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Abstract: Nd-based polydiene elastomers, including NdIR and NdBR, are regarded as indispensable
key raw materials in preparing green tires with excellent performance capabilities, but their wide
application is still limited by the relative higher cost of Nd precatalysts. Nd-mediated coordinative
chain transfer polymerization (CCTP) of diene provides an effective strategy to reduce the precatalyst
cost, because this method involves very high atom economy, i.e., each Nd molecule can generate
multiple polymer chains. Nevertheless, all possible factors that could influence such CCTP behaviors
are still mostly unexplored to date. In this report, the basic chemistry on the influence of external
donors on the overall CCTP behaviors of isoprene was established for the first time. It was found that
increasing the amount of external donors had a negative influence on the chain transfer efficiencies,
resulting in gradually decreasing atom economies. Catalyst addition order studies revealed that the
coordination of donors with cationic Nd active species, rather than alkylaluminium CTAs, contributed
mostly to such decreased efficiencies. Moreover, it was found that when the ratio of donors and Nd
compounds was higher than 1.0, the CCTP behaviors were corrupted, resulting in polymers with
broad distributions, as well as resulting in low atom economies; nevertheless, when the ratio was
lower than 0.5, the system still displayed CCTP characteristics, implying that the critical ratio for
maintaining the CCTP was 0.5. Additionally, when such a ratio was 0.01, the high atom economy was
almost the same as donor-free CCTP systems. Detailed kinetic studies at such a ratio demonstrated
that the donor-contained system proceeded in a well-controlled manner, as concluded from the
good linear relationship between the Mn of the PIps against the polymer yields, as well as the
good linearity between the Mn against the (IP)/(Nd) ratios. Such maintained CCTP properties
also allowed for seeding two-step polymerizations to prepare diblock copolymers with precisely
controlled molecular weights. Expanding the types of donors to more phosphine, oxygen, and
nitrogen containing compounds showed that they also affected the CCTP behaviors depending on
their steric and electronic properties.

Keywords: coordinative chain transfer polymerizations; neodymium; polyisoprene; synthetic rubber;
external donor

1. Introduction

Coordinative chain transfer polymerization (CCTP) represents a modern strategy
to access polymers in a well-controlled manner [1–24]. A typical CCTP catalytic system
generally comprises a transition-metal or lanthanide-based precatalyst and a chain transfer
agent (CTA), which is usually in the form of a main group metal alkyl. During polymeriza-
tion, polymer chains that are originally propagated from the precatalyst can be reversibly
transferred to the CTA, and such a transfer rate is so rapid (vs. the chain propagation rate)
that monomers appear to synchronously propagate on the CTA, which eventually results
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in polymer products with precisely controlled molecular weights and narrow molecular
weight distributions, that parallels anionic living polymerizations. Another CCTP character-
istic is that multiple chains can be generated per molecule of the precatalyst, demonstrating
high atom economy and showing a striking contrast to traditional anionic living polymer-
ization systems, where one metal can only generate one chain. Because of these unique
properties, CCTP has witnessed tremendous growth during the past two decades.

Neodymium (Nd)-based CCTP of 1,3-butadiene and isoprene is of great importance
for the current synthetic rubber industry, because the produced neodymium-based polybu-
tadiene (NdBR) and polyisoprene (NdIR) are regarded as indispensable key raw materials
in preparing green tires with excellent performance capabilities [25,26]. Although NdBR
and NdIR have realized industrialization by using traditional catalytic systems, their rela-
tively higher precatalyst cost compared to other types of BR (such as NiBR, CoBR, TiBR, etc.)
and IR (such as TiIR, etc.) still limits their widespread application. By contrast, a CCTP
strategy can overcome such a shortage, because it demonstrates a highly atom-economic
characteristic, that is, one Nd atom can produce multiple polydienyl chains, which therefore
serves as an effective strategy to reduce the cost of a Nd-based precatalyst [27–38]. Based
on this consideration, much of our recent research has looked to explore any factors that
could have an influence on CCTP behaviors [28–30,34,36,39]. Of all the possible factors,
heteroatom-based external donors are of great importance, because they are often used
to disassociate the clustered structure of the neodymium precatalyst or to facilitate the
formation of active species [40–45]. Additionally, for the whole continuous production line
of NdIR and NdBR, impurities in the polymerization system, no matter whether they are
from the recovered solvent or from the monomer, also contain heteroatoms. Nevertheless,
to date, their detailed influence on CCTP behaviors is still unclear. Will they facilitate
or slow down CCTP behavior? If they slow down CCTP behavior, what is the possible
mechanism? Can we find a critical point (i.e., the maximum amount of external donors),
below which the CCTP characteristic can be maintained to guarantee the atom-economic
feature? Based on this consideration, in this report, we will try to elucidate the influence of
various external donors on the Nd-mediated CCTP of isoprene.

During CCTP, the key chain transfer step proceeds via a bimetallic intermediate
(Scheme 1(1)), therefore, it can be safely concluded that any factors that can affect the
formation of the bimetallic intermediate would have a big influence on the overall CCTP
behaviors. Due to the presence of several electron lone pairs, heteroatom-based external
donors could easily coordinate to the Lewis acidic metal centers, no matter whether it is
for the transition-metal or lanthanide-based precatalyst, or the main-group metal-based
CTA. Therefore, external donors are anticipated to have a big influence on the formation
of the bimetallic intermediate and, thereafter, on the overall CCTP behaviors. For the
Nd-mediated CCTP of isoprene, the influence of external donors is very complicated
because of the presence of the following two paradox relationships (Scheme 1(2)). Firstly,
for the Nd precatalyst, external donors are capable of disassociating the original clustering
multi-nuclear structure into a mononuclear one, which is beneficial for CCTP because
every Nd molecule can participate in the chain transfer process, resulting in higher atom
economies; nevertheless, after being coordinated by external donors, steric hindrance
around the Nd will be increased, which will slow down the chain transfer reaction because
the steric congested structure is unfavorable for the formation of the bimetallic intermediate.
The slowed chain transfer reaction will decrease the atom economies. So, for those two
possible outcomes, which one will be the primary one (paradox one)? Secondly, for
alkylaluminium CTAs, such as diisobutylaluminium hydride (DIBAH), they often exist
as a trimeric structure, which therefore only allows one third of the DIBAH to participate
in CCTP [31,46]; however, the introduction of an external donor can break the trimeric
structure into a monomeric one, allowing every DIBAH molecule to participate in CCTP
and, hence, revealing high atom economy. Nonetheless, after being coordinated by external
donors, steric hindrance around the aluminum center will also be enhanced, which again
has disadvantages for the bimetallic intermediate. So, again for this paradox, which one
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will be operative (paradox two)? Additionally, for cationic active species, they can also be
coordinated by donors, which also poses a risk of deactivation. Based on these analyses,
this research will try to figure the situation out and also put forward possible explanations.
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Scheme 1. Illustrative profiles for donor-free and donor-involved CCTP system.

2. Results and Discussion

Before exploring the influence of external donors, an optimum CCTP catalytic system
needed to be screened first. It has been previously concluded that DIBAH is the most
efficient CTA for Nd-mediated CCTP systems [31,46]. Additionally, such DIBAH usually
adopts a trimer structure in alkane solvents, which serves as a good candidate for showing
the influence of donors, because it disassociates into a monomeric structure after donor coor-
dination. Therefore, DIBAH involving a CCTP catalytic system of NdV/DIBAH/SiMe2Cl2
was intentionally selected herein, to elucidate the overall influence of external donors on
CCTP behaviors. A phosphine-containing donor of tri(tert-butyl)phosphine (TtBP) was in-
tentionally selected as a representative to achieve the optimized polymerization conditions,
because it possesses a very sterically bulky nature.

High atom economy is the primary goal in this study, because only a higher atom
economy can guarantee the low cost of the precatalyst. Therefore, the study commenced by
exploring the influence of (TtBP)/(Nd) ratios on the polymerization performance. As can
be seen from the data in Table 1, for the TtBP-free system, the polymerization displayed
the anticipated typical CCTP characteristics, i.e., extremely narrow molecular distribu-
tions, high atom economies, etc. Increasing the (TtBP)/(Nd) ratios from 0.01 to 0.1 and
0.5 had little influence on the CCTP characteristics; narrow molecular weight distributions
(1.66–1.70) were still obtained under these conditions. However, when further increasing
the (TtBP)/(Nd) ratios to 1.0 and 3.0, much broader molecular weight distributions were
obtained (2.45 and 2.95), suggesting that the chain transfer reactions in these two cases were
not reversible anymore, which also hinted at the corruption of the CCTP characteristics.
Based on these studies, it could be concluded that a maximum ratio of (TtBP)/(Nd) = 0.5 is
the critical point for guaranteeing the CCTP behaviors if a high atom economy is expected.
Slowed down chain transfer rates, also called decreased chain transfer efficiencies, can also
be manifested from the gradually increased molecular weights and decreased Np values.
For the TtBP-free system, a molecular weight of 1.85 × 104 Dalton was obtained. When
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gradual increasing the (TtBP)/(Nd) ratios from 0.01 to 3, the molecular weights of the ob-
tained polyisoprene monotonously increase from 1.95 × 104 to 3.69 × 104. In the case of the
Np, which is a key value for assessing the atom economy of the CCTP system, a gradually
decreasing trend from 3.67 to 1.84 was demonstrated, showing that the introduction of
external donors always has a negative influence on the atom economies. Nevertheless,
when (TtBP)/(Nd) = 0.01, the Np values only slightly reduced from 3.67 to 3.50, implying a
negligible negative influence. Based on this consideration, the following studies were all
carried out at such a ratio to maintain a high atom economy, as in the donor-free system.

Table 1. CCTP of Ip under different concentrations of TtBP a.

Entry (D)/(Nd) Yield (wt %) Mn × 10−4 b Mw/Mn
b

Microstructure (%) c

Np
d

1,4 3,4

1 0 100 1.85 1.61 97.0 3.0 3.67
2 0.01 100 1.94 1.66 96.8 3.2 3.50
3 0.1 100 2.01 1.61 96.1 3.9 3.38
4 0.5 100 2.53 1.70 96.5 3.5 2.69
5 1 100 3.12 2.45 97.3 2.7 2.18
6 3 100 3.69 2.95 98.0 2.0 1.84

a Polymerization conditions: (Ip) = 1.5 M, (Ip)/(Nd) = 1000, (Cl)/(Nd) = 2.0, (Al)/(Nd) = 25, hexane, 50 ◦C, 4 h.
b Determined by GPC using polystyrene standards. c Determined by IR and NMR spectra (see representative 1H
NMR and FTIR spectra in Figures S1–S4 in supplementary file). d The number of polymer chains produced per
Nd atom, Np = (Ip)/(Nd) × 68.12 × Yield/Mn.

Regarding the influence of donors on the catalytic activities of the present CCTP sys-
tem, no decrement in the PIp polymer yields were detected when varying the (TtBP)/(Nd)
ratios from 0.01 to 3, implying that the generated active species could tolerate such con-
centrations of heteroatoms. Additionally, the introduction of 0.01% TtBP could enhance
the polymerization propagation rates. As in the plots on the polymer yields versus time
shown in Figure 1, the slopes increased from 1.7038 to 2.2033, demonstrating the obviously
increased polymerization rate.
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The decreased transfer efficiencies in Table 1 are highly likely related to the coordina-
tion with the Nd or Al centers, which increased the steric bulkiness and, thus, resulted in
slower chain transfer reaction rates (Scheme 1(2)). Such a result provided a clear answer to
the two paradox relationships proposed in the introduction section. That is, although the
donors were capable of disassociating clustered Nd compound or trimeric DIBAH, they
did not improve the performance of the overall CCTP characteristics and also the atom
economy. In contrast, a decreased atom economy because of the coordination with the Nd
or Al center was concluded to be primary, due to the increased steric congestion around
the metal centers that decreased the chain transfer rates. As with the mechanism shown in
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Scheme 1, a chain transfer generally occurs through a transmetalation reaction via a hetero-
bimetallic intermediate. For the donor-free CCTP system, due to the presence of excessive
alkylaluminium (AlR3)-based CTA, such a transmetalation process can occur facilely, re-
sulting rapid polyisoprenyl and alkyl exchange between the two metal centers. Whereas
for the donor-involved CCTP system, when the Nd atom or Al atom was coordinated by
donors (Scheme 1(2)), the steric crowdedness around the corresponding metals increased
significantly and, due to the steric repulsion between the polyisoprenyl and alkyl groups,
the bimetallic intermediate could not be formed as easily as in the donor-free system, thus
giving rise to slowed down chain transfer rates. Despite this, when (TtBP)/(Nd) < 0.5,
the slower chain transfer rates were still much faster than the chain propagation rate
(ktr >> kp) to guarantee the CCTP characteristic, as evidenced by the narrow molecular
weight distributions (1.66–1.70), otherwise broader ones would have resulted.

Now that it has been established that the coordination of the external donors to the
metal centers can decrease the chain transfer rates, it is important to distinguish which kind
of coordination, i.e., whether with the Nd or Al atom, plays the more primary role. The
answer to such a question can be easily inferred by investigating the catalyst addition order
on the overall CCTP behaviors (Figure 2). As can be seen from the data shown in Table 2,
the studies were carried out by premixing the donors with the Nd precatalyst (entry 2,
Table 2, or procedure 2 in Figure 2) or the Al cocatalyst (entry 3, Table 2, or procedure 3 in
Figure 2) and the subsequent reaction with other components during the aging stage. In a
benchmark reaction for comparison, a donor was directly mixed with the generated active
species (entry 1, Table 2, or procedure 1 in Figure 2). It was found that when premixing
TtBP with an alkylaluminium cocatalyst, PIp products with much higher molecular weights
(2.21 × 104 vs. 1.95 × 104 Dalton) and an Np with a much smaller value (3.08 vs. 3.50) were
obtained, implying its inconsistency with the benchmark reaction. Nevertheless, for the
reaction from premixing TtBP with NdV, the formed active species provided very similar
results to the benchmark CCTP system, no matter what the molecular weight (1.95 × 104 vs.
1.95 × 104 Dalton) and microstructures (96.9% vs. 96.8% 1,4-contents) of the PIp products
or the Np values (3.49 vs. 3.50) were, illustrating that the donor of the TtBP was mainly
coordinated with the Nd atom to affect the polymerization. This result is reasonable when
considering the cationic Nd-based active species, which revealed a higher binding affinity
with the Lewis base donors than neutral alkylaluminium compounds.

After making clear the mechanism of how external donors of TtBP influenced the
polymerization behavior, other polymerization conditions, including the (Al)/(Nd) and
(Cl)/(Nd) ratios, were next investigated in order to provide a whole map on the donor-
involved CCTP system. All of these studies were conducted at (TtBP)/(Nd) = 0.01 to
maintain a high atom economy, as concluded above. As shown in the results summarized in
entries 1–5 in Table 3, lower (Al)/(Nd) ratios could not fully initiate the polymerizations, re-
sulting in relatively lower monomer conversions. For instance, when (Al)/(Nd) = 15 and 20
were applied, monomer conversions were achieved for 71% and 80%, respectively. Addi-
tionally, under such low (Al)/(Nd) ratios, the formed active species were not structurally
uniform, resulting in relative broader dispersities (2.46 and 2.90). Increasing the (Al)/(Nd)
ratio to 25 could achieve full monomer conversion, as well as narrow molecular weight
distributions (1.66), suggesting the formation of uniform active species, i.e., the successful
construction of CCTP behaviors. Further increasing the (Al)/(Nd) ratio to 30 could further
enhance the chain transfer efficiencies, as revealed by the decreasing molecular weights
from 1.94× 104 to 1.53× 104. Nevertheless, such a condition also induced the heterogeneity
of the active species, perhaps due to the formation of neodymium–hydride clusters, which
have been observed previously in the literature [34]. Therefore, an optimal (Al)/(Nd) ratio
of 25 was obtained herein. It is of note that such a ratio was comparatively higher than
that for donor-free systems ((Al)/(Nd) = 10~20) in order to achieve CCTP behaviors [31,34],
which might also be due to the coordination of TtBP with the Nd or Al centers that slowed
down the chain transfer reactions.
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Table 2. Influence of the addition order of the catalyst components on CCTP behaviors a.

Entry Aging Order Yield (wt %) Mn × 10−4 b Mw/Mn
b

Microstructure (%) c

Np
d

1,4 3,4

1 (Nd + BD + Al)→ P→ Cl 100 1.94 1.66 96.8 3.2 3.50
2 (Nd + P)→ BD→ Al→ Cl 100 1.95 1.73 96.9 3.1 3.49
3 Nd→ BD→ (Al + P)→ Cl 100 2.21 1.76 96.1 3.9 3.08

a Polymerization conditions: (IP) = 1.5 M, (IP)/(Nd) = 1000, (Cl)/(Nd) = 2.0, (Al)/(Nd) = 25, hexane, 50 ◦C, 4 h.
b Determined by GPC using polystyrene standards. c Determined by IR and NMR spectra. d The number of
polymer chains produced per Nd atom, Np = (Ip)/(Nd) × 68.12 × Yield/Mn.

Table 3. CCTP of Ip under different conditions in the presence of TtBP.

Entry a (Al)/(Nd) (Cl)/(Nd) Yield (wt %) Mn
b × 10−4 b Mw/Mn

b
Microstructure (%) c

1,4 3,4

1 10 2.0 - - - - -
2 15 2.0 71 5.24 2.46 96.5 3.5
3 20 2.0 80 4.22 2.90 96.8 3.2
4 25 2.0 100 1.94 1.66 96.8 3.2
5 30 2.0 100 1.53 1.74 96.9 3.1
6 25 0.5 60 0.45 2.06 96.0 4.0
7 25 1.0 73 1.16 1.64 96.7 3.3
8 25 3.0 100 2.95 1.80 97.0 3.0
9 25 5.0 97 2.31 1.70 97.1 2.9

a Polymerization conditions: (Ip) = 1.5 M, (Ip)/(Nd) = 1000, (D)/(Nd) = 0.01, hexane, 50 ◦C, 4 h. b Determined by
GPC using polystyrene standards. c Determined by IR and NMR spectra.

Besides, chloride compounds also played a pivotal role in governing the CCTP perfor-
mance in the presence of TtBP. As shown in entries 6–10 in Table 3, when low (Cl)/(Nd)
ratios of 0.5 and 1.0 were applied, insufficient active species were formed, which resulted
in relatively lower polymer yields of 60% and 73%. The optimal (Cl)/(Nd) ratio was
observed to be 2.0, under which condition a quantitative monomer conversion and narrow
molecular weight distributions were obtained. Further increasing the (Cl)/(Nd) ratio to
3.0 and 5.0 resulted in heterogeneous catalytic systems as well, which hence resulted in
broader molecular weight distributions that deviated from CCTP behaviors. Despite these
results, it should be noted that the presence of TtBP donors had little influence on the
formation of Cl-containing active species, because such a (Cl)/(Nd) = 2.0 ratio was the
same as previously reported for donor-free CCTP systems.

After acquiring the optimal conditions from TtBP-involved CCTP studies, the types
of external donors were then expanded to more phosphine (P), oxygen (O), and nitro-
gen (N)-containing counterparts, and each of them was structured with different alkyl
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or aryl groups. Representative phosphine compounds, including tri(n-butyl)phosphine
(TnBP), tri(tert-butyl)phosphine (TtBP), tri(n-octyl)phosphine (TOP), triphenylphosphine
(TPP), and diphenylmethylphosphine (DPMP). And for oxygen and nitrogen containing
compounds, diethylether (DEE), dibutylether (DBE), phenylmethylether (PME), 1-hexanol
(HO), undec-10-en-1-ol (UO), triethylamine (TEA), trioctylamine (TOA), diisopropylethy-
lamine (DIEA), diisobutylamine (DIBA), and phenylethylamine (PEA), were selected. As
can be seen from the results shown in Table 4, the types of donors and their structures also
posed obvious influences on the CCTP behaviors. For phosphine compounds, TnBP, TOP,
and DPMP-involved systems resulted in a slightly lower polymer molecular weight than
phosphine-free systems, which hinted at slightly increased chain transfer rates. Whereas for
TtBP-involved systems, a slightly higher molecular weight was observed. Such distinctly
different influences from phosphine donors might originate from their different steric
sizes. For TtBP, its bulky nature prohibited chain transfer reactions after its coordination
with the metal centers, whereas for the former three compounds, their coordination could
dissociate the Nd cluster or the DIBAH trimer structures, which resulted in the facilita-
tion of chain transfer rates and, therefore, smaller molecular weights. For nitrogen- and
oxygen-containing donor-involved systems, perhaps due to its stronger coordination with
the metal atoms because of its strong oxophilic nature, smaller-sized donors, such as DEE,
showed obvious poisoning effects on the active species and resulted in significantly de-
creased catalytic activities, whereas for other compounds, the polymer yields were hardly
influenced. For DBE- and PME-involved systems, the molecular weights and dispersities
in the obtained polymers were very close to the donor-free systems; nevertheless, for
HO- and UO-involved counterparts, slightly higher molecular weights as well as broader
dispersities were concluded, indicating again decreased chain transfer efficiencies. For
nitrogen-containing compounds, it seemed that detrimental effects were always observed,
no matter whether it was from the decreased catalytic activities for TEA-involved systems,
or the increased molecular weights or dispersities observed in TOA, DIEA, DIBA and
PEA-involved systems.

Table 4. CCTP of Ip in the presence of different types of external donors.

Entry a D (D)/(Nd) Yield (wt %) Mn
b × 10−4 b Mw/Mn

b
Microstructure (%) c

1,4 3,4

1 - - 100 1.85 1.61 97.0 3.0

2

P

TnBP 100 1.70 1.64 96.9 3.1
3 TtBP 100 1.94 1.66 96.8 3.2
4 TOP 100 1.71 1.65 97.1 2.9
5 TPP 100 1.88 1.75 93.9 6.1
6 DPMP 100 1.76 1.71 96.2 3.8

7

O

DEE 71 7.40 3.22 96.2 -
8 DBE 100 1.90 1.58 96.5 3.5
9 PME 100 1.86 1.66 96.0 4.0
10 HO 100 2.04 1.79 96.7 3.3
11 UO 100 2.13 1.63 96.4 3.6

12

N

TEA 70 1.94 1.67 96.6 3.4
13 TOA 100 2.03 1.75 96.8 3.2
14 DIEA 100 2.20 1.77 96.1 3.9
15 DIBA 100 2.09 1.95 96.9 3.1
16 PEA 100 1.86 1.78 96.0 4.0

a Polymerization conditions: (Ip) = 1.5 M, (Ip)/(Nd) = 1000, (Donor)/(Nd) = 0.01, (Cl)/(Nd) = 2.0, (Al)/(Nd) = 25,
hexane, 50 ◦C, 4 h. b Determined by GPC using polystyrene standards. c Determined by IR and NMR spectra.

A detailed kinetic study was also carried out in order to better elucidate the influence
of external donors on the whole polymerization process. Through varying the (Ip)/(Nd)
ratios from 100 to 1000 (Table 5), the molecular weights of the resultant PIps gradually
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increased from 0.34 × 104 to 1.94 × 104 Dalton and, most importantly, a good linearity
between the monomer concentration and molecular weights was observed (Figure 3a) and,
simultaneously, the dispersities kept relatively narrow and stayed around 1.50. Such a lin-
ear relationship agreed well with the donor-free systems in our previous reports [33,34,47],
hinting that well-controlled polymerization behaviors occur even in the presence of TtBP.
Polymerization rate investigations at different (Ip)/(Nd) ratios of 1000, 800, and 500 re-
vealed that with an increasing catalyst concentration, monotonously increased polymer-
ization rates were observed as expected. As can be seen in the semilogarithmic plots
on −ln(1 − x) (wherein x is the polymer yield) vs. time shown in Figure 3b, gradually
increased apparent first-order rate constants kapps of 0.0216, 0.0369, and 0.0485 min−1 were
obtained. During the kinetic investigations at (Ip)/(Nd) = 1000, a good linear relationship
between the Mn and the polymer yields was also observed; meanwhile, a narrow molecular
weight distribution was kept (Figure 3c), indicating that the active species were always kept
at same concentrations, i.e., the CCTP characteristic could be maintained throughout the
whole polymerization process. For the TtBP-involved CCTP system, the polymerization
rates were also very sensitive to temperature. As can be seen in the semilogarithmic plots
on −ln(1 − x) vs. time shown in Figure 3d, when the polymerization temperature rose
from 50 to 70 ◦C, the apparent first-order rate constants kapps increased from 0.0216 to 0.044,
indicating the enhanced catalytic activities.
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Table 5. CCTP of IP with various (Ip)/(Nd) ratios in the presence of TtBP.

Entry a (Ip)/(Nd) Yield (wt %) Mn
b × 10−4 b Mw/Mn

b
Microstructure (%) c

1,4 3,4

1 100 100 0.34 1.45 95.6 3.4
2 200 100 0.54 1.54 96.1 3.9
3 500 100 1.40 1.63 96.9 3.1
4 800 100 1.62 1.50 97.0 3.0
5 1000 100 1.94 1.66 96.8 3.2

a Polymerization conditions: (IP) = 1.5 M, (Donor)/(Nd) = 0.01, (Cl)/(Nd) = 2.0, (Al)/(Nd) = 25, hexane, 50 ◦C,
4 h. b Determined by GPC using polystyrene standards. c Determined by IR and NMR spectra.

Inspired by the living nature of TtBP-involved CCTP system, seeding two-step
polymerization by such a catalytic system was also examined. After the first polymeriza-
tion step ((Ip)/(Nd) = 400) was completed within 4 h to give PIp with a molecular weight
of 1.35 × 104, the second feed of BD or Ip monomers with a ratio of
(Ip)/(Nd) ((BD)/(Nd)) = 400 was added to the same system. It was found that the
polymerizations could be continued smoothly, eventually resulting in PIp with nearly
doubled molecular weights (2.68 × 104) or the PIp-b-PB diblock copolymer with a molec-
ular weight of 2.14 × 104 (Figure 4). Narrow molecular weight distributions could
be maintained after the second feeding, suggesting again the well-controlled polymer-
ization behaviors for the TtBP-involved CCTP system. The obtained block copolymer
PIp-b-PB was further well characterized by 1H and 13C NMR, from which the resonance
peaks for the PIp and PB sequences could be clearly observed (Figure 5). For the 13C
NMR, signals at 15.9 (e), 23.4 (j), 26.4 (i,d), 32.2 (f), 40.0 (a), 124.2 (c), 125.0 (h) and
135.2 (b,g) ppm were assigned to the polyisoprene units, and signals at 27.4 (m), 32.8 (k),
129.6 (l), and 130.1 (n) ppm were assigned to the polybutadiene units.
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3. Materials and Methods

Materials. Nd(vers)3 (NdV) was a commercial product and diluted to 0.3 mol/L
using hexane. Diisobutylaluminum hydride (DIBAH, Al(i-Bu)2H) was purchased from
Akzo Nobel and diluted with hexane into a 2.0 mol/L solution. Me2SiCl2 was purchased
from Energy Chemical Company and diluted with n-hexane to 0.20 mol/L. Isoprene
(Ip) was purchased from Energy Chemical Company (shanghai, China) and dried by
CaH2 via distillation under reduced pressure. In addition, 1,3-Butadiene was supplied by
Ludong Chemical Corporation and purified by passing it through four columns packed
with 4 Å and KOH prior to use. All the external donors used herein, including tri(n-
butyl)phosphine (TnBP, 95%), tri(tert-butyl)phosphine (TtBP, 96%), tri(n-octyl)phosphine
(TOP, 97%), triphenylphosphine (TPP, 98%), diphenylmethylphosphine (DPMP, 98%), di-
ethylether (DEE, HPLC grade), dibutylether (DBE, 99%), phenylmethylether (PME, AR
grade), 1-hexanol (HO, 99%), undec-10-en-1-ol (UO, 96%), triethylamine (TEA, HPLC
grade), trioctylamine (TOA, 96%), diisopropylethylamine (DIEA, 97%), diisobutylamine
(DIBA, 96%), and phenylethylamine (PEA, 97%), were purchased from Energy Chemical
Company, and diluted with n-hexane before use (for TPP, HO, and UO, toluene was used
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as a solvent). Hexane or toluene was dried by heating to reflux over sodium/diphenylketyl
until the solution turned blue and then distilled prior to use.

Analytic methods. The number-average molecular weight (Mn) and molecular weight
distribution (Mw/Mn) of the polymers were measured at 40 ◦C, using gel permeation
chromatography (GPC) equipped with a Waters 515 HPLC pump, four columns (HMW
7 THF, HMW 6E THF × 2, HMW 2 THF), and a Waters 2414 refractive index detector.
Tetrahydrofuran (THF) was used as an eluent at a flow rate of 1.0 mL/min. Sample
solutions were filtered through a 0.45 µm microfilter before injection. The values of Mn
and Mw/Mn were calculated using polystyrene (PS) calibration. A Nicolet iS10 infrared
spectrometer produced by Thermo Company was used for testing. Film samples were
prepared on a KBr pallet by casting a carbon disulfide solution (ca. 2–8 mg/mL) of the
polymer. The 1,4- and 3,4- contents were calculated according to a previous report [48].

The ratios of the 1,4 and 3,4 structures in the isoprene unit, from the absorption bands
at 836 and 890 cm−1, employed the following formulas:

1,4 content(%) = 100 × (145 × A836 − 1.95 × A890)/C

3,4 content(%) = 100 × (19.9 × A890 − 1.79 × A836)/C

wherein C = (145 × A836 − 1.95 × A890) + (19.9 × A890 − 1.79 × A836), and A836 and A890
are the absorbances at 836 and 890 cm−1, respectively.

The microstructures of the obtained polyisoprene were further confirmed by the 1H
NMR spectrum, according to the following method:

1,4 content(%) = I5.10–5.20/(I5.10–5.20 + I4.69–4.77)

3,4 content(%) = I4.69–4.77/(I5.10–5.20 + I4.69–4.77)

wherein, I4.69–4.77 and I5.10–5.20 is the integral area of the peaks at 4.69–4.77 ppm and
5.10–5.20 ppm, respectively.

Catalysts preparation during the aging stage. For the typical donor-involved CCTP
system, the catalyst was prepared during the aging state according to procedure 1: into
a 20 mL ampoule typical amounts of Nd(vers)3, BD, Al(iBu)2H, and external donors in
the predesigned ratios were sequentially added, and the rection mixture was left to be
aged at 50 ◦C for 20 min. Afterwards, a hexane solution of SiMe2Cl2 was added, and
the reaction mixture was further aged for 30 min to obtain a yellow-green homogeneous
catalyst, which was added to the external donors and, then, stored prior to use. For the
catalyst addition order studies, premixing of the donors with Nd(vers)3 (procedure 2)
or Al(iBu)2H (procedure 3) was performed in advance, before reacting with the other
components. The catalyst addition order is also illustrated in Figure 2 to avoid confusion.

Polymerization procedure. A hexane solution of isoprene was placed in an oxygen-
and moisture-free 50 mL ampule bottle with a rubber septum. After the solution was
brought to the desired temperature, the prepared catalyst solution and external donors
were sequentially added. Polymerization was carried out at 50 ◦C for 4 h and quenched
by adding 2.0 mL of acidified ethanol, containing 2,6-di-tert-butyl-4-methylphenol as a
stabilizer. The polymer was washed with ethanol repeatedly, and then dried in a vacuum at
40 ◦C to a constant weight. For the two-step seeding polymerizations to prepare the diblock
copolymers, firstly, the living polyisoprene reaction system was prepared as described
above. And then, the second feed of isoprene or 1,3-butadiene monomer solutions was
added into the same polymerization, which was then left to react for another 5 h. The
precipitation and drying procedures for the block copolymer are the same as that of
polyisoprene preparation.

4. Conclusions

In this report, we carried out a systematic evaluation of the influence of external donors on
the overall polymerization behaviors of the Nd-mediated CCTP of isoprene. Such research was
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mainly inspired by the need to maintain the CCTP characteristic even in the presence of donors,
through which high atom economic property could be retained to achieve the goal of reducing
the precatalyst cost. It was found that the incorporation of donors, such as TtBP, caused
a negative influence on the chain transfer efficiencies, and resulted in gradually decreased
atom economies, as revealed from the monotonously decreased Np values. Nevertheless,
when the ratio of the TtBP and Nd precatalyst was lower than 0.5, such donor-involved
system could reveal a typical CCTP characteristic, implying a critical ratio of 0.5 if a high atom
economy was targeted. Such an outcome is very instructive for the continuous industrial
production of NdBR and NdIR because the donor concentration much be reduced to a
certain concentration. Mechanistic studies showed that the decreased transfer efficiency
mainly originated from the coordination of the donors with the Nd precatalyst, rather than
the alkylaluminium CTA, implying that changing the microenvironment around the Nd
center is more important in governing the chain transfer reactions. Additionally, the present
research also concluded that introduction of the 0.01 donor had a negligible influence on the
CCTP performance, and high atom economic values as in donor-free systems were obtained.
Under such a donor concentration, other polymerization conditions, including (Al)/(Nd)
ratios and (Cl)/(Nd) ratios, were also optimized. More importantly, under such an optimal
condition, the polymerization proceeded in a well-controlled manner, as revealed by the
good linear relationships between the Mn of the PIps against the polymer yields, as well as
between the Mn against the (IP)/(Nd) ratios. A detailed kinetic investigation also showed
that the polymerization rates were proportional to the catalyst concentrations, as well as
the polymerization temperatures. With the aid of such well-controlled behavior, the present
donor-involved CCTP system also allowed for seeding two-step polymerizations to prepare
diblock copolymers with precisely controlled molecular weights. Expanding the types of
donors to more phosphine, oxygen, and nitrogen-containing compounds showed that they
also affected the CCTP behaviors depending on their steric and electronic properties. In
summary, the present research presents a whole map of the donor-involved CCTP system. In
contrast, most of other reports that are mainly focused on searching for suitable precatalysts
or CTAs, the present study shifts the attention to external factors for the first time. Although
decreased chain transfer efficiencies are witnessed, it still provides instructive information
for designing future CCTP systems and, in particular, provides significant information on
practical application for the continuous industrial production of NdBR and NdIR.
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