%
(w/w) [84].

Piperlongumine increases the levels of reactive ROS and induces apoptosis in cancer
cells by triggering different pathways. However, the poor solubility of Piperlongumine
has limited its further research and clinical application. Ligustrazine has a water-soluble
pyrazine skeleton, which can inhibit the proliferation and metastasis of cancer cells. The
solubility of compounds 42–45 in colorectal cancer HCT116 cells was 8.9–26.2 times higher
than that of piperlongumine. Compounds 42–45 showed significant inhibitory effects
on U87MG, HCT116, A549, and K562 cell lines with IC50 values ranging from 0.25 to
8.73 µM. Compound 43 also increased ROS levels. Additionally, compound 43 preferen-
tially inhibited the proliferation, migration, invasion, and heteroadhesion of HCT116 cells.
Compound 43 inhibits tumor growth and lung metastasis in vivo and prolongs the survival
of tumor-bearing mice. Furthermore, compound 43 mitigated TGF-β1-induced epithelial-
mesenchymal transformation and Wnt/βxcatenin activation by inhibiting Akt and GSK-3β
phosphorylation in HCT116 cells. Compound 43 has significant anti-proliferation and
anti-metastasis activities, which is superior to piperlongumine [85].

2.2. Chalcone–Pyrazine Hybridization

Compound 46 (Figure 5) showed good activity against BPH-1 and MCF-7, with IC50
values of 10.4 and 9.1 µM, respectively, comparable to adriamycin (IC50 values of 14.1 and
9.2 µM). Compound 47 showed the strongest activity against the PC12 cell line with an
IC50 value of 16.4 µM [86].

Compound 48 showed the strongest inhibitory effect on the BEL-7402 cell line with an
IC50 value of 10.74 µM and no toxicity to HUVEC-12 (IC50 > 40 µM). Fluorescence staining
and flow cytometry analysis showed that compound 48 could induce apoptosis of BEL-7402
cells [87].

Srilaxmi et al. designed and synthesized a series of chalcone–pyazine derivatives and
tested the anticarcinogenic activity of all derivatives against five human cancer cell lines
(MCF-7, A549, Colo-205, A2780, and DU-145) using a MTT assay. Compound 49 showed
significant inhibitory effects on A549 and Colo-205 cell lines with IC50 values of 0.13 and
0.19 µM. Compound 50 showed a significant inhibitory effect on the MCF-7 cell line with
an IC50 value of 0.18 µM. Compound 51 showed significant inhibitory effects on MCF-7,
A549, and DU-145 cell lines with IC50 values of 0.012, 0.045, and 0.33 µM [88].

The 50% effective concentration (EC50) values of compound 52 against Xanthomonas
axonopodis pv.Citri (Xac), Xanthomonas oryzae pv.oryzae (Xoo), and Ralstonia solanacearum
(Rs) were 6.72, 15.17, and 9.29 µg/cm3, respectively, which were better than those of
Bismerthiazol (44.31, 42.46, and 62.36 µg/cm3, respectively) [89].

Compounds 53 and 54 showed good antibacterial activity against M. luteus, with a
MIC value of 31.25 µg/mL, similar to that of tetracycline (MIC = 31.25 µg/mL) [90].
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Luo et al. synthesized a series of ligustrazine–chalcone hybrids and evaluated their
antitumor activity in vitro and in vivo. Compounds 55–60 showed significant cytotoxicity
to MDA-MB-231, MCF-7, A549, and HepG-2 cell lines in vitro, with IC50 values ranging
from 0.99 to 9.99 µM. Compounds 57 and 60 showed significant effects on the MDA-
MB-231 cell line (IC50: 57, 1.60 µM; 60, 1.67 µM) and MCF-7 cell line (IC50: 57, 1.41 µM;
60, 1.54 µM) had a good anti-proliferation effect. Compounds 57 and 60 showed strong
inhibition of colony formation in both MDA-MB-231 and MCF-7 cell lines, and also showed
strong inhibition of migration of these two cell lines in wound healing tests. It should
be noted that compound 57 can significantly induce apoptosis of MDA-MB-231 cells in
a concentration-dependent manner, inhibit the transformation of the MDA-MB-231 cell
growth cycle, and block the cell growth cycle in the G0/G1 phase. Furthermore, compound
57 showed significant antitumor growth efficacy in in vivo anti-proliferation experiments
in the NBC model, with a wide safety window. Immunohistochemical analysis showed
that compound 57 could significantly reduce the positive rate of Ki-67 in a dose-dependent
manner [91].

Wang et al. designed and synthesized six series of ligustrazine–chalketone-modified
platinum (IV) complexes and evaluated their anti-proliferation activities. Compounds
61–67 showed significant inhibitory effects on A549, PANC-1, MDA-MB-231, HCT116,
and SGC-7901 cell lines, with an IC50 ranging from 0.93 to 7.29 µM. Among them, 66
showed higher cytotoxicity to cancer cell lines than the cisplatin (CDDP) or combination
group, and lower cytotoxicity to normal human cells than the CDDP or combination group.
Mechanism studies have shown that 66 effectively induces DNA damage and initiates
mitochondrial-dependent apoptosis pathways. In addition, 66 regulates the expression
level of nuclear factor erythroid 2-related factor 2, glutathione peroxidase 4, and solute
carrier family 7 member 11 expression level, significantly induced iron sag. Furthermore,
in pancreatic cancer anti-CDDP xenotransplantation models, 66 achieved better antitumor
efficiency in vivo than CDDP, but without significant side effects [92].

2.3. Polyphenols–Pyrazine Hybridization

Du et al. designed and synthesized a series of heterocyclic analogs of resveratrol and
evaluated their inhibitory effects on MCF-7 cells. Among them, compound 67 (Figure 6)
linked to pyrazine showed a certain inhibitory effect on MCF-7 with an IC50 value of
70.9 µM. The activity exceeded that of resveratrol (IC50 = 80.0 µM) [93].

Resveratrol is widely used as a vasodilator, free radical scavenger, and antioxidant,
as well as an anti-platelet aggregator and anti-atherosclerotic agent for the prevention
and treatment of cardiovascular diseases and ischemia [94]. Deng et al. designed and
synthesized a series of ligustrazine–stilbene hybrid derivatives. Derivatives 69–72 showed
high protective effects on human umbilical cord vascular endothelial cells (HUVECs)
damaged by hydrogen peroxide, with values of EC50 ranging from 0.0249 to 28.9 µM.
Among them, the EC50 value of compound 71 is 0.0249 µM, which is 30,000 times higher
than that of tetramethylpyrazine (EC50 = 788 µM) [95].

Chen et al. designed and synthesized a series of pyrazole–pyrimidine derivatives,
and screened their anti-NO activity and toxicity to normal hepatocytes (L02). Compounds
73 and 74 have low toxicity (against L02: IC50 = 786.31 and >1000 µM, respectively) and
strong anti-NO release effect (IR = 68.82%, 63.44%, at 10 µM, respectively) [96].

Liang et al. synthesized the folate receptor (FR)–targeted rhaponticin conjugate FRHA
(75) using a hydrophilic peptide separator linked to folate and a disulfide linker. FRHA (75)
maintains a high affinity for FR-positive cells and produces specific dose-responsive activity
in vitro. Treatment of FRHA (75) with a reducing agent shows that the amino reactive
derivatives of rhaponticin will be released spontaneously after the reduction of disulfide
bonds in the nucleosome. In vivo, FRHA (75) has also been shown to have specific activity
against FR-positive allograft and xenograft models, and possible therapeutic activity leads
to mild to moderate toxicity [97].
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Nkepang et al. designed and prepared A series of folate–combretastatin A-4 conju-
gated prodrugs. Prodrugs 76 and 77, with longer PEG intervals and greater hydrophilicity,
enhance the uptake of colon 26 cells by FR-mediated mechanisms and specifically target
SC colon 26 tumors in Balb/c mice [93].

Curcumin is a polyphenolic compound extracted from Curcuma longa, which has been
extensively studied for its potential anticancer effects [98]. Wang et al. synthesized a series
of ligustrazine–curcumin derivatives by coupling antitumor bioactive compounds with
ether bonds. Among them, compound 78 (Figure 7) pairs BEL-7402, A549, HCT-8, BGC-823,
and A2780 cells cell lines were 6.391, 5.890, 7.106, 5.472, and 5.540 µM [99].
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Ai et al. designed and synthesized a series of ligustrazine–curcumin hybrids [71].
Compounds 79–81 showed significant inhibitory effects on A549 and A549/DDP cell lines
with IC50 ranging from 0.60 to 2.85 µM. Pharmacological studies showed that compound
79 inhibited the expression of thioredoxin reductase (TrxR), promoted the accumulation
of ROS in cells, and significantly inhibited the apoptosis of proliferation-sensitive (A549,
SPCA-1, LTEP-G-2) and drug-resistant (A549/DDP) lung cancer cells. In addition, its
antitumor activity was significantly weakened by active oxygen scavenger. In addition,
79 also inhibited NF-κB, AKT, and ERK signaling pathways, P-GP-mediated Rhodamine
123 efflux, P-gp ATPase activity, and P-gp expression in A549/DDP cells [100].

K. Singh et al. synthesized a series of curcumin bioconjugations and tested them
for antibacterial and antiviral activity. The antibacterial activity of compounds 82 and
83 against Gram-positive (S. viridans) and Gram-negative (E. coli, K. pneumoniae, and
P. miraleilis) ranged from 0.09 to 0.54 µM [101].

Curcumin, as a cell imaging and photodynamic therapy (PDT) agent, showed signifi-
cant photocytotoxicity at visible wavelengths of 400–700 nm with IC50 = 8.2 µM. Its degra-
dation is prevented by the formation of phototoxic dipyridophenazine (dppz) complex 84
(IC50 = 3.3 µM). However, both compounds are less toxic in the dark (IC50 > 50 µM) [102].

Banerjee et al. synthesized a ternary vanadium oxide complex of O-phenanthroline
with curcumin or disaccharide curcumin, an anticancer compound based on curcumin.
Complexes 84 and 85 showed significant phototoxicity at visible light (400–700 nm), with
IC50 values < 5 µM in HeLa, HaCaT, and MCF-7 cells, and without significant dark toxicity.
The DNA ladder, membrane VzFITC/PI, and DCFDA data showed that these complexes
lead to apoptotic cell death by forming ROS under light exposure while remaining inert
in the dark. Confocal microscopy showed that the complex was mainly located in the
cytoplasm, and complex 84 had significant mitochondrial uptake [103].

Banaspati et al. prepared a series of curcumin–nickel (II) complexes and studied their
photoinduced anticancer activity in vitro. Curcumin complexes 86 and 87 have REDOX
activity in the nickel center, have considerable affinity for binding with calf thymus DNA
(ct-DNA), and have moderate affinity for interacting with human serum albumin (HSA).
Complexes 86 and 87 exhibit significant photoinduced in vitro cytotoxicity in HeLa and
A549 involving reactive ROS with very low dark toxicity. Complexes 86 and 87 are much
less toxic to immortalized normal lung epithelial cells (HPL1D). Confocal microscopy
images of complexes 86 and 87 show that they are mainly localized in the cytoplasm of
A549 cells. JC-1 experiment showed that under visible light irradiation, the sub-G1 cell cycle
process of A549 cells was blocked, the mitochondrial membrane potential was significantly
lost, and the main mechanism of cell death was apoptosis [104].

2.4. Flavono–Pyrazine Hybridization

Wang et al. designed and synthesized a series of derivatives using ligustrazine and
flavonoids as raw materials and tested the antitumor activities of these derivatives. Com-
pounds 88 and 90 (Figure 8) showed the strongest inhibitory effects on HT-29 cell lines,
with IC50 values of 10.67 and 10.90 µM. Compound 89 showed the strongest inhibitory
effect on the MCF-7 cell line with an IC50 value of 10.43 µM [87].

Vančo et al. prepared a series of heterologous fish meal containing copper complexes
and evaluated their antitumor activity. Complex 91 has significant in vitro cytotoxicity
against a variety of human cancer cells (MCF-7, HOS, A549, PC-3, A2780, A2780R, Caco-2,
and THP-1) with IC50 values of 2.2–3.3 µM. Additionally, complex 91 was less toxic to
healthy human hepatocytes, with IC50 > 100 µM. Complex 91 is capable of inducing the
destruction of intracellular life molecules and subsequent cell death, primarily through the
initiation or progression of oxidative stress. Complex 91, on the other hand, has shown the
ability to inhibit inflammation-related signaling pathways (NF-κB/AP-1 activity, NF-κB
translocation, and TNF-α secretion) [105].
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Poly(ADP-ribose) polymerase (PARP) inhibitors are a class of anticancer drugs that
block the catalytic activity of PARP protein. The nerone derivative 92 containing pyrazine
showed a significant inhibitory effect on PARP, IC50 = 77 nM [106].

Compounds 93–95 showed stronger thrombin inhibitory activity than baicalin and
TMP, all of which prolonged TT, APTT, and PT to varying degrees, and significantly re-
duced plasma FIB content at the same concentration. Compounds 93–95 showed enhanced
neuroprotective and antithrombotic activity against H2O2-induced PC12 cell death. Com-
pound 93 was used in cerebral ischemia–reperfusion experiments in the middle cerebral
artery occlusion (MCAO) model. The results showed that compound 93 could significantly
reduce the infarct size of CA1 pyramidal neurons and reduce the damage to neuron cells.
Therefore, compound 93 has obvious antioxidant, anticoagulant, and protective effects on
brain I/R injury [107].

2.5. Coumarin–Pyrazine Hybridization

The coumarin derivative 96 (Figure 9) containing sulfonamide showed moderate
anticancer activity against the breast cancer cell line (T47D) with an IC50 of 86.9 µM [108].
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Compound 97 showed significant inhibitory effects in HCT116, C-Raf, and MEK1 cell
lines with IC50 values of 0.9, 0.056, and 0.65 µM. The effects of the interaction between
the derivative 97 and its on-target and off-target proteins (Raf/MEK, CYPs, and hERG
channels) were also detected, but the interaction was weaker [109].

The GI inhibition rate of the coumarin derivative 98 in the MALME-M cell line was
55.75% at a concentration of 10 µM [110].

Compounds 99 and 100 showed high visible-light trigger cytotoxicity against HeLa and
MCF-7 cancer cells, producing significantly low micromolar IC50 values (IC50 = 1.1–10.0 µM)
and much lower toxicity under dark conditions (IC50 > 50 µM). Confocal microscopy showed
that compound 100 accumulated in HeLa cells’ mitochondria and induced apoptosis by ROS
generation through type 1 photosynthesis [111].

Goel et al. found that arylated imidazo [1,2-α] pyrazine–coumarin hybrids 101 and
102 exhibited significant antitumor activity at a concentration of 10 µM [112].

H. Halawa et al. synthesized a series of new 4-arylamino-3-nitrocoumarin and evalu-
ated the cytotoxic activity of the KB-3-1 cell line in vitro using the resazurin method. Among
them, KB-3-1 cells containing the pyrazine derivative 103 showed moderate cytotoxicity
with an IC50 value of 43 µM [113].

L. El-Ansary et al. prepared a new Schiff base SCH (104) using 8-acetyl-7-hydroxy-4-
ethylcoumarin and sulfaclozine as raw materials. Its silver complex SCH-Ag (105) was also
synthesized. The inhibitory effects of SCH (104) and SCH-AG (105) on a variety of bacteria
and fungi and the antitumor activity against MCF-7 cell lines in vitro were evaluated.
SCH (104) and SCH-AG (105) showed strong inhibitory activity against three species of
bacteria (S. aureus, B. subtilis, and P. aeruginosa), but no activity against fungi (A. flavus and
C. albicans). Furthermore, the antibacterial activity of SCH-Ag (105) was higher than that of
SCH (104). The IC50 of SCH (104) for the MCF-7 cell line was 90.5 µg/mL, while that of
SCH-Ag (105) was 9.3 µg/mL. SCH (104) and SCH-Ag (105) showed less antitumor activity
than cisplatin (IC50 = 1.7 µg/mL) [114].

Compound 106 (Figure 10) has good antibacterial activity for strains of Salmonella
typhi MTCC 537, Escherichia coli MTCC 64, and Candida albicans MTCC 3017, with a MIC
value of 25 µg/mL. Compound 106 showed obvious inhibitory activity against chitinase
with an IC50 value of 7.5 µM [115].

Chai et al. synthesized a series of 7-O-substituted pyridine-4-methyl coumarin deriva-
tives and evaluated their antibacterial activity in vitro. Compound 107 showed significant
inhibition against Candida tropicalis, Cryptococcus neoformans, and Trichophyton rubrum strains
with MIC80 values of 1, 1, and 0.25 µg/mL. Compound 108 showed obvious inhibition
against Candida tropicalis strain with MIC80 of 1 µg/mL [116].

Moosavi-Zare et al. synthesized a series of spiro–pyran derivatives and screened their
antioxidant activities by a DPPH radical scavenging assay. Spiropyr derivative 109 showed
good dose-dependent (0.2–1 mg/mL) free radical resistance (45.32–55.14%) [117].

Compound 110 showed stronger inhibitory activity against RANKL-induced osteo-
clast differentiation in RAW264.7 cells at 2 µM, with an inhibition rate of 60.6%. Compound
110 showed no cytotoxicity to the RAW264.7 cell line at a concentration of 10 µM [118].

Compound 111 showed significant protective activity against ECV-304 cells (EC50 =
0.14 µM), far superior to ligustrazine (EC50 = 0.60 µM) [119].

Priyanka et al. synthesized a series of 7-benzamidocoumarin derivatives and evaluated
in vitro the antifilarial activity against the human lymphatic filarial parasite, Brugia malayi.
There are also pyrazine compounds 112 and 113 with 95% and 70% inhibition of adult
motility at 10 µM, which can permanently paralyze the nematode [120].

Ostrowska et al. designed a series of 6-acetyl-7-hydroxy-4-methyl coumarin deriva-
tives containing piperazine groups. Pyrazine-containing derivative 114 showed weak
activity against the 5-HT1A receptor with a Ki value of 25 (12.1–51.0) nM [121].

In order to search for potential drugs with good anti-aging effects, Tang et al. synthe-
sized methylurolitin A and its amide derivatives. Caenorhabditis elegans (C. elegans) was
used to evaluate its anti-aging effect and biosafety. Methylurolitin A has good biosecurity
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for the growth, reproduction, and activity of C. elegans. The derivative 115 has the best
life-prolonging effect, the anti-aging effect is greater than methylurolitin A, and it has good
biosafety [122].
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Urolithin B is a natural metabolite that shows good activity in diseases such as obesity,
diabetes, osteoporosis, cancer, learning, and memory disorders. Chen et al. designed and
synthesized an amide derivative of urolithin B and verified its anti-aging and biosafety
using C. elegans. The results showed that 116 had the best anti-aging activity among all
derivatives, and the compound had good biosafety [123].

2.6. Anthraquinone- and 1,4-Naphtoquinone–Pyrazine Hybridization

The GI50 of compound 117 (Figure 11) in leukemia cell lines ranged from 0.07–3.65 µM.
The GI50 of the breast cancer subgroups ranged from 0.72–19.1 µM. Compound 117 showed
the strongest activity against K562 leukemia, with a GI50 of 0.07 µM, LC50, and TGI
of >100 µM, respectively. HL-60 (TB) and MCF-7 cell lines followed, with GI50 values
of 0.68 and 0.72 µM [124].

Compound 118 showed certain antiproliferative activity against MCF-7, HeLa, and
A549 (IC50 = 53.5, 79.1, and 78.3 µM, respectively), and high cytotoxicity against L929
(IC50 = 49.6 µM) [125].

The derivative of tetramethylpyrazine–rhubaric acid 119 not only inhibited the prolif-
eration of BEL-7402 cancer cells (IC50 = 26.4 µM), but also significantly inhibited the normal
angiogenesis of the chicken chorionic allantoic bladder [126].

The IC50 of derivative 119 for CHMp (canine inflammatory mammary carcinoma cell
line) and MDCK (Madin–Darby immortalized canine kidney cell line) is 42.59 µM and
79.37 µM, respectively. Derivative 119 mediates apoptosis through mitochondrial damage,
and arrest of the S phase and G2/M phase by down-regulation of cyclin B1. In addition,
derivative 119 reduces filamentous foot and inhibits cell migration by downregulating
cadherin. In the CMIC lung metastasis model, derivative 119 can effectively inhibit lung
tumor growth without obvious toxicity [127].
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YM155 (120) is a potent broad-spectrum anticancer drug derived from phenotypic
screening of inhibitors of survivin expression function. The anticancer drug YM155 (120)
has been widely studied as a specific statin inhibitor. The IC50 value of YM155 (120) against
the H1299 cell line was 0.0137 µM, and the SI value was 18. Furthermore, YM155 (120)
has been found to induce DNA damage. Si-Han Sherman Ho et al. synthesized a series of
YM155 (120)-linked pyrazine derivatives and tested their antitumor activity against H1299 cell
lines. Compounds 37 and 38 showed little activity against H1299 cell lines, with IC50 values
of 0.0377 and 0.0546 µM, but SI values of 38 and 30 were higher than YM155 (120) [128].

Iwai et al. found that YM155 (120) down-regulates survivin and exhibits strong
antitumor activity. In the Caco-2 cell model, YM155 (120) was observed as a substrate for
P-gp [99]. Premkumar et al. found that YM155 (120) at 25 nM down-regulates survivin in
gliomas, down-regulates myeloid cell leukemia sequence 1 (Mcl-1), and up-regulates Noxa
levels. These findings suggest that YM155 (120) negatively regulates Mcl-1 and survivin
through endogenous and exogenous apoptotic pathways and amplifies mitochondrial
signaling, thus inhibiting glioma cell resistance to TRAIL-induced apoptosis (TRAIL is a
tumor necrosis factor-associated apoptosis-inducing ligand). YM155 (120) combined with
TRAIL significantly increased antitumor activity and may have application value in the
treatment of malignant glioma [129].

Ho et al. evaluated the DNA binding affinity of the test compound (120–125) by
monitoring the displacement of thiazole oranges from herring sperm DNA [130,131]. The
DC50 of YM155 (120) was 20.3 µM and that of adriamycin was 2.64 µM. Compounds 121,
124, and 125 showed higher activity than YM155 (120), with DC50 values of 18.4, 12.0, and
15.5 µM, respectively [128].

Glioblastoma (GBM) is the most common primary central nervous system (CNS) malig-
nancy. Furthermore, YM155 (120) has clinical tolerance problems due to its lack of cell type
selectivity. Thomas J. West et al. synthesized a prodrug of YM155 (120), named aYM155
(121). aYM155 (121) was used against GBM cancer stem-like cells (IC50 = 0.7–10 nM)
from multiple patient sources. The EGFR variant III-expressing (EGFRvIII) cell line
(IC50 = 3.8–36 nM) shows strong cell-killing activity and is activated in a cell type-dependent
manner. The survivin inhibitory and apoptosis-inducing activity of YM155 (120) is related
to its interaction with receptor-interacting protein kinase 2 (RIPK2). In an orthotopic in-
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tracranial GBM xenograft model, aYM155 (121) significantly inhibited brain tumor growth
in vivo, which was related to the pharmacodynamics of selective survivin based on cyto-
types [132].

Liu et al. designed and synthesized a series of 1-monosubstituted naphthoquinone
imidazole derivatives and tested their antitumor activity in vitro. When the substituent
was pyrazine, compound 127 (Figure 12) showed a weak inhibitory effect on MCF-7, HeLa,
and A549 cell lines, with IC50 values ranging from 161–186 µM. However, compound 127
was more toxic to normal cell L929 with IC50 of 51 µM [133].
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Bargiotti et al. synthesized a series of 3-arylnaphthalene [2,3] isoxazole-4,9-diones
and tested the binding of these compounds to Hsp90 and their effects on Hsp90 client
proteins expression in human tumor cell lines. The pyrazine-containing compounds 128
and 129 have a strong affinity for Hsp90 with IC50 values of 0.68 and 0.51 µM. Additionally,
compounds 128 and 129 showed significant inhibitory effects on NCI-H460, A431, and STO
cell lines, with IC50 values ranging from 0.017 to 0.22 µM [134].

Shanab et al. designed and synthesized a series of azanadione–pyrrolidinated deriva-
tives and evaluated the anti-proliferative activity of all compounds in multiple cell lines.
The pyrazine-containing compound 130 showed significant inhibitory activity against
KB/HeLa, SF-268, NCI-H460, RKOp27, and RKOp27IND cell lines with IC50 values rang-
ing from 1.121–2.973 µM [135].

Yu et al. designed and synthesized derivatives of indolizinoquinolinedione scaf-
fold and tested the antitumor activity of these compounds. The MTT assay showed
that compound 131 containing pyrazine showed significant inhibitory effects on HCT116,
CCRF-CEM, A549, Huh7, and DU-145 cell lines, with IC50 values ranging from 1.61 to
13.15 µM [136].

Shen et al. designed and synthesized a series of new Indolizinoquinoxalin-5,12-dione
derivatives. Compounds 132–134 showed significant inhibitory effects on the growth of
four human tumor cell lines (GLC-82, NCI-H460, MCF-7, and MCF-ARD), with IC50 values
ranging from 0.20 to 16.46 µM [137].

Devi et al. synthesized a series of new anthraquinone-based copper (II) complexes.
Nuclear targeting complex 135 showed significant cytotoxicity to cancer cells in visible light
(IC50 = 2.57–3.03 µM), but decreased dark toxicity (IC50 > 50 µM). Singlet oxygen produced
by complex 135 photosensitization is a key cytotoxic substance that causes apoptosis
damage in cancer cells. The S-coordination and anthraquinone moiety of complex 135
exhibit double photosensitivity, resulting in a significant PDT effect on cancer cells with
minimal dark toxicity [138].

Kim et al. found that tetracyclic heteroquinone analogs containing pyrazine structures
were highly cytotoxic to human tumor cell lines. Compound 136 (Figure 13) showed strong
inhibitory effects on A549 and XF-498 cell lines with IC50 values of 1.64 and 2.26 µM.
Compounds 137–142 showed significant inhibitory effects in A549, SK-OV-3, SK-MEL-2,
XF-498, and HCT-15 cell lines, with IC50 values ranging from 0.06–1.01 µM. The IC50 value
of compound 142 against the XF-498 cell line was 0.06 µM, 2.6 times that of doxorubicin
(IC50 = 0.16 µM) [139].

Kim et al. designed and synthesized a series of pyrido [3,4-b] phenazinedione deriva-
tives and evaluated their cytotoxic activity and topoisomerase II inhibitory activity. The
derivative 143–147 showed significant inhibitory effects on human tumor cell lines (A549,
SNU-638, Col2, HT1080, and HL-60), with IC50 values ranging from 0.12 to 1.26 µM. Com-
pound 144 had the strongest effect on the SNU-638 cell line with an IC50 of 0.12 µM. It is
49.75 times that of ellipticine (IC50 = 5.97 µM). Compounds 143–147 showed inhibitory
activity (39–100%) against topoisomerase II at 200 µM. The most active compound was 143,
with an IC50 of 0.082 µM [140].

Lee et al. synthesized a series of benzo[g]quinoxalin-5,10-dione derivatives and
evaluated in vitro cytotoxic activity against four human cancer cells (HCT-15, SK-OV-3,
MD-MB-468, and T-47D). Compounds 148–155 (Figure 14) showed significant inhibitory
activity against four cancer cells with IC50 values ranging from 0.005 to 10 µM. The cytotoxic
activity of compound 153 against HCT-15 cells was similar to that of doxorubicin [141].

Kwak et al. synthesized a series of 2-alkyl-2, 3-dihydro-1h-2,6,9-triazacyclopenta[b]
anthracene-5,10-diones. The cytotoxic activity of six human cancer cells (HCT-15, SK-OV-
3, A549, SNB19, MCF-7, and MCF-7/ADR) was evaluated in vitro. Compounds 156–160
showed significant inhibitory effects on all human cancer cell lines, with IC50 values ranging
from 0.035 to 0.381 µM [142].

Lee et al. synthesized pyridazo [2,3-b] phenazine-6,11-dione derivatives and evaluated
their cytotoxic activity by the SRB (Sulforhodamine B) assay. Derivatives 161–173 (Figure 15)



Molecules 2023, 28, 7440 25 of 59

showed excellent cytotoxicity to human tumor cell lines (A549, SK-OV-3, SK-MEL-2, XF-498,
and HCT-15) with IC50 values ranging from 0.004–0.361 µg/mL. The killing effect of 161 on
HCT-15 (ED50 = 0.004 µg/mL) was 23 times that of adriamycin (ED50 = 0.093 µg/mL) [143].
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Lee et al. synthesized a series of benzo[g]quinoxalin-5,10-dione derivatives and eval-
uated in vitro cytotoxic activity against four human cancer cells (HCT-15, SK-OV-3, MD-
MB-468, and T-47D). Compounds 148–155 (Figure 14) showed significant inhibitory activ-
ity against four cancer cells with IC50 values ranging from 0.005 to 10 µM. The cytotoxic 
activity of compound 153 against HCT-15 cells was similar to that of doxorubicin [141]. 

Kwak et al. synthesized a series of 2-alkyl-2, 3-dihydro-1h-2,6,9-triazacyclo-
penta[b]anthracene-5,10-diones. The cytotoxic activity of six human cancer cells (HCT-15, 
SK-OV-3, A549, SNB19, MCF-7, and MCF-7/ADR) was evaluated in vitro. Compounds 
156–160 showed significant inhibitory effects on all human cancer cell lines, with IC50 val-
ues ranging from 0.035 to 0.381 µM [142]. 

Figure 13. Anthraquinone–pyrazine derivatives 136–147.

Lee et al. designed and synthesized pyridazino [4,5-b]phenazine-5,12-diones. The
cytotoxic activity of these compounds against human cancer cell lines was evaluated by
a SRB (thiodan B) assay. The cytotoxicity of compound 7a–7j to cancer cells (A549, SK-
OV-3, SK-MEL-2, XF498, and HCT-15) was higher (IC50 = 0.010–0.0.195 µM) than that of
adriamycin (IC50 = 0.097–0.225 µM). The most active compounds 179 and 181 are about
10 times more cytotoxic than doxorubicin to all human cancer cell lines [144].
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Tuyun et al. designed and synthesized a series of benzo[b]phenazine-6,11-dione
derivatives and tested their antibacterial and antifungal activities in vitro. Among them,
compound 184 (Figure 16) showed the strongest inhibition effect on S. epidermidis, and the
MIC value was 156.2 µg/mL [145].

Kumar et al. designed and synthesized a series of benzoquinolin-5,10-dione com-
pounds to test for in vitro antituberculosis activity against M. tuberculosis H37Rv. Com-
pound 185 is the most active against M. tuberculosis, with a MIC of 12.5 µg/mL [146].

Kumar et al. designed and synthesized 2-amino-6-(5,10-dioxo-2,3-diphenyl-5,10-
dihydrobenzo[g]quinoxalin-7-yl)-4-(substituted)phenylpyridine-3-carbonitrile. The an-
tibacterial activity of newly synthesized compounds was screened by the L.J. Slope (conven-
tional) method. Compound 186 has the strongest inhibitory effect against M. tuberculosis
H37Rv with a MIC of 50 µg/mL [147].
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S. Hammam and others designed and synthesized a series of diarylaminodiaminoben-
zoquinone, and studied the antifungal and antibacterial activities. Among them, com-
pounds 187 and 188 had significant inhibitory effects on Fusarium solani, Fusarium oxyspo-
rum, and Aspergillus flavus, with MIC values of 20 µg/mL [148].

Morin et al. synthesized a series of various azotized analogs of 1, 4-naphthoquinone,
The inhibitory activity of P. falciparum and human glutathione reductases and P. falci-
parum thioredoxin reductase was tested. Compounds 5,8-quinoxalinedione (189) and 190
(Figure 17) were the most specific TrxR inhibitors, with a stronger inhibitory effect than
menadione [149].
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The inhibitory activity of 5,8-quinolinedione (189) on the binding of BMAL1/CLOCK
to Ebox DNA was concentration dependent, with an IC50 value of approximately 1 µM. 5,8-
quinolinedione covalently reacts with protein(s) and may regulate dimer formation [150].

Keinan et al. designed and synthesized a series of Cdc25B quinone inhibitors. Among
them, WDP1263 (191) containing pyrazine is the strongest Cdc25 inhibitor with an IC50
value of 0.5 µM, but in the presence of 0.8 mM DTT (EC50 = 1.4 µM). WDP1263 (191)
showed inhibitory activity against the A549 cell line with an IC50 of 22.28 µM. WDP1263
(191) (E1/2 = 186 mV) prevents the redox cycle through its reducing state [151].

Besset et al. designed and synthesized a heteroquinone compound containing two
methoxycarbonyl methyl sulfur groups in the benzoquinone ring and evaluated its Cdc25B
phosphatase inhibitory activity. Compound 192 containing pyrazine showed a strong
inhibitory effect on Cdc25B with an IC50 value of 5.40 µM. Furthermore, derivative 192
inhibited the pancreatic cell line (MiaPaCa-2) by 24% at 100 µM [152].

Yang et al. synthesized a series of furanoquinolinedione and isooxazolinequino-
linedione derivatives and performed enzyme inhibition tests. Compounds 193 and 194
containing pyrazine have inhibitory activity of TDP2 with IC50 of 32 and 9.3 µM [153].

Ryu et al. reported that derivatives of 6-arylamino-quinoxalin-5,8-diones had in-
hibitory effects on the proliferation of rat aortic smooth muscle cells (RAoSMC). Com-
pounds 195–208 significantly inhibited SMC proliferation, with IC50 values ranging from
1.0–5.5 µM. Compounds 196, 200, and 201 were the most active with IC50 values of
1.0 µM [154].

Chung et al. also reported that the 6-arylamino-quinoxalin-5,8-diones derivatives
195–202 and 209–210 had inhibitory effects on the proliferation of rat aortic smooth muscle
cells (RAoSMC). The activity of compounds 195–202 was consistent with the literature.
Additionally, compounds 209 and 210 significantly inhibited SMC proliferation with IC50
values of 1.1 and 1.2 µM. Furthermore, the inhibitory effect of compound 197 on SMC
proliferation is mediated by the regulation of the kinase 1/2 signaling pathway regulated
by extracellular signals [155].

Ye et al. synthesized folate–aminocaproate–doxorubicin (FA-AMA-DOX) and per-
formed cytotoxicity and uptake tests on KB, HepG-2, and A549 cell lines. FA-AMA-DOX
(211) (Figure 18) is more cytotoxic to KB and HepG-2 cells than DOX or AMA-DOX at the
same concentration, and FA can reduce cytotoxicity in a dose-dependent manner. On the
contrary, FA-AMA-DOX and AMA-DOX showed lower cytotoxicity to A549 cells than
DOX at the same concentration, and FA could not reduce cytotoxicity. FA-AMA-DOX (211)
increased DOX accumulation in KB cells compared to FA-AMA [156].

Huang et al. oxidized the phenol to O-naphthoquinone and tested its biological
activity. Compound 4h effectively inhibited the proliferation of different AML (acute
myelocytic leukemia) cell lines in vitro, with IC50 values ranging from 0.11 to 0.65 µM.
In vivo antitumor studies have shown that compound 212 can cause tumor regression in
MV4-11 xenograft tumor models at 40 mg/kg/d for 4 h, without obvious toxicity [157].

Sandilya et al. synthesized a series of xanthone derivatives containing 3,6-bis (3′-
substituted propoxy) and 3,6-bis (5′-substituted pentyloxy). Anti-inflammation of Wistar
albino rats was studied by carrageene-induced metatarsal edema in rats. Compounds 213
and 214 at 200 mg/kg body weight showed a slightly lower inhibitory effect than diclofenac
sodium (10 mg/kg body weight dose, inhibition effect: 68.27%) in plantar edema after 6 h,
with an inhibition effect of 63.32% and 62.75%, respectively [158].
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2.7. Lignin–Pyrazine Hybridization

According to Zhao et al., 4′-demethylepipodophyllotoxin (DMEP) was prepared by a
series of new types of podophyllum topoisomerase II (Topo II) inhibitors. The antitumor
activity of compound 215 (Figure 19) against the tumor cell lines HeLa, A549, HepG-2,
and BGC-823 was significantly improved with IC50 values of 0.88, 3.83, 1.21, and 4.15 µM,
respectively. More than 4′-demethylepipodophyllotoxin antitumor activity (the IC50 values
of HeLa: 15.96 µM; HepG-2: 18.74 µM; A549: 52.08 µM; and BGC-823: 21.26 µM). The
antitumor activity of compound 216 against BGC-823 was significantly improved with
an IC50 value of 1.50 µM. The amide derivatives 217 and 218 showed strong inhibitory
effects in HepG-2, HeLa, A549, and BGC-823 cell lines, with IC50 values ranging from 3.49
to 18.71 µM. Compound 217 had the strongest killing ability against the BGC-823 cell line
with an IC50 value of 3.49 µM. Compound 215 inhibited the G2/M cycle of HeLa cells and
induced apoptosis by strongly attenuating Topo II DNA unshackling relaxations [159].

Wu et al. synthesized a series of podophyllotoxin (PPT) derivatives and evaluated
the cytotoxicity of A549, MCF-7, HepG-2, and L02 cells. The IC50 values of compound 219
containing pyrazine for A549 and HepG-2 cell lines were 9.3 and 11.7 µM. The IC50 values
of compound 220 against the A549 and MCF-7 cell lines were 8.1 and 11.3 µM [160].

Zhang et al. synthesized a series of poxylotoxin aromatic heterocyclic esters and
evaluated the anticancer effects of two human chronic myeloid leukemia cell lines (K562
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and K562/ADR). The IC50 values of compound 221 containing pyrazine for the K562 and
K562/ADR cell lines were 0.034 and 0.022 µM [161].
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Li et al. designed and synthesized podophyllotoxin derivatives and evaluated their
anticancer activity in vitro against several human cancers. The pyrazinyl derivative 222
inhibited the HL60, SGC-7901, and A549 cell lines with IC50 values of 6.71, 12.72, and
11.15 µM [162].

Castro et al. designed and synthesized podophyllotoxin e-ring-modified deriva-
tives and evaluated their cytotoxicity. The IC50 value of compound 223–226 containing
pyrazine against the P-388, A549, HT-29, and MEL-28 cell lines was 0.56–2.8 µM, and
the antitumor activity of compound 223–226 was lower than that of podophyllotoxin
(IC50 = 0.012 µM) [163].

Compounds 227–230 (Figure 20) had a corrected mortality rate of 51.7%, 51.7%, 55.2%,
and 55.2% in vivo against Mythimna separata (M. separata) at 1 mg/mL, higher than or
equivalent to the activity of Toosendanin (51.7%) [164].
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Zhi et al. conducted an in vivo insecticidal activity test on the pre-third-instar larva
of M. separata (Walker) at 1 mg/mL. Compounds 231 and 232 exhibited the best potent
insecticidal activity with the final mortality rate of 53.3% and 63.3%, the activity was higher
than Toosendanin (46.7%) [165].

Zhi et al. synthesized C-ring, D-ring, and E-ring modified phenazines oxme derivatives
of podophyllotoxin and performed 1 mg/mL in vivo insecticide on the pre-third-instar
larva of the oriental armyworm M. separata (Walker). Compounds 233–235 exhibited the
best potent insecticidal activity with a final mortality rate of 51.7%, 62.1%, and 58.6%, the
activity was higher than Toosendanin (48.3%) [166].

In vivo insecticidal activity against the pre-third instar larva of M. separata (Walker)
was measured at 1 mg/mL. Derivatives 236–238 exhibited the most promising insecticidal
activity with the final mortality rate of 62.1, 62.1%, and 72.4%, The activity was higher than
toosendanin (48.3%). Depending on the symptoms of M. separata tested, the derivative 238
May shows anti-melting hormone effects [167].

Hou et al. connected methotrexate (MTX) with the hydrophobic drug podophyllotoxin
(PPT) via a disulfide bond to obtain the amphiphilic drug–drug coupling prodrug (MTX-SS-
PPT). The first two parent molecules of the drug self-assemble into stable nanoaggregates
(NAs) in an aqueous solution, which realizes the self-delivery of the drug. Additionally,
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the presence of disulfide bonds in MTX-SS-PPT (239) can be controlled by using high
concentrations of dithiothreitol (DTT). Intracellular mercaptan breaks disulfide bonds in
MTX-SS-PPT (239), releasing drugs and killing tumor cells. Methotrexate-covered NAs
can also target folate receptor-positive KB cells. Animal experiments have shown that
methotrexate-covered NAs prodrug has good blood compatibility, and MTX-SS-PPT (239)
NAs can reduce the size of xenograft tumors with few side effects [168].

2.8. Steroidal–Pyrazine Hybridization

Amelie Talbot et al. designed and synthesized acetyne-based steroid derivatives 240
and 241 (Figure 21) and evaluated the antitumor activity of these two compounds. The inhi-
bition rates of compounds 240 and 241 reached 98% and 97% at the concentration of 10 µM.
The inhibition rates of Jurkat cells reached 93% and 91% at the same concentration [169].
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Compounds 242 and 243 showed significant inhibitory effects on PC-3 cell lines, with
IC50 values of 6.88 and 0.93 µM. THLE-2 cells of compound 243 showed low cytotoxicity
(IC50 = 26.70 µM, SI = 28.71). Compound 243 induced apoptosis of PC-3 cells in a dose-
dependent manner and led to cell cycle stagnation in the G2/M phase [170].

Tao et al. reported the synthesis and antitumor activity of DHEA derived from C-16
ropyrrolidine. Compounds 244 and 245 showed the best activity with LC50 values less than
6.19 and 9.92 µg/mL, exceeding dehydroepiandrosterone activity (LC50 > 200 µg/mL) by
using the brine shrimp test [171].

The D-ring fused 1,2,3-thiadiazole dehydroepiandrosterone derivative 246 showed
moderate inhibitory activity in T-47D cells with an IC50 value of 3.04 µM. Compound 246
was not as active as dehydroepiandrosterone (IC50 = 2.55 µM) [172].



Molecules 2023, 28, 7440 34 of 59

Steroidal C-17 pyrazine (247) showed moderate inhibitory activity against PC3-AR
cell lines with IC50 of 366 nM. Compound 247 is also a potent CYP17 inhibitor with an IC50
value of 3.81 µM for CYP17 [173].

The 16-position aryl or heteraryl side chain of estrone is a potent inhibitor of 17β-
HSD1. Among them, compound 248 (Figure 22) containing the pyrazine group showed an
inhibitory effect on 17β-HSD1 with an IC50 value of 3.62 µM [174].
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Figure 22. Steroidal–pyrazine derivatives 248–256.

Ivanov et al. prepared a series of estrone-derived quinolines. Acetylenated estrone
and its derivatives have significant biological activity as alkaline phosphatase inhibitors.
Compounds 249, 250, and 252 were more potent TNAP inhibitors with IC50 values of 0.52,
0.48, and 0.25 µM, exceeding the activity of Levamisole (IC50 = 19.21 µM). Compounds 249,
251, and 252 are potent IAP inhibitors with IC50 values of 0.32, 0.92, and 0.44 µM, which
exceeds the activity of L-phenylalanine (IC50 = 80.21 µM) [175].
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Benoît et al. synthesized bimetallic Au(III)/Au(I) complexes with 17α-ethylestradiol
as the carrier. The toxicity of estradiol-conjugated AuC6Estra (253) to estrogen receptor-
positive (ER+) cancer cells was greater than that of ER-cancer cells and non-cancer cells.
AuC6Estra (253) tested MCF-7 (ER+), MDAMB-231 (ER−), and MRC-5 (healthy fibroblasts)
cells. The anti-proliferation effect of AuC6Estra (253) on ER+ cells was slightly higher than
that in ER- and non-cancer cells [176].

Ananthan et al. synthesized a series of estrogen-functionalized copper complexes and
studied them as electrochemically active DNA binding and splitting agents. The cytotoxic
activity of these compounds was evaluated against estrogen receptor-positive (ER+) and
negative (ER−) human cancer cell lines, and compounds 254–256 showed inhibitory effects
against A2780, 2008, A431, MCF-7, and HCT-15 cell lines with IC50 values ranging from
0.04–2.00 µM. Complex 256 has a high intercalation interaction with nuclear DNA in vitro
and is a strong DNA-cutting agent. Finally, complex 256 is involved in cellular redox stress
by stimulating ROS production [177].

The steroid–pyrazine derivative 257–260 (Figure 23) showed significant antibacterial
activity against two Gram-positive bacteria and two Gram-negative bacteria. The MIC
value of compound 257 against the E. coli strain was 0.39 µM. The MIC value of com-
pound 258 against the S. typhimurium and E. coli strains was 0.39 µM. The MIC value of
compound 259 against the S. pyogenes strain was 0.39 µM. The MIC value of compound
260 against the B. aureus, S. typhimurium, and E. coli strains was 0.39 µM. The antibacte-
rial activity of compound 257–260 was higher than that of the standard drug amoxicillin
(MIC = 3.12 µM) [178].
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Salman Ahmad Khan et al. found that the MIC values of compounds 261 and 262 against
E. coli strains were 64 and 32 mg/mL, higher than the activity of cholesterol (MIC = 512 mg/mL).
It was comparable to positive control chloramphenicol (MIC = 32 mg/mL) [179].

Khan et al. found that compounds 263 and 264 had significant antibacterial activity
against two Gram-positive and two Gram-negative bacteria. The MIC values of compound
263 for S. aureus, S. pyogenes, S. typhimurium, and E. coli strains were 0.78, 0.78, 0.78, and
0.39 mg/mL. The MIC values of compound 264 were 0.78, 0.78, 0.39, and 0.39 mg/mL [180].

Compound 265 (Figure 24) showed moderate inhibitory activity against H37RvMa
in MB7H9/ADC medium with a MIC90 value of 17.49 µM and low toxicity to CHO cells
(IC50 > 50 µM) [181].
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Stephen Barrett et al. used planephroline-modified aromatic ligands and copper
(II) complexes of steroids (ethinynoestradiol and ethyl ketone) and screened these com-
pounds for antimicrobial resistance against Staphylococcus aureus and methicillin-resistant
Staphylococcus aureus (MRSA). Testosterone derivative 266 showed the strongest inhibitory
effect on S. aureus, with a MIC50 of 1.5 µM. Estradiol derivative 267 showed the strongest
inhibitory effect on MRSA, with a MIC50 of 17.5 µM [182].
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Wang et al. synthesized the gaudatin–pyrazine derivative 268 and evaluated its anti-
hepatitis B virus (HBV) activity in HepG-2 cells. Compound 268 not only inhibited the
secretion of HBsAg (IC50 = 95.52 µM) and HBeAg (IC50 < 50.28 µM), but also inhibited the
replication of HBV DNA (IC50 = 47.92 µM). Compound 268 showed low toxicity to HepG-2
cells, with a value of CC50 of 61.34 µM [183].

Compound 269 showed a neuroprotective effect on H2O2-induced SH-SY5Y cells, with
a cell protective activity of 22.3% at 10 µM, more than diosgenin activity (6.7%) [184].

2.9. Terpene–Pyrazine Hybridization

Betulinic acid-linked ligustrazine derivative 270 (Figure 25) showed good antitumor
activity, with IC50 values of 4.19, 5.23, 4.48, 4.23, and 4.34 µM against BEL-7402, HT-29,
HepG-2, MCF-7, and HeLa cells. The cytotoxicity selective assay showed that 270 had
low cytotoxicity to MDCK cells (IC50 > 20 µM). Fluorescence staining and flow cytometry
analysis showed that 270 could induce HepG-2 cell apoptosis. Further studies showed that
270-induced apoptosis was mediated by depolarizing mitochondrial membrane potential
and increasing intracellular free Ca2+ concentration [185].
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The IC50 values of compound 271 against the BEL-7402, HepG-2, and HeLa cell lines
were 4.065, 8.475, and 4.419 µM [186].

Xu et al. designed and synthesized a series of betulinic acid-linked ligustrazine
derivatives, and screened their selective cytotoxic activity against five cancer cell lines
(HepG-2, HT-29, HeLa, BCG-823, and A549) and nonmalignant cell lines MDCK using a
standard MTT assay. Compounds 272 and 273 showed the strongest inhibitory effect on the
BGC-823 cell line, with IC50 values of 0.84 and 1.49 µM. Compound 274 showed the highest
cytotoxic activity against tumor cell lines (mean IC50 = 2.31 µM), and the strongest cytotoxic
activity against HT-29 and HeLa with IC50 values of 1.70 and 1.74 µM. Further mechanism
studies showed that 274-induced apoptosis was associated with the loss of mitochondrial
membrane potential and increased intracellular free Ca2+ concentration [187].

The betulinic acid derivative 275 (Figure 26) inhibited the osteoclast differentiation of
RAW.264.7 cells induced by RANKL, and the inhibitory rate reached 100% at 5 µM. The
activity of betulinic acid was higher than that of betulinic acid (5 µM: 0%). Compound 275
still had a certain inhibitory effect at a concentration of 1.0 µM, and the inhibitory rate was
14.5% [188].
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Compound 276 showed an obvious inhibitory effect in the A549 cell line with an IC50
value of 0.25 µM. Compound 277 showed the strongest inhibitory effect on HT-29, K562,
K562-TAX, and B2-4 cell lines with IC50 values of 2, 0.4, 4, and 0.3 µM [189].

Haavikko et al. determined the leishmania activity of compound 276 using the alamar-
Blue aseptic flagellate activity assay against leishmania donovani. Compound 276 showed
an obvious inhibitory effect on leishmania donovani with an IC50 value of 13.2 µM [190].

The betulinic acid derivatives 276, 278, and 279 showed significant inhibitory effects
on two cancer cells (CCRF-CEM and HCT116). The IC50 values of compound 276 against
CCRF-CEM and HCT116 cell lines were 0.5 and 11.06 µM. The IC50 values of compound
278 against the CCRF-CEM and HCT116 cell lines were 12.25 and 20.5 µM. The IC50 values
of compound 279 against CCRF-CEM and HCT116 cell lines were 5.87 and 18.01 µM [191].

Hodon et al. synthesized a series of betulinic acid–pyrazine compounds and tested
the cytotoxicity of these compounds in multiple cancer cell lines. Compounds (276–277
and 280–284) were preferentially and highly cytotoxic to leukemia cell lines (CCRF-CEM,
K562, CEM-DNR, and K562-TAX) (IC50 between 0.43 and 18 µM). Compound 283 showed
a significant inhibitory effect in CIM-DNR cells with IC50 of 0.49 µM. The IC50 activity of
compound 284 against K562 cells was 0.026 µM. In addition, compounds 276, 280, and 282
inhibited the growth and degradation of HCT116 and HeLa cells in sphere cultures [192].

Compounds 285 and 286 have an obvious inhibition effect on 4T1 and MIA-PaCa-2
cell lines. The IC50 value of compounds 285 and 286 against 4T1 cell lines was 2.88 µM,
which exceeded the activity of betulinic acid (IC50 = 6.29 µM). The IC50 values of MIA-
PaCa-2 cell lines were 3.87 and 4.36 µM, which exceeded the activity of betulinic acid
(IC50 = 25.63 µM) [193].
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Pyrazine-thickened 23-hydroxyl betulinic acid, further modified by replacing C-28
carboxyl with ester and amide bonds, increased its antitumor activity. Compound 109
(Figure 27) showed the strongest activity against the cell lines SF-763, B16, and HeLa, with
IC50 values of 3.53, 4.42, and 5.13 µM, respectively. In a preliminary mechanism study, 109
induced G1 phase cell arrest and significantly induced apoptosis of B16 cells in a dose-
dependent manner. Furthermore, the in vivo antitumor activity of 109 was demonstrated
in mice with H22 liver cancer and B16 melanoma (tumor inhibition rates were 55.6% and
62.7%, respectively) [194].
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Compound 288 (Figure 28) showed moderate antitumor activity, with GI50 values of
32.6 µg/mL for IMR 32 (neuroblastoma) cell lines [195].
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Betulinic acid–pyrazine derivative 289 showed significant anti-proliferation activity
against HeLa and HepG-2 cell lines with IC50 values of 42 and 19 µM [196].

Bhandari et al. synthesized the pyrazine derivative 289 from lupinol and evaluated its
anti-inflammatory activity by inhibiting NO production in LPS-induced RAW264.7 and
J774A.1 cells. The IC50 of compound 289 inhibited NO production in RAW264.7 and J774A.1
cells was 32.4 µM [197].

The cytotoxicity of compound 290 in cancer cells (mean IC50 = 4.86 µM) was three
times higher than that of normal cells (mean IC50 = 16.11 µM). The IC50 values of compound
290 against the HeLa, HepG-2, BGC-823, and HT-29 cell lines were 4.91, 4.07, 4.24, and
6.21 µM. Additionally, 290 was more cytotoxic to tumor cells than the positive drug cisplatin.
Furthermore, 290 was more cytotoxic to tumor cells than its lead compound TB (291) and
positive control cisplatin. Subsequently, fluorescence staining, apoptosis detection, and cell
cycle analysis showed that 290 induced early apoptosis of HepG-2 cells and blocked the G1
phase cell cycle [198].

The antitumor component ligustrazine was combined with oleanolic acid to form TOA
(292) (Figure 29). TOA showed a good anticancer effect in vitro [79], with IC50 values of
21.45 and 8.683 µM for HepG-2 and HeLa cell lines [199]. The IC50 values of the BEL-7402,
HepG-2, HT-29, and HeLa cell lines were 6.359, 23.75, 8.339, and 23.77 µM [186].
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TOA (292) blocks the expression of the nuclear transcription factors NF-κB/p65 and
COX-2 in S180 mice [200]. Furthermore, acute toxicity tests confirmed that the LD50 of
TOA (292) exceeded 6.0 g/kg by intragastric administration in mice. However, the poor
hydrophilicity of TOA (292) limits its oral bioavailability [200].

Compound 293 showed good antitumor activity, with an IC50 value of 4.273 µM
against the BEL-7402 cell line [186].

Ursolic acid-linked ligustrazine derivative 294 showed good antitumor activity, with
IC50 values of 9.28, 8.43, 7.94, 5.69, and 4.37 µM for BEL-7402, HT-29, HepG-2, MCF-7, and
HeLa cells. The cytotoxicity selective assay showed that 294 had low cytotoxicity to MDCK
cells (IC50 = 16.39 µM) [185].

Chu et al. linked amino acids to TOA (292) via ester bonds and evaluated their
cytotoxicity in four cancer cell lines (HepG-2, HT-29, HeLa, and BGC-823) using a standard
MTT assay. Compounds 295 and 296 not only showed good cytotoxicity (IC50 < 3.5 µM), but
also showed better hydrophilicity than TOA (292). Compound 295 showed the strongest
inhibitory effect on the HepG-2 cell line with an IC50 value of 1.999 µM. Compound 296
showed the strongest inhibitory effect on HT-29, HeLa, and BGC-823 cell lines with IC50
values of 2.347, 2.383, and 2.481 µM. Furthermore, the nephrotoxicity of 6a (IC50 = 4.884 µM)
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to MDCK cells was lower than that of 296 (IC50 = 2.310 µM) and cisplatin (IC50 = 3.691 µM).
Combination 296 can induce HepG-2 apoptosis through nuclear division and has low
nephrotoxicity [199].

A series of hawthorn acid derivatives were synthesized by introducing various
thickened heterocycles at C-2 and C-3. Their inhibitory effects on PTP1B, TCPTP, and
related PTPS were evaluated. Compounds 297–299 (Figure 30) showed significant in-
creases in inhibitory power and selectivity, and the three most potent PTP1B inhibitors, 297
(IC50 = 1.43 µM), 298 (IC50 = 1.79 µM), and 299 (IC50 = 1.78 µM), were shown to be about
two times stronger than hawkic acid. Furthermore, 297–299 are 4.1, 4.6, and 3.1 times more
selective for PTP1B than for TCPTP [201].
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Oleanolic acid has been found to have an anti-bone resorption effect. The oleanolic
acid derivative 300 inhibited the formation of osteoclast-like multinucleated cells (OCL)
and showed quite strong activity even at 200 nM. The formation of oleanolic acid was only
34.1% compared to the control group (100.0%) [202].

Compound 301 is a novel molecule with a strong anti-osteoporosis effect in vivo.
To study the molecular mechanism of 301, a novel fluorescent-labeled chemical probe
with biological activity was designed and synthesized. Compared to 302, fluorescence
compounds 303 and 304 showed a stronger inhibitory activity against RANKL-induced
osteoclast differentiation in RAW264.7 cells at 2 µM, with an inhibition rate of 95.0% and
87.8%. Compounds 303 and 304 did not show cytotoxicity for the RAW264.7 cell line at a
concentration of 10 µM [118].

The inhibitory activity of pyrazine-fused oleanolic acid derivatives on osteoclast for-
mation induced by the nuclear factor-κB ligand receptor activator (RANKL) was evaluated
using a cell-based tartrate-resistant acid phosphatase (TRAP) assay. The most potent
compound 305 had an IC50 of 62.4 nM, and cytotoxicity in marine-derived bone mono-
cytes/macrophages (BMDMs) indicated that inhibition of 305 in osteoclast differentiation
was not due to its cytotoxicity. More importantly, 305 mitigated bone loss in bilateral
ovariectomy mice, and preliminary mechanism studies showed that 305 affected the early
stages of osteoclast genesis [203]. Furthermore, compounds 305–308 showed considerable
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inhibitory activity, inhibiting osteoclast formation by more than 80% at lower concentrations
(0.5 µM) compared to the control group.

The results of α-glucosidase inhibitory activity in vitro showed that compound 309
showed certain inhibitory activity with IC50 values of 3.14 µM, respectively. However, the
activity was inferior to oleanolic acid (IC50 = 2.41 µM) [204].

Derivative 310 (Figure 31) is a hederagenin derivative that binds to paclitaxel at
10 µM with an IC50 value of 2.4 nM against drug-resistant KBV cells. Derivative 310
can activate P-gp ATPase, resulting in the inability of drug-resistant cells to remove the
drug from the body. Therefore, the derivative 310 can enhance the antitumor activity of
paclitaxel in KBV cells, and the reversal effect of the drug is stronger than that of verapamil
(IC50 = 4.9 nM). Furthermore, in vivo experiments showed that under combined use of
paclitaxel (30 mg/kg) and derivative 310 (10 mg/kg), the body weight of nude xenograft
mice decreased slightly, and tumor weight decreased to 41.88%. The results showed that
derivative 310 reversed multidrug resistance by stimulating the ATPase activity of P-gp
and then competing with chemotherapeutic drugs for binding to P-gp, but was less soluble
due to the benzyl group at C-28 [205].
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The cell assay showed that derivative 311 had the strongest antitumor reversion
activity. When the derivative 311 (10 µM) was combined with paclitaxel (100 nM), the
survival rate of the KBV cells reached 18.60%, surpassing that of compound 310 (19.64%)
and hederagenin (149.47%) [206].
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Compound 312 at 5 µM significantly improved the cytotoxicity of paclitaxel in resistant
KBV cells and sensitized cells to paclitaxel, thus preventing cells from entering the G2/M
phase and inducing apoptosis. Compound 312 may block the efflux of P-gp drugs by
stimulating the activity of P-gp ATPase. In vivo experiments demonstrated that compound
312 increased the efficacy of paclitaxel in KBV cancer cell-derived xenograft tumors [207].

In order to improve the water solubility and tumor multidrug resistance reversal ac-
tivity of 309, Wang et al. designed and synthesized a new series of hederagenin derivatives.
These derivatives significantly reversed the multidrug resistance phenotype of KBV cells
to paclitaxel at a concentration of 10 µM. The water solubility of PEGylated derivatives
313 increased approximately 20 fold compared to 310, while maintaining tumor multidrug
resistance reversal activity. Therefore, pegylation is an effective method to improve water
solubility while maintaining tumor multidrug resistance reversal activity [208]. Compound
313, the most active compound in vitro, showed good chemical stability to esterases within
24 h and increased the sensitivity of KBV cells to paclitaxel and vincristine with IC50 values
of 4.58 and 0.79 nM, respectively. Compound 313 also increased the sensitivity of MCF-7T
cells to paclitaxel and vincristine with IC50 values of 0.89 and 0.04 nM, respectively. The
combination of compound 313 and paclitaxel significantly increased the apoptosis rate of
KBV cells. Compound 313 treatment increased the accumulation of rhodamine 123 and
Flutax1 in KBV and MCF-7T cells at 5 and 10 µM concentrations, suggesting that compound
313 played a role in reversing tumor resistance by effectively inhibiting the efflux function
of P-gp [208].

Fang et al. designed and synthesized a series of hederagenin–pyrazine derivatives
and screened the in vitro cytotoxicity of five tumor cell lines. The antitumor activity
of compound 314 against A549 (IC50 = 3.45 µM) was comparable to that of cisplatin
(IC50 = 3.85 µM). Compound 314 induced early apoptosis of A549 cells in a concentration-
dependent manner and induced cell arrest in the S phase [209].

The results of α-glucosidase inhibitory activity in vitro showed that compound 315
(Figure 32) showed certain inhibitory activity with IC50 values of 7.84 µM, respectively.
However, the activity was less than 3-carbonyl ursolic acid (IC50 = 2.47 µM) [210].

Tryptophan hydroxylase 1 (Tph-1) is the main enzyme in the biosynthesis of peripheral
blood albumin, providing a new target for the design of anabolic agents for osteoporosis.
Fu et al. synthesized a series of ursolic acid derivatives and bioevaluated them using
RBL2H3 cells and ovariectomized rats. Among these compounds, compound 316 showed
effective inhibitory activity against serotonin biosynthesis. Further studies showed that 316,
as an effective Tph-1 binder identified by SPR (estimated KD: 6.82 µM), inhibited the protein
and mRNA expression of Tph-1 and reduced the serum and intestinal serotonin content,
but had no effect on brain serotonin. In addition, in ovariectomized rats, oral administration
of 316 increased serum levels of N-terminal propeptide (a marker of bone formation) of
type 1 procollagen (P1NP) and improved bone microstructure without estrogenic side
effects [211].

The pyrazine derivatives 317 and 318 of boswellic acid showed obvious antitumor
effects. The IC50 values of compound 317 on A2780, HT-29, and A375 cells were 15.7, 22.7,
and 12.8 µM. The IC50 values of compound 318 were 13.7, 12.2, and 2.1 µM [212].

Wu et al. synthesized 18β-glycyrtinic acid derivative 319 by introducing piperazine
into C-2 after the hydroxyl group in C-3 was oxidized and evaluated its antibacterial
activity. Compound 319 pairs of Staphylococcus aureus (ATCC 6538), Staphylococcus aureus
(ATCC 29213), and the strain Staphylococcus epidermidis (ATCC 12228) showed obvious
inhibition, and the MIC50 and MBC50 values were 6.25 and 12.5 µM, respectively [213].

Compound 320 showed a greater inhibitory effect on Gram-positive bacteria than
glycyrrhetinic acid. Questions about Staphylococcus aureussubsp aureus (ATCC 29213), Staphy-
lococcus epidermidis (ATCC 12228), and the MIC value of Staphylococcus aureus (ATCC 6538)
was 2.72 µg/mL. The inhibitory activity was similar to that of ampicillin. In vivo, com-
pound 320 was also shown to have anti-inflammatory effects, and 40.0 mg/mL gavage
reduced approximately 59.69% of TPA-induced ear edema in mice. Immunohistochemical
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results showed that inhibition was related to inhibition of TPA-induced upregulation of the
pro-inflammatory cytokines TNF-α and IL-1β. Furthermore, compound 320 significantly
reduced the expression level of p65 in the NF-κB signaling pathway [214].
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Xu et al. synthesized a series of C14 heterocyclic substituted epi-triptolide derivatives.
Among them, the pyrazine derivatives 321 (Figure 33) showed certain inhibitory effects
on SKOV-3 and PC-3 cell lines, with IC50 values of 368.7 nM and 157 nM. The activity was
higher than epitriptolide (SKOV-3, IC50 = 790 nM; PC-3, IC50 = 1320 nM) [215].

Wei et al. obtained derivative 322 by esterification and etherification of 14-dehydroxy-
11,12-didehydroandrographolide. Compound 322 showed obvious inhibitory effects on
A549, DU145, KB, and KBVin cell lines with IC50 values of 4.87, 8.63, 8.24, and 9.19 µM.
The activity of compound 322 exceeded that of andrographolide (A549, IC50 = 13.37 µM;
DU145, IC50 = 15.99 µM; KB, IC50 = 13.18 µM; KBVin, IC50 = 13.82 µM) [216].

Grigoropoulou et al. synthesized a series of dehydroabietic acid–chalketone heterozy-
gotes. Compound 323 containing pyrazine showed certain inhibitory effects on MDA-MB-
231 and Hs578T cell lines with IC50 values of 18.01 and 23.11 µM. However, compound 323
also showed some toxicity to fibroblasts with an IC50 value of 20.47 µM [217].
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Zhao et al. synthesized a series of dehydroabietylamine derivatives containing
pyrazine cycloheterocyclic rings. Anti-MCF-7 activity of compounds 324 and 325 increased
(IC50: 8.81 and 6.66 µM) compared to dehydroabietylamine (IC50: 19.45 µM). However, the
activity of 324 and 325 against other cells such as HeLa, HepG-2, A549, and HUVEC was
lower than that of dehydroabietylamine [218].

Wang et al. designed and synthesized ligustrazine–deoxycholic acid/cholic acid
derivatives as antitumor drugs. The IC50 values of compounds 326 and 327 against the
BEL-7402, A549, HCT-8, BGC-823, and A2780 cell lines were 5.472–8.012 µg/mL [79].

Zhao et al. found that 2-Pyrazine-PPD (328) showed inhibitory activity in the gastric
cancer BGC-823 cell line (IC50 = 11.52 µM). There is little toxicity to normal cells (human gas-
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tric epithelial cell line GES-1). Further studies showed that 2-Pyrazine-PPD (328) induced
apoptosis of BGC-803 cancer cells through the mitochondrial pathway. Ros production was
significantly increased in BGC-803 cancer cells treated with 2-Pyrazine-PPD (328). There-
fore, 2-Pyrazine-PPD (328) exhibits anticancer activity through ROS-mediated apoptosis of
gastric cancer cells and stress of the endoplasmic reticulum [219].

Xu et al. introduced piperazine in C-14 to synthesize Rabbesin derivatives for 329
(Figure 34) and evaluated their antibacterial activity. Compound 329 showed significant in-
hibitory effects on Mycobacterium phlei (ATCC 355), Mycobacterium smegmatis (ATCC 19420),
and Mycobacterium marinum (ATCC 927). The MIC50 values are 4, 32, and 32 µM [220].
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Xu et al. synthesized 330, an enmein derivative containing pyrazine, and studied its
bacteriostatic effect. Compound 330 showed an obvious inhibitory effect on Mycobacterium
phlei (ATCC 355) with a MIC50 of 2 µg/mL [221].

Chen et al. synthesized the C-16 carbonyl derivative 331 using isostevia as the
raw material and evaluated its anticoagulant activity. In vitro activity of human FXa
showed that 331 (Ki = 3.603 µM) showed relatively better inhibitory activity than isosteviol
(Ki = 13.4 µM) [222].

Compound 332 showed obvious inhibitory activity against HIV replication in H9 lympho-
cytes with an IC50 value of 5.6 µg/mL more than linearol activity (IC50 = 56.5 µg/mL) [223].

Alla D. Zorina et al. tested the antiviral activity of pyrazine triterpenoids against the
influenza virus A/Puerto Rico/8/34 (H1N1). The CC50 and IC50 values of compound 333
pairs of influenza virus A/Puerto Rico/8/34 (H1N1) were 21.2 and >11 µg mL−1. The
CC50 and IC50 values of compound 334 were 34.2 and 8.2 µg mL−1. The IC50 values of
compound 335 were 33 µg mL−1 [196].

The results of α-glucosidase inhibitory activity in vitro showed that compound 334
exhibited certain inhibitory activity, with IC50 values of 97.7 µM, respectively, which
exceeded the activity of acarbose (IC50 = 397.6 µM) [224].

2.10. Alkaloid–Pyrazine Hybridization

Nishiyama et al. synthesized a 4-pyrazine substituted colchicine derivative 336
(Figure 35). Compound 336 showed moderate cytotoxicity against three human cancer
cell lines (A549, HT-29, and HCT116), with IC50 values of 37.4, 19.4, and 33.0 µM [225].

Molecules 2023, 28, x FOR PEER REVIEW 35 of 36 
 

 

stimulated by LPS in vitro at a concentration of 10 µM, and the inhibitory rate was more 
than 95% [227]. 

Compound 344 inhibited TNF-α-induced NF-κB activation in a dose-dependent 
manner and showed a significant in vivo therapeutic effect on mice models of experi-
mental autoimmune uveitis disease [228]. 

 
Figure 35. Alkaloid–pyrazine derivatives 336–344. 

Watanabe et al. reported on a morphinan derivative of the oxazatricyclodecane skel-
eton and tested its opioid receptor agonist activity. Pyrazine-containing compound 345 
(Figure 36) showed a high affinity for all types of receptors (DOR, MOR, and KOR) [229]. 

Ananthan et al. synthesized pyridomorphinans with aromatic or heterocyclic substi-
tutions at the 5′ position of the morphinan pyridine ring and evaluated the binding and 
functional activity of opioid receptors δ, µ, and κ. Pyrazine-containing compounds 346 
and 347 show significant affinity for these three receptors, with Ki values ranging from 2.3 
to 16 nM. 

The spinal selective mu-kappa agonist NNTA selectively activates the mu-kappa iso-
mer in HEK-293 cells and produces an unusually potent antipain response after admin-
istration in the mouse intrasheath (i.t.) [230]. The quinoline analog 348 of NNTA is a potent 
agonist (ED50 values of 50.76 and 757.2 pmol, respectively) with a 15-fold increase in spinal 
cord efficacy in both in vitro and in vitro perfusion pathways. In particular, 348 showed 
no significant tolerance to either mode of administration [231]. 

Figure 35. Alkaloid–pyrazine derivatives 336–344.



Molecules 2023, 28, 7440 48 of 59

In order to improve the antitumor activity of camptothecin, Li et al. designed and
synthesized a series of 10 substituted camptothecin derivatives. Compound 337 showed the
strongest inhibitory effect on the MCF-7 cell line with an IC50 value of 0.1 µM. Compound
338 showed the strongest inhibitory effect on HCT-8 and BEL-7402 cell lines with IC50
values of 0.08 and 0.26 µM [226].

Sinomenine derivatives showed stronger TNF-α inhibitory activity than sinomenine.
Compounds 339–343 inhibited the production of TNF-α in mice peritoneal macrophages
stimulated by LPS in vitro at a concentration of 10 µM, and the inhibitory rate was more
than 95% [227].

Compound 344 inhibited TNF-α-induced NF-κB activation in a dose-dependent man-
ner and showed a significant in vivo therapeutic effect on mice models of experimental
autoimmune uveitis disease [228].

Watanabe et al. reported on a morphinan derivative of the oxazatricyclodecane
skeleton and tested its opioid receptor agonist activity. Pyrazine-containing compound 345
(Figure 36) showed a high affinity for all types of receptors (DOR, MOR, and KOR) [229].
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Ananthan et al. synthesized pyridomorphinans with aromatic or heterocyclic substi-
tutions at the 5′ position of the morphinan pyridine ring and evaluated the binding and
functional activity of opioid receptors δ, µ, and κ. Pyrazine-containing compounds 346 and
347 show significant affinity for these three receptors, with Ki values ranging from 2.3 to
16 nM.

The spinal selective mu-kappa agonist NNTA selectively activates the mu-kappa
isomer in HEK-293 cells and produces an unusually potent antipain response after admin-
istration in the mouse intrasheath (i.t.) [230]. The quinoline analog 348 of NNTA is a potent
agonist (ED50 values of 50.76 and 757.2 pmol, respectively) with a 15-fold increase in spinal
cord efficacy in both in vitro and in vitro perfusion pathways. In particular, 348 showed no
significant tolerance to either mode of administration [231].

3. Conclusions

Natural products derived from microorganisms, plants, and animals are a rich source
of effective drugs with significant structural diversity and biological properties, which
offer the possibility for researchers to develop new molecules to treat disease [232]. Over
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the past few decades, drugs that directly or indirectly replace natural product derivatives
and analogs have played an important role in the fight against disease [233]. Natural
products have a wide range of biological activities, but their activity is not strong and
often has the shortcomings of low bioavailability and poor solubility [234]. Therefore,
to improve their physical properties and ADME, it is important to make the necessary
structural modifications to them. Through a literature review, it is found that pyrazine
stents have considerable biological relevance in anti-osteoporosis, antiviral, anti-diabetic,
anti-inflammatory, anti-thrombotic, anti-parasitic, anti-malaria, antibacterial, anticancer,
and other studies, leading to the emergence of many strong bioactive pyrazine compounds.

Although much progress has been made in the pharmacochemistry of natural product–
pyrazine complexes, the following research opportunities remain to be further investigated:
Since many studies have not reported detailed studies of structural modifications of lead
compounds, a complete SAR study of natural product–pyrazine complexes is needed.
Detailed SAR studies may reveal more active compounds. Furthermore, because pyrazines
have a variety of biological activities and multitarget properties, most natural product–
pyrazine derivatives do not have specific drug adaptability, hindering the development
of these derivatives from laboratory to clinical applications; therefore, the in vivo activity
of the natural product–pyrazine hybrid needs to be evaluated. Additionally, most natural
products–pyrazine derivatives have no clear targets. To solve this problem, using reason-
able drug design strategies such as computer-aided drug design, the target identification of
a powerful natural product–pyrazine hybrid was studied, and the compounds were opti-
mized. Finally, pharmacophore combinations and structure-based drug design strategies
should be widely used in the following studies to develop more novel, more active, and
more specific natural products–pyrazine derivatives, and the mechanism of action of these
compounds should be studied in detail.

In conclusion, this review provides a favorable reference for the study of compounds
containing pyrazine fragments. Pyrazine derivatives of natural products still have a
wide range of research prospects and are worth further research and development. With
the rapid development of combinatorial chemistry, rational drug design, and chemical
proteomics, we believe that researchers will find more novel derivatives of pyrazines with
good biological activity and wide application.
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