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Abstract: This study investigated the potential of clindamycin derivatives with broad-spectrum
antibacterial properties. The main goal was to identify new antibacterial targets to lay the foundation
for developing novel antimicrobial agents. This research used molecular docking and dynamics
simulations to explore how clindamycin derivatives could combat bacterial resistance and widen their
antibacterial capabilities. Three different clindamycin derivatives were studied against 300 target
proteins. Among these, 26 proteins were found to be common targets for all three derivatives. After
further screening through molecular docking and dynamics simulations, four specific protein targets
were identified. Notably, one of these targets, cell division protein FtsZ, was found to be primarily
located in the cyto and cyto_nucl compartments. These findings suggest that clindamycin derivatives
have the potential to address bacterial resistance and broaden their antibacterial effectiveness through
these identified protein targets.

Keywords: clindamycin derivatives; MD simulation; binding force analysis; ADMET prediction;
protein subcellular localization

1. Introduction

Antimicrobial resistance (AMR) is an alarming global crisis, an issue of such mag-
nitude that the World Health Organization (WHO) has designated it as one of the top
10 global public health threats facing humanity. The grim reality persists: drug-resistant
infections exacted an unprecedented toll, contributing to a staggering 4.95 million deaths
worldwide in 2019. Without decisive intervention, the trajectory of AMR is ominous,
with projections indicating that global deaths attributable to AMR could skyrocket to an
astonishing 10 million annually by the year 2050 [1]. Consequently, there is a pressing need
to identify more efficacious treatments for drug-resistant infections [2]. To achieve this
goal, the discovery and validation of novel therapeutic targets is of critical significance.
It is essential to uncover fresh mechanisms for inhibiting bacterial growth to mitigate
the risk of extensive resistance dissemination, thereby safeguarding the effectiveness of
newly developed antimicrobial agents. For instance, clavulanic acid is an antibiotic that
enhances the bactericidal effect of other antibiotics by inhibiting β-lactamase. However,
it is only effective against specific types of β-lactamase and not others, thus limiting its
spectrum of antibacterial activity. On the other hand, ciprofloxacin is an antibiotic that
causes bacterial DNA damage and cell death by inhibiting DNA topoisomerase. However,
misuse of ciprofloxacin has led to bacteria developing resistance mutations to quinolones
in response to the prolonged stimulation of a single target, thereby increasing the risk of
bacterial resistance. These findings underscore the importance of drug research, especially
in the quest for broader-spectrum and more durable antibiotics to address the ever-growing
challenge of antibiotic resistance. Antibacterial susceptibility primarily manifests in three
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aspects, firstly, Afzal, M et al. discovered that the RND-type efflux systems are a key con-
tributor to resistance [3]. Inhibitors of these systems significantly reduce the antimicrobial
concentrations required to combat resistant strains. Secondly, Rajasekhar, S. et al. found
that hetero-antibiotics can overcome resistance in Pseudomonas aeruginosa by enhancing
outer membrane permeability and reducing efflux [4]. Clindamycin is the preferred treat-
ment for Gram-positive bacteria, with a strong inhibitory activity against Staphylococcus
aureus (65 nM < MIC < 125 nM). However, its effectiveness against other Gram-negative
bacteria and fungi is limited. In our previous research, clindamycin derivatives showed
promise, demonstrating improved antimicrobial activity and broader spectrum coverage.
The antimicrobial spectrum is outlined in Table 1 (the specific results are shown in the
Supplementary Material). These three classes of clindamycin derivatives exhibit notable
antimicrobial activity (32.5 nM < MIC < 125 nM) against six categories of bacteria, including
four Gram-negative and two Gram-positive bacteria and one fungus. However, the specific
mechanisms underlying their antimicrobial action warrant further investigation.

Table 1. Structures and antibacterial spectra of three compounds.

Compounds Structural Formula Antibacterial Spectrum

3
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Targeted precision drug design is a pharmaceutical development strategy aimed at
creating personalized medications tailored to specific diseases or disease subtypes based on
individual patients’ biological characteristics and specific molecular targets. This approach
centers on the discovery and validation of specific protein targets within bacteria, which
play crucial roles in the survival and reproduction processes of these microorganisms. Once
these targets are identified, researchers can design drug molecules with precision to disrupt
the function of these targets [2,5].

For example, Streptococcus pneumoniae, a common bacterium, is responsible for
various infections, including otitis media, pharyngitis, and pneumonia [4]. Notably, Gram-
positive strains of this bacterium produce beta-lactamase, leading to resistance against beta-
lactam antibiotics. Hence, the beta-lactamase of the Gram-positive strains of Streptococcus
pneumoniae is an important drug target. In a study published in the Journal of Medicinal
Chemistry in 2018 [5], a novel class of beta-lactamase inhibitors was successfully developed.
These inhibitors exhibited exceptional inhibitory activity and demonstrated significant
reversal of resistance in Gram-positive strains of Streptococcus pneumoniae. This new
compound was engineered through structural optimization and drug design, resulting in
tighter binding to the bacterium’s beta-lactamase enzyme, thus inhibiting its activity and
restoring the efficacy of beta-lactam antibiotics for effective infection treatment.

Antibiotic research, particularly in the context of designing protein targets to combat
bacterial resistance, has become a vibrant field. In this field, many potential drugs are
actively under development [5].

Advancements in biotechnology and computer simulation methods have enabled
researchers to better understand the molecular mechanisms of diseases and predict potential
drug targets. This has allowed for more precise drug modifications that target specific
molecular pathways, ultimately improving treatment efficacy while reducing the risk of
adverse reactions [6].

Therefore, taking clindamycin derivatives as an example, we aimed to investigate
the specific antimicrobial mechanisms underlying these derivatives. By focusing on clin-
damycin as a case study, we intended to explore the drug targets and mechanisms respon-
sible for the broad-spectrum antimicrobial activity observed in clindamycin derivatives.
This investigation provides new insights and theoretical foundations for the clinical phar-
macological effects of clindamycin derivatives.

2. Results
2.1. Screening of Clindamycin Targets

A total of 300 clindamycin targets were screened through the Swiss Target Prediction
database and ranked from high to low according to the likelihood of the targets. The targets
are shown in Supplementary Table S2. The target classes of the three compounds are shown
in Figure 1. The target number of Family A G-protein-coupled receptor ranked first, as
shown in Figure 1A,B. The target numbers of kinase, enzyme and family A G-protein-
coupled receptor ranked as the top three, as shown in Figure 1C.

2.2. Intersection of Three Clindamycin Derivative Targets

Through Venny 2.1.0 (csic.es) (https://bioinfogp.cnb.csic.es/tools/venny/index.html,
accessed on 19 July 2023) online software, we screened 26 targets from the 300 targets of
three compounds, as shown in Figure 2. The targets are shown in Table 2.

2.3. Screening of the Antibacterial Targets of the Clindamycin Derivatives through the
PubChem Database

Using PubChem (nih.gov) (https://pubchem.ncbi.nlm.nih.gov/, accessed on 19 July
2023), after analyzing the target organisms of the 26 intersecting targets, we filtered out
six protein targets. Using RCSB PDB (https://www.rcsb.org/, accessed on 20 July 2023),
based on the antimicrobial profile of the clindamycin derivatives, we screened a number of
protein targets, as shown in Table 3.

https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://pubchem.ncbi.nlm.nih.gov/
https://www.rcsb.org/
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Table 2. The screened targets using Venny.

Common Name

Public Protein Target

KCNH2 HERG
PIK3CA PI3-kinase p110-alpha subunit

ADRA1D Alpha-1d adrenergic receptor
ADRA1A Alpha-1a adrenergic receptor
ADRA1B Alpha-1b adrenergic receptor
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Table 2. Cont.

Common Name

Public Protein Target

PIK3CG PI3-kinase p110-gamma subunit
HTR1A Serotonin 1a (5-HT1a) receptor
SLC6A4 Serotonin transporter

CCR3 C-C chemokine receptor type 3
HTR2A Serotonin 2a (5-HT2a) receptor

ADORA2A Adenosine A2a receptor
F10 Thrombin and coagulation factor X

PIK3CB PI3-kinase p110-beta subunit
MAPK14 MAP kinase p38 alpha
AURKA Serine/threonine-protein kinase AuroraA
PDE5A Phosphodiesterase
PDE4B Phosphodiesterase 4B
PRKCB Protein kinase C beta

SIGMAR1 Sigma opioid receptor
ADRB2 Adrenergic receptor beta
ADRB1 Beta-1 adrenergic receptor

CFD Complement factor D
AURKB Serine/threonine-protein kinase Aurora-B

ADORA1 Adenosine A1 receptor
RPS6KB1 Ribosomal protein S6 kinase 1

PIM1 Serine/threonine-protein kinase PIM1
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2.4. Molecular Docking Simulation and Validation

We conducted a molecular docking study using Discovery Studio 2019 Client to inves-
tigate the binding interactions of a specific antibiotic compound, denoted as compound 3.
In this study, we considered five distinct protein targets as potential binding partners for
compound 3. To assess the quality of the docking results, we employed the LibDock score,
a scoring system that quantifies the binding affinity between molecules. Docking results
were considered significant if they achieved a LibDock score exceeding 140, indicating a
substantial binding affinity, as shown in Table 4. Ultimately, we identified and summarized
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five protein targets with docking scores above this threshold. These targets represent
potential candidates for the interaction with and modulation of compound 3.

Table 3. Results of screened targets using PubChem database.

Target PDB ID Uniprot ID ChEMBL ID Target Class

Adrenergic receptor beta 4QY5, 4QY6, 4ID4,
4R4R, 4R4S P07550 CHEMBL210 Family A G-protein-coupled receptor

Beta-1 adrenergic
receptor (by homology)

6H7J, 6H7L, 6H7M, 6H7N,
6H7O, 6IBL P08588 CHEMBL213 Family A G-protein-coupled receptor

Adenosine A1 receptor 6D9H, 7LD4, 7LD3 P30542 CHEMBL226 Family A G-protein-coupled receptor
Mu opioid receptor

(by homology) 8F7R P35372 CHEMBL233 Family A G-protein-coupled receptor

Adenosine A2a receptor 5K2A, 5K2B,5K2D P29274 CHEMBL251 Family A G-protein-coupled receptor

MAP kinase ERK2

8CJ0, 8C5P, 8C5F, 8C5E,
8BN6, 8BFT, 8BFR, 8BCJ,
8BCI, 7ZD3, 7ZD1, 7ZD0,
7Z2W, 7Z2T, 7Z18, 7Z15,

7VTG, 7VF8, 7VA3, 7V9Z,
7V6T, 7RZK, 7RM7, 7R2O,

7R1J, 7R1H, 7R0F, 7PTF,
7PJI, 7P8X, 7P8U, 7P2X,

7P2W, 7P2N, 7P2M, 7ONY,
7ON4, 7ON2, 7OJD, 7OJC,
7OJB, 7OI2, 7OHN, 7OHL,

7OHK, 7OHH, 7O5M,
7KYE, 7KRV, 7KRU, 7KPS,

7KPP, 7KDR, 7KDO

P28482 CHEMBL4040 Kinase

Table 4. Results of docking analysis.

PDB
ID

Absolute
Energy

Clean
Energy

Relative
Energy

Lib Dock
Score Hot Spots (Average)

7PTF 76.0364 121.839 6.14328 142.136
16.65, −11.84, 50.63, A, 84, 29
14.65, −7.44, 48.43, A, 58, 45
16.05, −6.24, 46.63, A, 35, 46

7P2X 83.8745 121.839 13.9814 143.521
−22.65, −17.99, 6.92, A, 15, 21
−16.45, −11.99, 8.72, A, 57, 35
−19.85, −10.79, 9.52, A, 67, 43

7OHN 84.5974 121.839 14.6402 162.369
0.48, −5.97, 21.08, A, 65, 26
4.68, −11.38, 25.28, A, 83, 35
6.08, −10.57, 27.28, A, 98, 37

7O5M 84.6001 121.839 14.7069 166.496
17.98, 35.34, 18.83, A, 9, 25

16.98, 36.54, 19.03, A, 13, 26
9.58, 34.54, 33.63, A, 85, 41

8C5P 81.269 121.839 10.961 181.861
29.18, 13.58, 20.57, P, 45, 23
35.38, 11.38, 14.77, A, 15, 35
35.98, 11.78, 13.57, A, 8, 36

2.5. Stability of the Docked Complexes Studied via MD Simulation

We conducted further conformational screening of the compound using molecular
dynamics simulations. Specifically, we performed MD simulations involving multiple
targets from five proteins along with compound 3. Throughout these simulations, we
monitored the root mean square deviation (RMSD) values of the entire system. As illus-
trated in Figure 3, the RMSD values exhibited a gradual convergence during the course
of the simulations and eventually reached a stable state. Based on the RMSD results,
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we identified and selected four protein targets that demonstrated stable and reasonable
conformational behavior.
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In summary, our study utilized molecular dynamics simulations to assess the con-
formational stability of compound 3 in the presence of multiple target proteins. The
convergence and stability of RMSD values guided our selection of the four protein targets
for further investigation.

2.6. Binding Force Analysis

In light of the results of the MD simulations, we performed a binding force analysis
using Discovery Studio’s receptor–ligand interaction calculation tool in Figure 4. The
interactions between protein (PDB ID: 8c5p) and compound 3 mainly comprised hydrogen
bonds, and electrostatic and hydrophobic interactions in Figure 4A. For the hydrogen bonds,
residue 117 and residue 41 formed two conventional hydrogen bonds with bond lengths of
2.4 Å and 3.08 Å. Residue 71, residue 40, and residue 164 formed two carbon–hydrogen
bonds. For the electrostatic interactions, residue 124 formed one pi–cation bond. For the
hydrophobic interactions, residues 38, 39, and 145 formed one pi–alkyl bond, two amide–
pi-stacked bonds, and one alkyl bond. The interactions between protein (PDB ID: 7p2x)
and compound 3 mainly comprised hydrogen bonds, and electrostatic, hydrophobic, and
miscellaneous interactions in Figure 4B. For the hydrogen bonds, residue 77 and residue 76
formed two conventional hydrogen bonds with bond lengths of 2.64 Å and 3.10 Å. Residue
46, residue 49, and residue 77 formed four carbon–hydrogen bonds. For the electrostatic
interactions, residue 124 formed one pi–cation bond. For the hydrophobic interactions,
residues 16, 43, 47, 71, 78, 94, 120, and 165 formed five pi–alkyl bonds, two amide–pi
stacked bonds, one pi–sigma bond, and two alkyl bonds. The interactions between protein
(PDB ID: 4qy5) and compound 3 mainly comprised hydrogen bonds, and electrostatic, and
hydrophobic interactions in Figure 4C. For the hydrogen bonds, residue 281 and residue
277 formed two conventional hydrogen bonds with bond lengths of 2.82 Å and 3.02 Å.
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Residue 219, residue 220, and residue 280 formed four carbon–hydrogen bonds. For the
electrostatic interactions, residue 32 and residue 288 formed four pi–cation bonds. For
the hydrophobic interactions, residues 221, 225, 287, and 287 formed four alkyl bonds,
and one pi–alkyl bond. The interactions between protein (PDB ID: 7ohn) and compound
3 mainly comprised hydrogen bonds, and electrostatic, hydrophobic, and miscellaneous
interactions in Figure 4D. For the hydrogen bonds, residue 166 formed two conventional
hydrogen bonds with a bond length of 2.26 Å and 2.38 Å. Residue 166 and residue 105
formed four carbon–hydrogen bonds. Residue 166 and residue 105 formed three pi–donor
hydrogen bonds. For the electrostatic interactions, residue 32 and residue 288 formed two
pi–cation bonds. For the hydrophobic interactions, residue 179 formed one alkyl bond, and
residues 183, 179, and 71 formed four pi–alkyl bonds.
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2.7. ADMET Prediction

We used the ADMET Descriptors module and the TOPKAT module in Discovery
Studio software 2018 to predict the ADMET and toxicological properties of the compounds.

ADMET predictions indicated that compound 3 was soluble in water at 25 ◦C
(log (SW) = −3.802). The ADMET_EXT_CYP2D6 was −2.93908, which did not inhibit
cytochrome P4502D6. The ADMET_EXT_ Hepatoxic was −16.0559, which was the lowest
toxicity to the liver. Plasma protein models showed that carrier proteins in the blood do
not affect the efficiency of the drug (ADMET_EXT_PPB = −5.27966).

Toxicity predictions were calculated using the Ames heteroaromatic model. The
computed rat oral lethal dose 50 (LD50) value for compound 3 obtained with the Rat Oral
LD50 heteroaromatic model was 5525.31 mg/kg. These parameters were checked to be
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within their standard ranges, showing compound 3 is suitable for further development as a
lead compound.

2.8. Protein Subcellular Localization

Based on the results of molecular docking and MD simulations, we identified β-
lactamase, FleQ, FtsZ, and aspC as the most significant protein targets in Table 5. Subse-
quently, we conducted subcellular localization analysis for these proteins based on their
amino acid sequences. Our findings revealed that FtsZ is primarily located in the cytoplasm
(51.35%), but it is also present in the cytoplasmic nucleus, suggesting potential interactions
in both compartments. β-lactamase primarily resides in the cytoplasm (38.36%), but it is
also found in the cytoplasmic nucleus and cytoskeleton, indicating diverse interactions.
FleQ is predominantly localized in the cytoplasm (31.63%), with a presence in the cytoplas-
mic nucleus and cytomitome, implying roles in these compartments. aspC is mainly in the
cytoplasm (59.26%). Therefore, these four protein targets play roles in multiple cellular
compartments within bacteria.

Table 5. Protein subcellular localization results.

Drug Protein Location (k = 23) UniProt ID PDB ID

Clindamycin
derivatives FtsZ

cyto: 51.35%
cyto_nucl: 29.73%

cysk: 10.81%
pero: 5.40%
mito: 2.70%:

Q2FZ89 7ohn

Clindamycin
derivatives β-lactamase

cyto: 38.36%,
cyto_nucl: 26.03%,

cysk: 19.18%,
nucl: 8.22%,
mito: 5.48%,
pero: 2.74%

UPI00067E6531 4qy5

Clindamycin
derivatives FleQ

cyto: 31.63%
cyto_nucl: 25.17%,
cyto_mito: 19.73%,

nucl: 14.29%,
mito: 5.10%,
cysk: 4.08%

UPI0021CDE869 7ptf

Clindamycin
derivatives aspC

cyto: 59.26%,
nucl: 18.52%,
mito: 14.81%,
cysk: 7.41%

UPI000274A8A1 7p2x

3. Materials and Methods

The experimental procedure was performed with an Intel® Xeon® CPU E5-2650 0
@2.00 GHz (Intel, Santa Clara, CA, USA) processor, using a Windows 10 (Microsoft Corpo-
ration, Redmond, WA, USA) operating system and a 4 GB NVIDIA Quadro 2000 graphics
card (Nvidia, Santa Clara, CA, USA). vmd1.9.3 was used as a 3D visualization window.

3.1. Screening of Clindamycin Targets

In our previous research, we observed that compounds 3, 3e, and 4 demonstrated
broad-spectrum antibacterial activity against four strains of Gram-negative bacteria (Pseu-
domonas aeruginosa, Klebsiella pneumoniae, Salmonella spp., and Escherichia coli), one strain
of Gram-positive bacteria (Staphylococcus aureus), and a fungal strain (Candida albicans).
Therefore, in light of this characteristic, the present study employed the Swiss Target
Prediction database (http://swisstargetprediction.ch, accessed on 19 July 2023) using the
following chemical structures as input, respectively [7]: SMILES code of compound 3,
compound 4, and compound 3e. These compounds were used as keywords to predict

http://swisstargetprediction.ch
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potential drug targets for the three clarithromycin derivatives. The species Homo sapiens
was selected for target prediction, leading to the identification of potential therapeutic
targets for these compounds.

3.2. Intersection of Three Clindamycin-Derivative Targets

Based on the shared broad-spectrum antibacterial activity against bacteria and fungi
exhibited by designed compounds 3, 3e, and 4, we employed the online tool “https:
//bioinfogp.cnb.csic.es/tools/venny/index.html, accessed on 19 July 2023” to intersect
the 100 target proteins predicted for compound 3, the 100 target proteins predicted for
compound 3e, and the 100 target proteins predicted for compound 4 [8]. This intersection
resulted in a set of common target proteins.

3.3. Screening of Antibacterial Targets of Clindamycin Derivatives through PubChem Database

In order to further screen the targets and study the interactions between the targets,
we screened the targets of 26 proteins through the PubChem database (https://pubchem.
ncbi.nlm.nih.gov/, accessed on 20 July 2023) [9], and the keywords “bacteria, fungi, Staphy-
lococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans” were used to
screen out the protein targets of the drug.

3.4. Molecular Docking Simulation and Validation

In this process, we created a ligand library using Discovery Studio 2019 Client, per-
formed docking with CHARMM to refine ligand shapes and charge distribution, and
analyzed binding interactions between clindamycin derivatives and drug targets. We
selected the best poses based on LibDock scores, filtering targets with scores over 140,
providing valuable insights into the binding mechanisms for our research [10].

3.5. Stability of the Docked Complexes Studied via MD Simulation

Molecular dynamics (MD) simulations using GROMACS (version 2020.3) were used
to analyze protein–ligand binding dynamics [11]. Protein structures were optimized with
the AMBER99SB-ILDN force field [12], and water molecules were modeled with the TIP3P
model [13,14]. ACPYPE was used to calculate the ligand charges and generate GAFF force-
field-compatible files [15]. Simulations employed cubic boxes with a minimum atom-box
boundary distance of 0.8 nm, hydrated with SOL water at a 1000 g/L density. Chloride ions
replaced solvent water for electrical neutrality. An initial energy minimization step relaxed
the system, followed by a 100 ps restrained MD simulation at 298.15 K. Unrestricted MD
simulations with a time step of 0.002 ps were performed for 10 ns and 30 ns, maintaining
isothermal-isobaric conditions at 298.15 K and 1 bar pressure, controlled using thermostats
and barostats [16].

3.6. Calculation of the Binding Energy

The binding free energy between the protein–ligand complexes was estimated using
the MM/PBSA equation [17]. The APBS lattice parameters are output according to the MD
results, and APBS module using Discovery Studio 2019 Client (Pacific Northwest National
Laboratory, Richland, DC, USA) [18] was applied to calculate polar solvation energy (PB)
and nonpolar solvation energy (SA). The binding free energy (∆G_Bind) is given by the
following equation:

∆G_Bind = ∆G_Complex − ∆G_Ligand − ∆G_Receptor

The MM energy accounts for the intermolecular interactions (e.g., van der Waals forces,
electrostatic interactions, and hydrogen bonding) between the protein and the ligand. It
is typically calculated using a force field that approximates the potential energy function
of the system. Polar solvation energy (∆G_PB) describes the interaction between solvent
molecules (usually water molecules) and polar atoms (partially charged) in proteins and
ligands. Nonpolar solvation energy (∆G_SA) describes the interaction between solvent

https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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molecules and nonpolar regions (usually hydrophobic hydrocarbon chains) in proteins
and ligands.

3.7. ADMET Prediction

We used the ADMET Descriptors and Toxicity Prediction modules in Discovery Studio
software 2018 to predict the ADMET and toxicological properties of compounds [19].

The ADMET Descriptors module was developed based on descriptors computed
by linear formulas. The water-soluble model was developed using a training set of 775
compounds and a test set of 34 compounds using descriptors of solubility and solubility
levels (R2 = 0.88, SD = 0.79).

The TOPKAT module was used to analyze the structure of a compound, identify
functional groups and substructures, convert them into numerical descriptors, and compare
them to known compounds to predict potential toxicity based on structural relationships
and quantitative models.

3.8. Protein Subcellular Localization

Subcellular localization refers to the precise cellular location of a protein or its gene
expression product, encompassing compartments such as the nucleus, cytoplasm, and cell
membrane. This spatial organization is crucial for the protein’s proper function, as it ensures
access to the necessary chemical environment and interacting factors. Misplacement can
disrupt cellular processes, making understanding protein localization essential for studying
gene functions, protein interactions, and their mechanisms [20].

PSORT is a computer program used to predict the subcellular location of proteins based
on their amino acid sequences and source information. To predict subcellular localization,
the amino acid sequences of target proteins are obtained from the UniProt database, and
these sequences are then inputted into the PSORT II online software (https://psort.hgc.jp/,
accessed on 21 July 2023). PSORT II provides predictions regarding the subcellular location
of these target proteins [21].

4. Conclusions

In the course of our prior research, we made a significant revelation: clindamycin
derivatives possess an exceptional broad-spectrum antibacterial activity, effectively tar-
geting Gram-positive bacteria, Gram-negative bacteria, and fungi. Building upon this
discovery, our study aimed to delve deeper into the molecular mechanisms underlying this
remarkable property and identify potential antibacterial targets.

Our initial step involved the utilization of the Swiss Target Prediction database to
explore the vast landscape of target proteins among the 300 clindamycin derivatives.
Interestingly, our analysis revealed that kinase, enzyme, and family A G-protein-coupled
receptor were the top three most abundant protein classes among these derivatives. Given
the structural similarities of these clindamycin derivatives, we employed Venny 2.1.0
(csic.es) to identify 26 overlapping target proteins. Subsequently, guided by the PubChem
database, we strategically filtered these targets based on their relevance to antibacterial
activities, encompassing pathogens like Staphylococcus aureus, Pseudomonas aeruginosa,
Candida albicans, and Escherichia coli. Our rigorous screening process yielded a select set of
six antibacterial target proteins, consisting of five family A G-protein-coupled receptors and
one kinase. To determine the binding sites for these compounds, we employed compound
3 as a representative molecule and conducted molecular docking simulations with these six
target proteins. From these simulations, we identified five protein targets with LibDock
scores exceeding 140, indicating a substantial binding affinity. For further validation,
we subjected these interactions to extensive molecular dynamics simulations, spanning
durations of 10 and 30 nanoseconds. Analysis of the root mean square deviation (RMSD)
results narrowed our selection down to four protein targets, namely β-lactamase, FleQ, FtsZ,
and aspC, each demonstrating stable and biologically plausible conformational behavior.

https://psort.hgc.jp/
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Analyzing the binding forces, we observed that compound 3 formed hydrogen bonds,
electrostatic interactions, and hydrophobic interactions with these four target proteins.
Particularly noteworthy was the favorable electrostatic interaction between compound
3’s aromatic structure and the target proteins. To assess the safety and cellular activity
of compound 3, we conducted ADMET predictions, reassuringly finding that compound
3 exhibits a safe cellular profile. Furthermore, to gain insights into the cellular locations
where clindamycin derivatives exert their antibacterial effects, we performed protein
subcellular localization for the four identified target proteins. The results were enlightening,
revealing that FtsZ and aspC predominantly reside in the cytoplasm, β-lactamase primarily
localizes in cyto_nucl and cysk, and FleQ is primarily distributed across cyto, cyto_nucl,
and cyto_mito compartments.

In summary, our comprehensive investigations shed light on the intricate mechanisms
underpinning the broad-spectrum antibacterial activity of clindamycin derivatives. These
findings not only hold promise for the development of innovative antimicrobial agents, but
also open new horizons in the ongoing battle against antibiotic resistance. While we ac-
knowledge the computational nature of our approach and the need for future experimental
validation, our research sets the stage for potentially transformative clinical applications.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules28217357/s1, Table S1: Minimum inhibitory concentration
(MIC); Table S2: Screening of Selumetinib targets. The synthetic methods and data for the compounds
are provided in the Supplementary Material.
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