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Abstract: The lymphocyte-specific protein tyrosine kinase (LCK) is a critical target in leukemia treat-
ment. However, potential off-target interactions involving LCK can lead to unintended consequences.
This underscores the importance of accurately predicting the inhibitory reactions of drug molecules
with LCK during the research and development stage. To address this, we introduce an advanced
ensemble machine learning technique designed to estimate the binding affinity between molecules
and LCK. This comprehensive method includes the generation and selection of molecular fingerprints,
the design of the machine learning model, hyperparameter tuning, and a model ensemble. Through
rigorous optimization, the predictive capabilities of our model have been significantly enhanced,
raising test R2 values from 0.644 to 0.730 and reducing test RMSE values from 0.841 to 0.732. Utilizing
these advancements, our refined ensemble model was employed to screen an MCE -like drug library.
Through screening, we selected the top ten scoring compounds, and tested them using the ADP-Glo
bioactivity assay. Subsequently, we employed molecular docking techniques to further validate the
binding mode analysis of these compounds with LCK. The exceptional predictive accuracy of our
model in identifying LCK inhibitors not only emphasizes its effectiveness in projecting LCK-related
safety panel predictions but also in discovering new LCK inhibitors. For added user convenience, we
have also established a webserver, and a GitHub repository to share the project.

Keywords: LCK; off-target; ensemble machine learning; molecular docking; webserver

1. Introduction

Off-target effects represent significant challenges in pharmaceutical development,
frequently causing drug failures during clinical trials or provoking adverse reactions after
marketing [1–3]. The drug off-target safety assessment panel is instrumental in evaluating
these off-target effects. Its primary goal is to reduce drug-induced adverse reactions early
in the development process [4–6]. The lymphocyte-specific protein tyrosine kinase (LCK,
56 kDa), a member of the Src kinase family, is viewed by numerous companies as a critical
target to address in their safety panels [7,8]. Figure 1 provides a structural depiction of LCK,
highlighting an N-terminal domain (SH4 domain), an SH3 domain, an SH2 domain, and a
C-terminal tyrosine kinase structural domain. The activation of LCK is a pivotal phase in
TCR signal transduction, playing a vital role in the pathogenesis of various inflammatory
and autoimmune disorders such as rheumatoid arthritis, asthma, and cancer [9–11].
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Figure 1. The structure and the domain detail of LCK target. 

   

Figure 1. The structure and the domain detail of LCK target.

Recent research indicates that while it is a therapeutic target in various cancers, un-
intentional targeting can result in toxic effects [12–15]. Due to the significant homology
LCK shares with other kinases in the Src kinase family, this similarity can result in off-
target drug effects. Hence, there is a pressing demand for a tool that can swiftly assess the
affinity of inhibitors for LCK, aiming to mitigate LCK-induced toxicity during novel drug
development [7].

In recent years, advancements in database technology and artificial intelligence have
significantly propelled the evolution of computer-aided drug design [16–18]. Consequently,
there has been a surge in the development of sophisticated tools that streamline the precise
evaluation of the affinity between molecular targets and drugs [17,19,20]. However, molec-
ular docking tools often necessitate detailed structural preparation for both proteins and
ligands. This complexity presents considerable challenges for novice medicinal chemists
who might find it daunting to allocate the required time and expertise [21]. Conversely,
AI-based QSAR [22] offers a rapid prediction of a molecule’s potential activity after model
training, substantially curtailing the preparation time and lowering the experience barrier
for researchers [23]. Nonetheless, a direct prediction model specifically for gauging LCK
molecular affinity remains to be reported.

In this article, we introduce an open-source machine learning framework centered
around a regression model. This model, which boasts a commendable R-squared (R2)
value of 0.730 and a Root Mean Square Error (RMSE) of 0.732, is tailored to predict the
binding affinity between ligands and the lymphocyte-specific protein tyrosine kinase
(LCK). This framework stands as an invaluable reference for drug developers, shedding
light on a molecule’s potential to inhibit LCK. Such insights guide endeavors to enhance
molecular efficacy while mitigating LCK-related toxicity risks. To test the versatility of
our model, we subjected it to an evaluation using the MCE-like drug library. Subsequent
ADP-GLO bioassays indicated that 90% of the assessed molecules exhibited LCK-inhibitory
capabilities, further cementing our model’s effectiveness. We also utilized molecular
docking to shed light on the binding mechanics of these molecules. For broader accessibility,
we launched an online server at (https://prod.nas.cpolar.cn/session7) (accessed on 23
October 2023).

2. Results and Discussion
2.1. Data Collaction and Preparation

The workflow for data collection and preparation in our study, which outlines each
curatorial step for our compound dataset, is illustrated in Figure 2. We began by procuring
compound data pertinent to the LCK target from the ChEMBL database [24]. This collected
dataset incorporated bioactivity data, specifically, IC50 values, alongside their correspond-
ing compound structures represented in the SMILES format. To ensure data integrity, we
utilized RDKit (version 2019.09.1), a comprehensive cheminformatics software, to purify
and standardize the compound structures. Subsequently, we undertook data preprocessing,
which encompassed the removal of missing or incomplete records. To eliminate redun-
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dancy, compounds with identical InChI keys were identified and duplicates were excised.
This meticulous process yielded a curated set of 1688 unique molecules.
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Subsequently, we transformed IC50 values into pIC50 values, a standard practice
offering that facilitates a clearer interpretation of bioactivity data. The finalized dataset,
which includes identifiers for the 1688 unique molecules, their standardized structures, and
the associated pIC50 values, was saved in an Excel file format. This polished dataset is now
ideally prepared for further analyses and modeling endeavors within our study.

2.2. Fingerprint Generation

To effectively characterize the molecules in our curated dataset, we employed a
range of molecular fingerprinting techniques. We first tapped into RDKit’s molecular
fingerprinting functionality, which yields a binary vector indicating the presence or absence
of certain structural features. This method transforms the intricate three-dimensional
molecular structure into a more readily interpretable one-dimensional format. Additionally,
we applied atom-pair and Topological Torsions (APTT) fingerprints. Atom-pair fingerprints
encode the topological relationships between atom pairs within a molecule, whereas
Topological Torsions fingerprints capture the three-point correlation information [25]. Both
offer nuanced insights into the molecules’ structural and topological complexities. We
further utilized the Morgan algorithm to produce circular fingerprints, commonly referred
to as Extended-Connectivity Fingerprints (ECFP) [26]. This algorithm crafts fingerprints by
iterating over each molecule’s atoms, considering their neighborhood atoms up to a certain
depth, thereby providing a more encompassing view of the molecule’s overall structure.
The MACCS keys, comprising 166 predefined structural fragments, were also implemented,
facilitating the rapid identification of specific substructures within molecules [27]. Finally,
we employed Pattern fingerprints, often termed Daylight-like fingerprints. Rooted in the
detection of distinct patterns or substructures within a molecule, these fingerprints stand
out for their specificity and interpretability.

2.3. Fingerprint Selection

We utilized various molecular fingerprints in conjunction with a Random Forest (RF)
model to predict the IC50 values of compounds. Initially, we divided our dataset into
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training and test subsets, allocating 80% of the data for training and the remaining 20%
for testing. Following this partition, each fingerprinting method was employed to convert
the chemical structures into numerical vectors, which were subsequently input into the
machine learning model.

In parallel, we tested each fingerprint type to determine the most predictive method
for our specific application. Among the array of fingerprints examined, the atom pairs and
Topological Torsions fingerprints emerged as the most effective, registering a test R2 score
of 0.699 and a test RMSE of 0.775 (Table 1).

Table 1. The performance of each fingerprint under Random Forest model.

Training R2 Test R2 Training RMSE Test RMSE

RDKit 0.957 0.671 0.308 0.808
APTT 0.954 0.697 0.319 0.775

Morgan 0.956 0.65 0.314 0.834
MACCS 0.929 0.644 0.397 0.841
Pattern 0.954 0.650 0.320 0.834

Based on these results, we opted to prioritize the atom pairs and Topological Torsions
fingerprints in the ensuing stages of our research. This decision is anchored in their
superior efficacy in predicting IC50 values, which are pivotal to our endeavor. Through this
approach, our objective is to bolster prediction accuracy, offering a robust technique for
IC50 estimation.

2.4. Model Selection and Hyperparameter Tuning

In light of our updated experimental fingerprints, we began by evaluating a range of
machine learning models. Our assessment encompassed a variety of models, including
Random Forest (RF) [28], XGBoost, Support Vector Machine (SVM), Decision Trees (DT),
K-Nearest Neighbors (KNN), LightGBM [29], AdaBoost, Gradient Boosting, Ridge, and
ElasticNet. From this initial exploration, we narrowed our focus to the top-performing
models for deeper refinement: Random Forest, XGBoost [30], KNN [31], and LightGBM.
For each selected model, we undertook comprehensive hyperparameter tuning (Table 2).

Table 2. The performance of different models adapting the APTT fingerprint.

Training R2 Test R2 Training RMSE Test RMSE

RF 0.954 0.699 0.319 0.773
XGBOOST 0.997 0.65 0.088 0.834

SVR 0.805 0.631 0.66 0.856
DT 0.999 0.327 0.006 1.156

KNN 0.773 0.677 0.71 0.801
LightGBM 0.962 0.689 0.291 0.786
AdaBoost 0.536 0.486 1.016 1.01

GradientBoosting 0.536 0.486 1.016 1.01
Ridge 0.973 0.04 0.246 1.38

ElasticNet 0 −0.007 1.492 1.414

The meticulous tuning of hyperparameters was central to enhancing our models. For
this, we employed the GridSearchCV method, performing an exhaustive search across
a pre-defined set of hyperparameters to find the best combinations for the Random For-
est, SVM, and LightGBM models. Conversely, due to XGBoost’s extensive set of tunable
parameters—which can render a full grid search infeasible—we leveraged the Random-
izedSearchCV approach. This method evaluates a sample of promising hyperparameter
combinations derived from defined distributions, allowing us to pinpoint the optimal
configuration for the XGBoost model. Once hyperparameter optimization was complete,
we retrained each model using the newly identified best parameters, evaluating their
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performance based on R2 scores and Root Mean Square Error (RMSE). This rigorous evalu-
ation and subsequent comparison empowered us to identify the most fitting model for our
upcoming molecular property prediction endeavors (Figure 3).
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Figure 3. (A) The performance (R2) of the test dataset under different models before and after
optimization. (B) The performance (RMSE) of the test dataset under different models before and
after optimization.

2.5. Model Ensemble

In our quest to develop a predictive model capable of accurately determining the
binding affinity between LCK and various molecules, we embraced the principles of
ensemble learning. This methodology constructs multiple individual models and combines
them, with the aim of producing predictions that surpass the accuracy of any single
model within the ensemble. To orchestrate this combination, we turned to the voting
regressor mechanism, valued for its ability to tap into the predictive prowess of several
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distinct models. Our ensemble model seamlessly integrated four diverse yet synergistic
base learners: Random Forest, XGBoost, KNN, and LightGBM. Each model was selected
based on its outstanding performance during earlier model selection and hyperparameter
tuning phases. Together, they span a broad spectrum of machine learning techniques, from
ensemble methods and gradient-boosting frameworks to non-parametric approaches. This
array of methodologies strengthens our ensemble model, providing a well-rounded and
robust learning process. We integrated these models using a voting regressor, an ensemble
meta-estimator that fits base regressors to the entire dataset and then averages individual
predictions to produce a final outcome. The voting regressor uses soft voting, averaging
predictions from each sub-model instead of counting a simple majority. Our methodology
hinges on the assumption that these four models, given their diversity, make independent
errors. Such diversity increases the chance that their errors will counterbalance each other,
resulting in a more accurate overall prediction. Our aim in using a voting ensemble was
to create a model that captures the strengths of each individual one, reduces variance,
and bolsters the generalization capability for unseen data. The models were trained and
merged using the voting regressor through the sklearn_ensemble_VotingRegressor function
from the sklearn Python library. We evaluated the performance of our approach using
key metrics, including the R2 score and Root Mean Square Error (RMSE), for both the
training and testing datasets. Alongside the voting regressor technique, we also explored
a stacking strategy to combine the four models. In our specific stacking implementation,
we designated each of the four models as base learners, training them on the complete
dataset. The preliminary predictions from these base learners were then channeled into a
meta-learner, which was trained to produce the final prediction. Selecting an appropriate
meta-learner is a pivotal step in stacking, as the chosen model should be adept at identifying
patterns within the base learners’ predictions. We trialed various meta-learners, including
DT, KNN, LightGBM, Linear Regression, MLP, RF, SVR, and XGBOOST, evaluating each
based on metrics derived from a distinct validation set. Ultimately, the ensemble model that
employed Linear Regression as its meta-model delivered the best performance, as indicated
by an R2 value of 0.730 and an RMSE of 0.732. This underscores its strong predictive
capacity in gauging the affinity between LCK and different molecules (Table 3, Figure 4).

Table 3. The performance of different ensemble methods.

Test R2 Test RMSE

Voting 0.722 0.743
Meta-LinearRegression 0.730 0.732

Meta-RandomForest 0.692 0.781
Meta-SVR 0.725 0.738

Meta-MLPRegressor 0.725 0.738
Meta-LightGBM 0.695 0.778

Meta-XGB 0.691 0.782
Meta-KNN 0.683 0.793

2.6. Module’s Robust Estimator

To validate the diversity of our dataset used for model training and testing, we
employed the Multidimensional Scaling (MDS) technique, reducing dimensions based on
molecular similarity (Tanimoto similarity) and categorizing the molecules into 10 clusters.
As illustrated in Figure 5 it can be observed that even when the molecules are grouped
into 10 clusters, their structures still display significant variation. This underscores the
diversity of our training set, ensuring that our model can be applied to molecules with
diverse structures.
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Figure 4. (A) The ensemble model structure and the performance of different ensemble ways.
(B) Voting. (C) Ensemble model with a DT meta-model. (D) Ensemble model with a KNN meta-
model. (E) Ensemble model with a LightGBM meta-model. (F) Ensemble model with a Linear
Regression meta-model. (G) Ensemble model with a MLP meta-model. (H) Ensemble model with a
RF meta-model. (I) Ensemble model with a SVR meta-model. (J) Ensemble model with a XGBOOST
meta-model.

To augment our evaluation of the models’ robustness and meticulously minimize any
potential bias emanating from dataset partitioning, we judiciously applied five distinct
random number seeds during the data bifurcation process, followed by a retraining of the
model. Across these exacting experiments, the model garnered five sets of test R2 scores:
0.755, 0.744, 0.734, 0.800, and 0.748, respectively. These consistent outcomes illuminate
the model’s adeptness in sustaining precise predictions across diverse dataset divisions,
thereby reaffirming its reliability and general applicability.
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Figure 5. Cluster Analysis of the Model.

2.7. Comparison with 3D-QSAR

In the area of QSAR analyses for LCK inhibitors, there have been notable advance-
ments [32,33]. Until now, most current QSAR research for LCK has been through the
3D-QSAR module which leans heavily on commercial software, such as in the research by
Xie et al. [33]. Concurrently, the procedures of the 3D-QSAR module are relatively intricate,
and its precision is confined to molecules with analogous structures. In contrast, the model
we propose is more user-friendly and versatile, catering to a variety of novel molecular
frameworks. In a bid to fortify the depth and authenticity of our investigation, but ham-
pered by licensing barriers, we incorporated the training set offered by Xie et al. [33] into
our bespoke model, then proceeded to evaluate their test set. Impressively, this integra-
tion spawned significant results. As shown in Figure 6, we added the 3D-QSAR training
set to our dataset and trained it in the original way. After training, we tested 3D-QSAR
using its test set as our external test set. Finally, our model reports a test R2 score of 0.946
and a test RMSE of 0.097. This is a significant improvement over the benchmarks set by
Xie et al., who reported LCK R2_pred values of 0.836 (CoMFA) and 0.821 (CoMSIA(SHD)),
respectively [33] (Figure 6). Such a difference in outcomes accentuates the robustness of
our model and potentially positions it as superior in predicting inhibitory activity.
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2.8. Applied Modeling in LCK Novel Inhibitor Discovery

To ascertain the generalizability and practical utility of our model, we set out to identify
novel LCK inhibitors. Our screening protocol included MCE-like drug libraries, consisting of
approximately 9000 molecules. Using the refined model from our prior training, we predicted
the activity of these molecules. Ultimately, we selected the top ten molecules, chosen due to
their high evaluation scores and rational structures, for further activity tests. (Figure 7A).
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In the conclusive biological assessments, a remarkable 90% of the molecules, as pre-
dicted by our model, demonstrated high inhibition rates against LCK. This outcome vividly
highlights the model’s superior generalization capabilities in assessment tasks. The notable
performance of these molecules is illustrated in Figure 7B. Moreover, we have launched
a web server (https://prod.nas.cpolar.cn/session7) (accessed on 23 October 2023) as a
convenient platform for the wider community. Here, we have made our model available,
ensuring a user-friendly, accessible, and efficient tool for extended application.

2.9. Binding Pose Study thorough Molecular Docking

We used Deepdock, a geometric deep learning approach (https://github.com/OptiMaL-
PSE-Lab/DeepDock) (accessed on 23 October 2023), to predict the binding conformations of
these ten molecules with LCK [34].

Molecular docking studies showed that the m-xylene moiety of 847950-09-8 engages
in a π–cation interaction with Lys273 (Figure 8A). Similarly, the 1,3-dichlorobenzene moiety
of 185039-89-8, the 4-chlorophenol group of 867441-64-4, and the (trifluoromethyl)phenyl
group of 1370466-81-1 each establish π–cation interactions with Lys273. Both the pyrimidin-
2-amine of 185039-89-8 and the aniline moiety of 867441-64-4 form hydrogen bonds with
Met319. The isoindole group’s -NH in 1370466-81-1 establishes a hydrogen bond with
Glu320. In addition, the diethylammonium moiety of 185039-89-8 and the imidazole moiety
of 1370466-81-1 could form halogen bonding interactions with Glu249. The pyrrolidin-ium
moiety of 867441-64-4 also interacts with Asp326 through halogen bonding (Figure 8B–D).
The 1-(piperidin-1-yl)prop-2-en-1-one moiety of 1820684-31-8 forms a hydrogen bond

https://prod.nas.cpolar.cn/session7
https://github.com/OptiMaL-PSE-Lab/DeepDock
https://github.com/OptiMaL-PSE-Lab/DeepDock
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with Ala396 (Figure 8E). The hydroxyl group on the 1H-indol-2-ol group of 334951-90-5
and the pyrimidin-2-amine group of 837422-57-8 both interact with Met319 via hydrogen
bonds. Furthermore, the m-xylene moiety of 837422-57-8 engages in a π–cation interac-
tion with Lys273, while its methylpiperazinium group forms a halogen bond with Glu249
(Figure 8F,G). Interestingly, 670220-88-9 does not exhibit any inhibitory activity against
LCK, possibly due to its substantial exposure to the solvent region (Figure 8H). The hy-
droxyl group on 1H-indol-2-ol of 422513-13-1 forms a hydrogen bond with Ser323. Both
the piperidin-ium moiety of 422513-13-1 and the 2-(sulfonylamino)-N,N-dimethylethan-1-
aminium moiety of 1308672-74-3 can form halogen bond interactions with Asp326. Addi-
tionally, the latter moiety forms a hydrogen bond with Ser323, and its pyrimidin-2-amine
segment forms hydrogen bonds with Met319 (Figure 8I,J).

Figure 8. Cont.
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Figure 8. Binding modes of different molecules with LCK target. The CAS numbers of these com-
pounds were (A) 847950-09-8; (B) 185039-89-8; (C) 867441-64-4; (D) 1370466-81-1; (E) 1820684-31-8;
(F) 334951-90-5; (G) 837422-57-8; (H) 670220-88-9; (I) 422513-13-1; (J) 1308672-74-3.

3. Methods
3.1. Data Collection

The initial dataset was sourced through the ChEMBL database API. Utilizing the
pandas library in Python, we processed the data to eliminate duplicates and items missing
either labels or SMILES information, ensuring optimal conditions for subsequent model
training. This refined dataset contained SMILES strings—a widely-accepted notation
system for molecular representation—for each molecule. Additionally, the dataset featured
pIC50 values, derived from the original IC50 values. −lnIC50 = pIC50



Molecules 2023, 28, 7382 12 of 16

3.2. Fingerprint Generation

To transform molecular structures from SMILES strings into a format amenable to
machine learning analysis, we utilized the RDKit cheminformatics library to generate a
variety of molecular fingerprints. These included MACCS keys, Morgan Circular finger-
prints, atom-pair fingerprints, Topological Torsion fingerprints, and Pattern fingerprints.
Each fingerprint type offers a distinctive perspective on molecular structure and introduces
a unique feature set: MACCS keys consist of 166 predefined substructure keys. Molecules
are encoded based on whether these substructures are present or absent. Morgan Circular
fingerprints, also known as Extended-Connectivity Fingerprints (ECFP), are produced by
iterating over each atom in the molecule and assessing its local chemical environment up
to a defined radius. Atom-pair fingerprints identify specific pairs of atoms separated by
a particular topological distance, offering an encompassing perspective of the molecule.
Topological Torsion fingerprints, while similar to atom-pair fingerprints, also account for
the path between the atom pairs, adding a richer structural context. Pattern fingerprints
rely on a predefined list of SMARTS patterns, encoding whether these patterns are present
or absent in the molecule.

3.3. Model Construction

In this study, we utilized a variety of machine learning models to construct a com-
prehensive ensemble model for molecular property prediction. All modeling and data
preprocessing tasks were carried out in Python, leveraging several open-source libraries.
Specifically, the models were developed using the Scikit-learn, XGBOOST, and LightGBM li-
braries.

3.4. Hyperparameter Tuning

Four prominent machine learning models for our predictions, Random Forest, XGBoost,
KNN, and LightGBM, undertook hyperparameter tuning to optimize their performance:

Random Forest: The hyperparameters tuned in the Random Forest model included
n_estimators and max_depth. n_estimators, the number of trees in the forest, was tested
for the values of 100, 200, 300, 500, and 1000. The max_depth parameter, which determines
the maximum depth of each tree, was tested for 10, 20, 30, and None.

KNN: The hyperparameters optimized for the KNN model included n_neighbors,
weights, and metric. n_neighbors represents the number of neighbors to use for the majority-
voting process and was tuned within the range of 1 to 10. The weights parameter was set to
‘uniform’ or ‘distance’, while metric was chosen from ‘euclidean’, ‘manhattan’, ‘minkowski’.

XGBoost: The hyperparameters optimized for the XGBoost model included n_estimators,
learning_rate, max_depth, min_child_weight, subsample, colsample_bytree, alpha, and
lambda. Each parameter was given a specific range of values to explore. The tuning pro-
cess was facilitated through a Randomized Search Cross-Validation (RandomizedSearchCV)
approach.

LightGBM: The hyperparameters optimized in LightGBM model included max_depth,
learning_rate, n_estimators, num_leaves, and min_child_samples. Each of these parameters
was given a specific range or set of options to explore.

3.5. Model Ensembling

Our ensemble learning approach harnessed both the voting regressor mechanism
and a stacking strategy. These techniques integrated the predictive capabilities of four
foundational learning models: Random Forest, XGBoost, KNN, and LightGBM.

Voting Regressor: Within the voting mechanism, each foundational model was trained
individually on the entire dataset. The voting regressor was subsequently applied, uti-
lizing a soft voting method. Rather than producing a final prediction based solely on a
straightforward majority vote from the base models, this technique took the average of
their individual predictions to yield the final result.
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Stacking Strategy: Beyond the voting method, we incorporated a stacking technique.
This required training all of the foundational models on the complete dataset, then leverag-
ing their predictions as input features for a second level, or “meta-learner”. Selecting the
appropriate meta-learner is pivotal in the stacking approach. We assessed several models
for their meta-learner potential, including Linear Regression, Random Forest, Support
Vector Regression, and a basic Neural Network. The efficacy of each potential meta-learner
was gauged using performance metrics calculated on a distinct validation set.

Both the voting regressor and the stacking strategy techniques were executed using the
sklearn.ensemble module from the sklearn Python library. Specifically, the VotingRegressor
function was employed for the voting approach, while the StackingRegressor function
facilitated the stacking method.

3.6. Molecule Docking

The protein structure of LCK, with PDB ID: 4CF3 and a resolution of 1.72 Å [35],
was obtained from the RCSB Protein Data Bank [36]. It was meticulously prepared using
pdb2pqr [37], which entailed determining titration states, adding any missing atoms, and
attributing charges to the structure. Subsequently, residues within a 15 Å radius around
the ligand were retained and featurelized via masif [38], and extraneous components were
removed. The structures of small molecules underwent processing by RDKit to form
3D constructs, which were then optimized using the MMFF94 force field [39]. Docking
procedures for the molecules were directly executed by Deepdock.

3.7. Inhibition Assay

The compound under investigation was initially dissolved in DMSO to create a 10 mM
stock solution. This stock solution was subsequently diluted to produce a solution contain-
ing 50 times the final test concentrations, creating a readily accessible solution for future
experiments. The assay buffer constituted 5* buffer, 5 mM MgCl2, 1 mM DTT, and ddH2O.
Using this buffer, we prepared two separate solutions: a 2* ATP and substrate solution
and a 2* kinase and metal solution. Using an Echo 655, we precisely pipetted 25 nL of
the prepared compound into each well of a 384-well assay plate. We then added 2.5 µL
of the 2* kinase and metal solution into each well and allowed the mixture to incubate
for 10 min at a stable temperature of 25 ◦C in a polystyrene-coated 384-well assay plate.
Following the initial incubation period, 2.5 µL of the 2* substrate and ATP solution was
introduced into each well. The plate was subsequently incubated again at 25 ◦C, this
time for an extended period of 50 min. We then prepared a 2* XL665 and antibody so-
lution using detection buffer. Upon the completion of the second incubation period, we
introduced 5 µL of kinase detection reagent into each well and allowed it to incubate
for an additional 60 min at 25 ◦C. Finally, the fluorescence signals at 620 nm (Cryptate)
and 665 nm (XL665) were measured using a microtiter plate reader. The resultant data
were further processed using GraphPad 7.0 software, with a dose–response variable slope
analysis being applied. We calculated the IC50 values of the tested compounds using
the following formula: Y = Bottom + (Top − Bottom)/(1 + 10ˆ((LogIC50 − X) ∗ hillslope)).
This rigorous process ensures the highest degree of accuracy and reliability in our findings.
The determination of all compounds was carried out at a concentration of 25 µM, and
column homology was generated by seaborn library.

3.8. Webserver Construction

The structure of our web-based solution is bifurcated into two essential components:
the front end and the back end. The front end, designed with CSS and Bootstrap, facilitates a
responsive and intuitive user interface. Conversely, the back end, architected with Python’s
Django framework, undertakes significant computational functions. A predictive model,
embedded within the back end, employs pre-trained parameters that have been loaded
into the system. This model is equipped to execute predictions on incoming data structured
in the Simplified Molecular Input Line Entry System (SMILES) format.
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A notable benefit of this methodology is the system’s ability to perform real-time fore-
casts, eliminating the necessity for the model to repeatedly learn with each new SMILES file
received. As such, this configuration optimizes the efficiency and accuracy of predictions,
thereby enhancing the overall functionality of the webpage.

4. Conclusions

In this study, we developed a predictive model for the discovery of novel LCK in-
hibitors. Our comprehensive approach encompassed data collection and preprocessing,
fingerprint generation and selection, model selection and hyperparameter tuning, a model
ensemble, and its ultimate application in drug discovery. Our fingerprint choices, atom
pairs and Topological Torsions, demonstrated exceptional capability in predicting IC50
values. Among the variety of machine learning models evaluated, Random Forest, XG-
Boost, KNN, and LightGBM consistently outperformed the rest. To ensure robustness and
augment generalizability, we incorporated ensemble learning into our methodology. We
amalgamated the chosen models using a voting regressor mechanism along with a stacking
strategy. The efficacy of these ensemble models was assessed through the R2 score and Root
Mean Square Error (RMSE) across both the training and testing datasets. To deepen the
breadth and fortify the credibility of our investigation, we merged the dataset from Xie et al.
into our model. After this integration, our findings were substantial. Specifically, our model
registered an R2 score of 0.946 and a test RMSE of 0.097, denoting a significant improvement
over the metrics presented by Xie et al. [33]. The predictions from our ensemble models
consistently outperformed those of the individual constituent models, underscoring the
efficacy of our approach. Utilizing these models, we screened an MCE-like drug library,
leading to the identification of ten promising LCK inhibitors. Subsequent biological test-
ing via the ADP-Glo kinase assay confirmed that nine of these exhibited definitive LCK
inhibitory activity, highlighting the practical utility of our model. In summary, our research
offers a potent model for LCK inhibitor discovery, emphasizing the transformative role of
machine learning in optimizing drug discovery processes. Moreover, we have introduced
a user-friendly web server for effortless accessibility. Looking ahead, we aim to expand
our model to encompass other relevant factors and to subject the predicted inhibitors to
thorough preclinical and clinical evaluations.

Author Contributions: Conceptualization, Y.C. and Z.S.; Methodology, Y.C., C.J., J.X., Q.B., Z.S. and
B.Z.; Software, Q.B.; Validation, J.X., Y.G. and R.C.; Formal analysis, not specified; Investigation, Y.C.
and C.J.; Resources, Z.S. and B.Z.; Data curation, R.C. and Y.G.; Writing—original draft preparation,
Y.C., J.X. and R.C.; Writing—review and editing, B.Z.; Visualization, Z.S. and B.Z.; Supervision, B.Z.
and Z.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data referenced in the paper, along with the final model’s code
and weights, can be found at the following link: https://github.com/shenzheyuan2020/LCK_QSAR
(accessed on 23 October 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jenkinson, S.; Schmidt, F.; Rosenbrier Ribeiro, L.; Delaunois, A.; Valentin, J.-P. A Practical Guide to Secondary Pharmacology in

Drug Discovery. J. Pharmacol. Toxicol. Methods 2020, 105, 106869. [CrossRef] [PubMed]
2. Anighoro, A.; Bajorath, J.; Rastelli, G. Polypharmacology: Challenges and Opportunities in Drug Discovery. J. Med. Chem. 2014,

57, 7874–7887. [CrossRef] [PubMed]
3. Bender, A.; Scheiber, J.; Glick, M.; Davies, J.W.; Azzaoui, K.; Hamon, J.; Urban, L.; Whitebread, S.; Jenkins, J.L. Analysis of

Pharmacology Data and the Prediction of Adverse Drug Reactions and Off-Target Effects from Chemical Structure. ChemMedChem
2007, 2, 861–873. [CrossRef] [PubMed]

https://github.com/shenzheyuan2020/LCK_QSAR
https://doi.org/10.1016/j.vascn.2020.106869
https://www.ncbi.nlm.nih.gov/pubmed/32302774
https://doi.org/10.1021/jm5006463
https://www.ncbi.nlm.nih.gov/pubmed/24946140
https://doi.org/10.1002/cmdc.200700026
https://www.ncbi.nlm.nih.gov/pubmed/17477341


Molecules 2023, 28, 7382 15 of 16

4. Whitebread, S.; Hamon, J.; Bojanic, D.; Urban, L. Keynote Review: In Vitro Safety Pharmacology Profiling: An Essential Tool for
Successful Drug Development. Drug Discov. Today 2005, 10, 1421–1433. [CrossRef]

5. Berndt, N.; Karim, R.M.; Schönbrunn, E. Advances of Small Molecule Targeting of Kinases. Curr. Opin. Chem. Biol. 2017, 39,
126–132. [CrossRef]

6. Noolvi, M.N.; Patel, H.M. Small Molecule Tyrosine Kinase Inhibitors: The New Dawn for Cancer Therapy. Lett. Drug Des. Discov.
2012, 9, 84–125. [CrossRef]

7. Bowes, J.; Brown, A.J.; Hamon, J.; Jarolimek, W.; Sridhar, A.; Waldron, G.; Whitebread, S. Reducing Safety-Related Drug Attrition:
The Use of in Vitro Pharmacological Profiling. Nat. Rev. Drug Discov. 2012, 11, 909–922. [CrossRef]

8. Zhou, J.; Zhang, Q.; Henriquez, J.E.; Crawford, R.B.; Kaminski, N.E. Lymphocyte-Specific Protein Tyrosine Kinase (LCK) Is
Involved in the Aryl Hydrocarbon Receptor-Mediated Impairment of Immunoglobulin Secretion in Human Primary B Cells.
Toxicol. Sci. 2018, 165, 322–334. [CrossRef]

9. Kumar Singh, P.; Kashyap, A.; Silakari, O. Exploration of the Therapeutic Aspects of Lck: A Kinase Target in Inflammatory
Mediated Pathological Conditions. Biomed. Pharmacother. 2018, 108, 1565–1571. [CrossRef]

10. Elkamhawy, A.; Ali, E.M.H.; Lee, K. New Horizons in Drug Discovery of Lymphocyte-Specific Protein Tyrosine Kinase (Lck)
Inhibitors: A Decade Review (2011–2021) Focussing on Structure–Activity Relationship (SAR) and Docking Insights. J. Enzyme
Inhib. Med. Chem. 2021, 36, 1572–1600. [CrossRef]

11. Liang, Y.; Ye, L. Bound to Be Perfect: Lck and T Cell Co-Receptors. Nat. Immunol. 2023, 24, 5–7. [CrossRef]
12. Zhang, X.; Kucharski, A.; de Jong, W.A.; Ellingson, S.R. Towards a Better Understanding of on and off Target Effects of the

Lymphocyte-Specific Kinase LCK for the Development of Novel and Safer Pharmaceuticals. Procedia Comput. Sci. 2017, 108,
1222–1231. [CrossRef]

13. Hu, J.; Jarusiewicz, J.; Min, J.; Yang, L.; Chepyala, D.; Actis, M.; Rowland, L.; Du, G.; Smart, B.; Maxwell, D.; et al. Development of
Proteolytic Targeting Chimeras to Target Lck in T-Cell Acute Lymphoblastic Leukemia. Blood 2021, 138, 867. [CrossRef]

14. Hu, J.; Jarusiewicz, J.; Du, G.; Nishiguchi, G.; Yoshimura, S.; Panetta, J.C.; Li, Z.; Min, J.; Yang, L.; Chepyala, D.; et al. Preclinical
Evaluation of Proteolytic Targeting of LCK as a Therapeutic Approach in T Cell Acute Lymphoblastic Leukemia. Sci. Transl. Med.
2022, 14, eabo5228. [CrossRef] [PubMed]

15. Conboy, C.; Yonkus, J.; Buckarma, E.; Mun, D.-G.; Werneburg, N.; Watkins, R.; Guo, Y.; Wang, J.; O’Brien, D.; Buijsman, R.; et al.
Preclinical Evaluation of LCK as a Novel Therapeutic Target in YAP-Activated and FGFR2-Altered Cholangiocarcinoma. J. Clin.
Oncol. 2022, 40, 463. [CrossRef]

16. Uni-Mol: A Universal 3D Molecular Representation Learning Framework|Theoretical and Computational Chemistry|ChemRxiv|
Cambridge Open Engage. Available online: https://chemrxiv.org/engage/chemrxiv/article-details/628e5b4d5d948517f5ce6d72
(accessed on 26 July 2023).

17. Sadybekov, A.V.; Katritch, V. Computational approaches streamlining drug discovery. Nature 2023, 616, 673–685. [CrossRef]
[PubMed]

18. Sadybekov, A.A.; Sadybekov, A.V.; Liu, Y.; Iliopoulos-Tsoutsouvas, C.; Huang, X.-P.; Pickett, J.; Houser, B.; Patel, N.; Tran, N.K.;
Tong, F.; et al. Synthon-Based Ligand Discovery in Virtual Libraries of over 11 Billion Compounds. Nature 2022, 601, 452–459.
[CrossRef]

19. Chen, S.; Gao, J.; Chen, J.; Xie, Y.; Shen, Z.; Xu, L.; Che, J.; Wu, J.; Dong, X. ClusterX: A Novel Representation Learning-Based
Deep Clustering Framework for Accurate Visual Inspection in Virtual Screening. Brief. Bioinform. 2023, 24, bbad126. [CrossRef]
[PubMed]

20. Sun, X.; Zhang, Y.; Li, H.; Zhou, Y.; Shi, S.; Chen, Z.; He, X.; Zhang, H.; Li, F.; Yin, J.; et al. DRESIS: The First Comprehensive
Landscape of Drug Resistance Information. Nucleic Acids Res. 2023, 51, D1263–D1275. [CrossRef]

21. Sánchez-Cruz, N. Deep Graph Learning in Molecular Docking: Advances and Opportunities. Artif. Intell. Life Sci. 2023, 3, 100062.
[CrossRef]

22. Tsou, L.K.; Yeh, S.-H.; Ueng, S.-H.; Chang, C.-P.; Song, J.-S.; Wu, M.-H.; Chang, H.-F.; Chen, S.-R.; Shih, C.; Chen, C.-T.; et al.
Comparative Study between Deep Learning and QSAR Classifications for TNBC Inhibitors and Novel GPCR Agonist Discovery.
Sci. Rep. 2020, 10, 16771. [CrossRef]

23. Dara, S.; Dhamercherla, S.; Jadav, S.S.; Babu, C.M.; Ahsan, M.J. Machine Learning in Drug Discovery: A Review. Artif. Intell. Rev.
2022, 55, 1947–1999. [CrossRef] [PubMed]

24. Mendez, D.; Gaulton, A.; Bento, A.P.; Chambers, J.; De Veij, M.; Félix, E.; Magariños, M.P.; Mosquera, J.F.; Mutowo, P.; Nowotka,
M.; et al. ChEMBL: Towards Direct Deposition of Bioassay Data. Nucleic Acids Res. 2019, 47, D930–D940. [CrossRef] [PubMed]

25. Capecchi, A.; Probst, D.; Reymond, J.-L. One Molecular Fingerprint to Rule Them All: Drugs, Biomolecules, and the Metabolome.
J. Cheminfor. 2020, 12, 43. [CrossRef] [PubMed]

26. Rogers, D.; Hahn, M. Extended-Connectivity Fingerprints. J. Chem. Inf. Model. 2010, 50, 742–754. [CrossRef]
27. Kuwahara, H.; Gao, X. Analysis of the Effects of Related Fingerprints on Molecular Similarity Using an Eigenvalue Entropy

Approach. J. Cheminform. 2021, 13, 27. [CrossRef]
28. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
29. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. LightGBM: A highly efficient gradient boosting decision

tree. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17), Long Beach, CA,
USA, 4–9 December 2017; pp. 3149–3157.

https://doi.org/10.1016/S1359-6446(05)03632-9
https://doi.org/10.1016/j.cbpa.2017.06.015
https://doi.org/10.2174/157018012798192892
https://doi.org/10.1038/nrd3845
https://doi.org/10.1093/toxsci/kfy133
https://doi.org/10.1016/j.biopha.2018.10.002
https://doi.org/10.1080/14756366.2021.1937143
https://doi.org/10.1038/s41590-022-01392-y
https://doi.org/10.1016/j.procs.2017.05.268
https://doi.org/10.1182/blood-2021-147024
https://doi.org/10.1126/scitranslmed.abo5228
https://www.ncbi.nlm.nih.gov/pubmed/36001679
https://doi.org/10.1200/JCO.2022.40.4_suppl.463
https://chemrxiv.org/engage/chemrxiv/article-details/628e5b4d5d948517f5ce6d72
https://doi.org/10.1038/s41586-023-05905-z
https://www.ncbi.nlm.nih.gov/pubmed/37100941
https://doi.org/10.1038/s41586-021-04220-9
https://doi.org/10.1093/bib/bbad126
https://www.ncbi.nlm.nih.gov/pubmed/37020333
https://doi.org/10.1093/nar/gkac812
https://doi.org/10.1016/j.ailsci.2023.100062
https://doi.org/10.1038/s41598-020-73681-1
https://doi.org/10.1007/s10462-021-10058-4
https://www.ncbi.nlm.nih.gov/pubmed/34393317
https://doi.org/10.1093/nar/gky1075
https://www.ncbi.nlm.nih.gov/pubmed/30398643
https://doi.org/10.1186/s13321-020-00445-4
https://www.ncbi.nlm.nih.gov/pubmed/33431010
https://doi.org/10.1021/ci100050t
https://doi.org/10.1186/s13321-021-00506-2
https://doi.org/10.1023/A:1010933404324


Molecules 2023, 28, 7382 16 of 16

30. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [CrossRef]

31. Zhang, Z. Introduction to machine learning: K-nearest neighbors. Ann. Transl. Med. 2016, 4, 218. [CrossRef]
32. Biomed, J.; Pharm, S.; Oche, G.; Olanrewaju, J.A.; Adenike, S.F.; Alakanse, S.O.; Terkuma, C.; Alexander, K.A.; Iorwuese, M.;

Kayode, A.A.; et al. QSAR Study and Molecular Docking of 2 Phenylaminoimidazo[4,5-H]Isoquinolin-9-Ones as Potent Inhibitors
of P56ick Tyrosine Kinase (LCK). Breast Cancer Ther. 2018, 1, 1000108. [CrossRef]

33. Xie, W.; Liu, Z.; Fang, D.; Wu, W.; Ma, S.; Tan, S.; Zheng, K. 3D-QSAR and Molecular Docking Studies of Aminopyrimidine
Derivatives as Novel Three-Targeted Lck/Src/KDR Inhibitors. J. Mol. Struct. 2019, 1185, 240–258. [CrossRef]

34. Méndez-Lucio, O.; Ahmad, M.; del Rio-Chanona, E.A.; Wegner, J.K. A Geometric Deep Learning Approach to Predict Binding
Conformations of Bioactive Molecules. Nat. Mach. Intell. 2021, 3, 1033–1039. [CrossRef]

35. Wassermann, A.M.; Kutchukian, P.S.; Lounkine, E.; Luethi, T.; Hamon, J.; Bocker, M.T.; Malik, H.A.; Cowan-Jacob, S.W.; Glick, M.
Efficient Search of Chemical Space: Navigating from Fragments to Structurally Diverse Chemotypes. J. Med. Chem. 2013, 56,
8879–8891. [CrossRef] [PubMed]

36. Berman, H.; Henrick, K.; Nakamura, H. Announcing the Worldwide Protein Data Bank. Nat. Struct. Mol. Biol. 2003, 10, 980.
[CrossRef] [PubMed]

37. Dolinsky, T.J.; Czodrowski, P.; Li, H.; Nielsen, J.E.; Jensen, J.H.; Klebe, G.; Baker, N.A. PDB2PQR: Expanding and Upgrading
Automated Preparation of Biomolecular Structures for Molecular Simulations. Nucleic Acids Res. 2007, 35, W522–W525. [CrossRef]
[PubMed]

38. Gainza, P.; Sverrisson, F.; Monti, F.; Rodolà, E.; Boscaini, D.; Bronstein, M.M.; Correia, B.E. Deciphering interaction fingerprints
from protein molecular surfaces using geometric deep learning. Nat. Methods 2020, 17, 184–192. [CrossRef]

39. Tosco, P.; Stiefl, N.; Landrum, G. Bringing the MMFF force field to the RDKit: Implementation and validation. J. Cheminform.
2014, 6, 37. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1145/2939672.2939785
https://doi.org/10.21037/atm.2016.03.37
https://doi.org/10.13140/RG.2.2.14107.92967
https://doi.org/10.1016/j.molstruc.2019.02.071
https://doi.org/10.1038/s42256-021-00409-9
https://doi.org/10.1021/jm401309q
https://www.ncbi.nlm.nih.gov/pubmed/24117015
https://doi.org/10.1038/nsb1203-980
https://www.ncbi.nlm.nih.gov/pubmed/14634627
https://doi.org/10.1093/nar/gkm276
https://www.ncbi.nlm.nih.gov/pubmed/17488841
https://doi.org/10.1038/s41592-019-0666-6
https://doi.org/10.1186/s13321-014-0037-3

	Introduction 
	Results and Discussion 
	Data Collaction and Preparation 
	Fingerprint Generation 
	Fingerprint Selection 
	Model Selection and Hyperparameter Tuning 
	Model Ensemble 
	Module’s Robust Estimator 
	Comparison with 3D-QSAR 
	Applied Modeling in LCK Novel Inhibitor Discovery 
	Binding Pose Study thorough Molecular Docking 

	Methods 
	Data Collection 
	Fingerprint Generation 
	Model Construction 
	Hyperparameter Tuning 
	Model Ensembling 
	Molecule Docking 
	Inhibition Assay 
	Webserver Construction 

	Conclusions 
	References

