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Abstract: We report an unusual transformation where the transient formation of a nitrene moiety initi-
ates a sequence of steps leading to remote oxidative C–H functionalization (R–CH3 to R–CH2OC(O)R’)
and the concomitant reduction of the nitrene into an amino group. No external oxidants or reductants
are needed for this formal molecular comproportionation. Detected and isolated intermediates and
computational analysis suggest that the process occurs with pyrazole ring opening and recyclization.

Keywords: furoxan; 1H-pyrazole; nitrene; fragmentation; cyclization

1. Introduction

The high energy stored in the azide functionality makes it a powerful tool for many
organic transformations [1,2]. In addition, the N3 group can be considered a convenient
amine surrogate, i.e., a form of amine protection, as this group can be easily installed into
a molecule and converted into the corresponding NH2 later in the synthetic sequence.
Several reductive strategies for azide-to-amine transformations include the use of strong
reducing agents, such as LiAlH4 [3], NaBH4 [4], and Zn(BH4)2 [5]. The search for milder
conditions led to the development of sulfide chemistry [6,7] and copper(I) catalysis [8].
However, the Staudinger reaction with the use of phosphine or phosphite reagents remains
the most frequent choice for this reduction [9–12]. Nevertheless, each of these approaches
has its disadvantages, including poor group tolerance, the additional synthesis of ligands,
or phosphorus(V) waste.

Although arene azides are most widely presented in the literature, the number of
papers dealing with the synthesis and the chemical and biological properties of heterocyclic
azides has grown significantly. Now, heterocyclic azides are commonly used as versatile
building blocks in organic chemistry [13]. They retain most of the valuable reactivity fea-
tures typical of their aromatic counterparts as they undergo typical azide transformations,
such as the Huisgen cycloaddition [14,15], the CuAAC reaction [16], reduction to amines,
1,3-dipolar cycloaddition to double bonds [17], and so on. However, the neighboring
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heterocyclic moiety also enables a range of unique transformations. For example, electron-
poor imidazolium-based azides may serve as diazo-group transfer reagents [18]. Similar
reactivity is observed for super-electrophilic dinitrobenzofuroxan-derived azides [19]. Ne-
najdenko and coauthors have demonstrated that 4-azido-5-(pyridine-2-yl)-1,2,3-triazoles
undergo thermal cyclization to give a novel class of blue-light-emitting heterocycles, 2H-
[1,2,3]triazolo[4′,5′:3,4]pyrazolo[1,5-a]pyridin-5-ium-4-ides [20]. An intriguing example of
stable pyrazolo[5,1-c][1,2,4]triazine possessing both diazonium and acylazido moieties was
reported by Ivanov and coworkers [21]. These selected examples clearly demonstrate the
great potential of heterocyclic azides in developing novel transformations.

On the other hand, C–H activation in aliphatic functional groups remains challeng-
ing and usually requires oxidative conditions. Furthermore, the direct esterification of
C–H bonds is often limited by the nature of the substrates [22,23]. Several oxidative
acetoxylation protocols with the in situ generation of hypervalent iodine species have
been described [24,25]. The combination of copper [26,27] or palladium catalysts [28–32]
with external oxidants or electrochemical oxidation [33] also provided a useful tool for
AcO-group insertion into an alkane moiety. However, these approaches are either in-
compatible with sensitive functional groups (e.g., unprotected amines) or demand the
presence of directing groups. Using acetic acid itself for C–H acetoxylation is unusual and
conceptually appealing.

In continuation of our efforts to search for potent anticancer and antimicrobial
agents [34–37], we were interested in synthesizing a previously unknown bis-heterocyclic
pyrazolo-furoxan fusion. Pyrazole-based compounds exert antimicrobial, antipyretic, anti-
inflammatory, and analgesic effects [38–41]. Furoxan-ring-containing molecules exhibit
anti-tuberculosis [42], antitumor [43], anti-inflammatory [44], antiaggregant [45], etc., bio-
logical activities. For the target compounds’ synthesis, we planned to use one of the known
methods for obtaining a furoxan cycle—thermolysis of α-nitroazides (Scheme 1) [46–52].
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However, when we applied these reaction conditions, the outcome was unexpected.
The observed transformation involved a remote methyl group and proceeded as a redox
disproportionation, where this group was oxidized into a CH2OAc moiety while the azido
group was reduced to the amine. Interestingly, the nitro group, which could potentially
serve as a relay between the two reacting functionalities, remained unchanged. Considering
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this surprising outcome, we have explored this new conformation in more detail and wish
to report the results of this investigation in this work.

2. Results and Discussion

Synthesis of reactants and analysis of products. We started by preparing 5-chloro-3-
methyl-1-phenyl-1H-pyrazole 2 from edaravone 1, a medication used to treat stroke and
amyotrophic lateral sclerosis [53,54] (Scheme 2), according to the literature method [55].
It was reported that the nitration of compound 2 with concentrated nitric acid in acetic
anhydride led to nitration at the fourth position of the pyrazole ring with the formation of
5-chloro-3-methyl-4-nitro-1-phenyl-1H-pyrazole [55]. When we used fuming nitric acid
(97–99%), it resulted in the incorporation of the additional nitro group at the para-position
of the phenyl group, allowing us to obtain compound 3.
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Scheme 2. Reaction of edaravone 1 with POCl3, following nitration and azidation, with formation of
5-azido-3-methyl-4-nitro-1-(4-nitrophenyl)-1H-pyrazole 4 [55].

The reaction of 5-chloro-3-methyl-4-nitro-1-(4-nitrophenyl)-1H-pyrazole 3 with sodium
azide resulted in the facile replacement of chlorine by the azido group. We have shown
earlier that the presence of adjacent azide and nitro groups usually leads to cyclization to
the furoxan ring upon refluxing in high-boiling solvents [49,50]. In some cases, this reaction
proceeds spontaneously at the stage of azide preparation [56].

However, to our surprise, the thermolysis of o-azidonitro derivative 4 in acetic acid led
to 5-amino-4-nitro-1-(4-nitrophenyl)-1H-pyrazol-3-yl)methyl acetate 5a, instead of the ex-
pected cyclization product, furoxan. The new product is formed as a result of the reduction
of the azido group to an amino group and the oxidative conversion of the methyl group
to a CH2OAc moiety (Scheme 3). Aminopyrazole derivatives are widely used in organic
synthesis as convenient starting reagents for obtaining new annelated heterocycles, which
may be of interest as potentially physiologically active compounds [57]. For example, 4-
amino-pyrazole-3-carboxylic esters are used as intermediates for the synthesis of Sildenafil
(Viagra) and Allopurinol [58].
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The reaction of azide 4 with propionic and butyric acids and butanol leads to similar
products 5b–d (Scheme 4). In all cases, compound 6 was isolated as a byproduct in
trace amounts.
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The structures of compounds 3, 5a, and 6 were confirmed by X-ray analysis
(Figures S13, S14 and 1). The bihetaryl scaffold of 5a is twisted due to steric repulsion in
ortho-positions (Figure 1A). The interplanar and torsion angles between p-nitro-phenylene
and pyrazole rings are 37.91◦ and 36.37◦, respectively. The acetoxy group lies in the “gauche”
conformation to diaza-cycle (torsion angle C10C9C12O13 59.42◦), where the acceptor C–O
bond aligns with the donor heterocycle π-system. Interestingly, the NH2 substituent partic-
ipates in both intra- and intermolecular hydrogen bonding with oxygens of NO2 and C=O
groups, respectively.
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Hydrazide 6 has a completely planar structure with two cross-conjugated fragments
at the NH moiety (Figure 1B). A lone electron pair of the NH nitrogen can participate in
conjugation with both substituents, and as a result, the central N-atom is sp2-hybridized.
The sum of valence angles at the NH nitrogen equals 360.0◦.

Possible mechanism. Considering that this process involves a metal-free C–H activa-
tion under relatively mild conditions, its mechanism is intrinsically interesting, as it may
pave the way to similar C–H activations of a broader range of substrates. The key step
is likely to be the formation of the nitro-substituted nitrene (Scheme 5). Aryl nitrenes are
capable of complex transformations, including a variety of ring expansions, fragmentations,
and bond insertions [59–62]. Singlet aryl nitrenes can also be trapped by reactions with
internal nucleophiles [63–65]. Although Ph-nitrene is known to be a triplet (~15 kcal/mol
lower than the open-shell singlet state) [66], the singlet nitrene was shown to be a discrete,
albeit very short-lived, intermediate [67], capable of fast intramolecular reactions. On the
other hand, the singlet/triplet gap in pyrazole nitrene has not been studied. Our attempts
to optimize the singlet state of pyrazole nitrene lead to its barrierless fragmentation via a
coarctate reaction (vide infra).
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Scheme 5. Suggested mechanism for the formation of unusual products in the attempted synthesis
of pyrazole/furoxan hybrid. Pathways discarded from the computational evidence are shown in the
red background. The suggested plausible path is shown in blue. Both cyclization and fragmentation
proceed from the singlet state.

Once the pyrazole nitrene 7 is formed, it can potentially react in several ways. The
direct intramolecular attack of an oxygen of the nitro group leads to neutral bicyclic species
8, which can be converted into 9 by protonation. Alternatively, pyrrole nitrogen can increase
the electron density at the nitrene via resonance, facilitating protonation with the formation
of a nitrenium ion (not shown), which may also cyclize with the formation of the fused
bicyclic cation 9. When 9 is formed, the mechanistic path can diverge. Here, we have
considered two possibilities. First, the intramolecular activation of the methyl substituent
by electron-deficient oxygen in 9 may enable hydride transfer, allowing for the formation of
a stabilized carbocation 10. The nucleophilic attack of ROH at the cationic carbon, followed
by proton transfer and furoxan ring opening, would form the final product 5. An interesting
feature of this path would be that nitrene would provide the transient activation of the nitro
group, rendering it an even stronger hydride acceptor. However, computational analysis at
the M062x/6-31+G (d,p) level (with AcOH as a solvent) suggested that the barrier to such
a hydride shift is prohibitively large (67 kcal/mol), and the carbocationic intermediate 10 is
nearly 25 kcal/mol higher in energy than 9.

In an alternative intramolecular activation path, the prototropic tautomerization of
cation 9 in an acidic medium would lead to the dearomatizing methyl–methylene tau-
tomeric transformation 9→13. ROH attack on the alkene fragment can synchronously open
the furoxan ring and unmask the nitro and imine groups of 14. Subsequent proton transfers
reestablish aromaticity with the formation of pyrazole 15. The deprotonation of 15 would
lead to the observed product 5. We consider this path unfavorable due to the >15 kcal/mol
penalty for the loss of aromaticity in 13. Furthermore, the formation of the key precursor,
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i.e., the bicyclic cation 9, by the protonation of neutral 8 by acetic acid is also predicted to
be >50 kcal/mol uphill.

Based on these considerations and the formation of the acyclic side product 6, we
explored the possibility of ring opening as the first step in the reaction sequence. Here,
we were guided by the literature precedent, as 5-azidopyrazoles are known to undergo
ring-opening processes with the formation of a cyano group after nitrogen loss upon
heating [68,69]. Furthermore, our attempts to optimize the singlet state of nitrene 7 led to
its barrierless fragmentation with the formation of acyclic nitrile 16.

The formation of the byproduct 6 can start as a Michael addition of water to an alkene
16 strongly activated by two acceptor groups (nitro and cyano). The adduct 17 can undergo
a 3-exo-trig cyclization to afford N-amino-substituted aziridine 18. Due to hybridization
effects [70] and an inverse α-effect [71–73], such species are expected to be quite strained
and reactive. The collapse of amino acetal with the concomitant aziridine ring opening in
18 relieves the transient strain. The hydrazine lone pair then assists in the elimination of
the NO2 group to reestablish conjugation and, after deprotonation, forms the isolated side
product 6.

Furthermore, the same intermediate 16 can undergo isomerization into alkene 19,
which, after the nucleophilic addition of ROH, can undergo a 5-exo-trig ring closure that
recreates the heterocyclic moiety. The protonation of the cyclic nitronate 20 is coupled with
aromatization and the formation of the final product 5. Note that the difference between
the two blue pathways is that, in one of them, water serves as a base (formation of 5), and in
the other one, water is a nucleophile (generation of 6). Hence, the diverging paths leading
to the cyclic product and acyclic side product are logically connected.

The ring-opening/ring-closure mechanism of five-membered rings is an example of
a coarctate reaction introduced in the pioneering work by Herges [74]. In these reactions,
a coarctate atom forms two bonds and breaks two bonds simultaneously in a concerted
fashion (Scheme 6). The presence of an exocyclic electron-deficient atom (nitrene or carbene)
results in ring fragmentation with ene-ene-yne moiety formation [75]. Reactions of carbenes
generally lead to alkynes, while nitrenes generate nitriles. Unlike alkynes [76], nitriles are a
low-energy functionality (an “energy sink”), so nitrene fragmentations are generally quite
favorable [75].
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tively unsaturated atom, e.g., a carbene or a nitrene. The parent carbene/nitrene species can be
formed via decomposition of diazo compounds or azides, respectively.

The coarctate ring opening provides an interesting counterpart to the ANRORC mech-
anism [77]. Although it is mechanistically different from ANRORC, it also illustrates
that even stable aromatic/heteroaromatic rings are not immune under conditions where
highly reactive intermediates are formed, especially when there is a direct path to a sta-
ble functional group, such as the CN moiety. Ring openings often lead to recyclizations
into new heterocyclic structures [78]. The unusual feature of our work is that the recy-
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clization is accompanied by selective C–H functionalization while retaining the parent
heteroaromatic moiety.

In conclusion, we report an interesting “redox-balanced” transformation where two
functional groups separated in space undergo simultaneous redox transformations in
opposite directions: the Me group is oxidized while the nitrene moiety is reduced. The
absence of usual furoxan products in this case can be attributed to the combination of two
factors: the lower aromaticity of pyrazole relative to benzene [79,80] and the accumulation
of strain upon the fusion of the two five-membered rings [81]. The interplay of electronic
effects due to the presence of multiple nitrogen atoms in pyrazole activates the fast Grob
fragmentation into a functionally rich acyclic nitro nitrile 16, which can recyclize after
prototropic isomerization and the Michael-like addition of AcOH.

3. Materials and Methods
Chemistry

IR spectra were recorded as an emulsion in vaseline oil (sample concentration 0.25%)
on a Tensor 37 Vertex 70 RAM II spectrometer (Bruker Optik GmbH, Ettlingen, Germany) in
the range 400–4000 cm−1; given are the most intense absorption bands. Nuclear magnetic
resonance (NMR) spectra were recorded on a Bruker AVANCE 400 spectrometer (Bruker
BioSpin, Rheinstetten, Germany) operating at 400 MHz (for 1H NMR) and 101 MHz (for
13C NMR) and on a Brucker AVANCEIII-500 spectrometer (Bruker BioSpin, Rheinstetten,
Germany) operating at 500.1 MHz for 1H at 303 K and 126 MHz (for 13C NMR). Chem-
ical shifts were measured in δ (ppm) with reference to the solvent (δ = 7.27 ppm and
77.00 ppm for CDCl3, δ = 2.06 ppm and 28.94 ppm for (CD3)2CO for 1H and 13C NMR,
respectively). Electrospray ionization (ESI) mass spectra were obtained on an Amazon
X mass spectrometer from Bruker Daltonics (Bremen, Germany) with an ion trap. The
measurements were carried out in the mode of recording negative ions in the m/z range
from 100 to 2000. Elemental analysis was performed on a CHNS-O Elemental Analyzer
EuroEA3028-HT-OM (EuroVector S.p.A., Milan, Italy) with an accuracy of ±0.4% for C,
H, Cl, and N. The melting point was determined in glass capillaries on a Stuart SMP 10
instrument (Keison Products, Chelmsford, UK). The progress of reactions and the purity of
products were monitored by TLC on Sorbfil UV-254 plates (Sorbpolimer, Krasnodar, Rus-
sia). The visualization of the TLC plates was accomplished with a UV light. All standard
reagents were purchased from Aldrich or Acros Organics and used without further purifi-
cation. 5-Chloro-3-methyl-1-phenyl-1H-pyrazole 2 was obtained according to a previously
described procedure [55].

X-ray crystallography data. The data set for the single crystals 3 and 6 were collected on
a Bruker Quest diffractometer using graphite monochromated MoKα (0.71073 Å) radiation
andω-scan rotation. Data collection: images were indexed, integrated, and scaled using
the APEX2 [82] data reduction package and corrected for absorption using SADABS [83].
Structure 3 was solved by direct methods and refined using SHELX [84]. Non-hydrogen
atoms were refined anisotropically. Hydrogen atoms were calculated in idealized positions
and refined as riding atoms. The X-ray analysis was performed on the equipment of the
Spectral-Analytical Center of FRC Kazan Scientific Center of RAS.

Crystallographic data for compound 3: C10H7ClN4O4, M 282.65, monoclinic, P21/c,
a 3.7604(1), b 32.2193(11), c 9.0673(3) Å,β 93.985(1)◦, V 1095.92(6) Å3, Z 4, Dcalcd 1.713 g·cm–3,
µ(Mo-Kα) 0.367 mm–1, F(000) 576, (θ 1.3–27.9◦, completeness 99.9%), T 100(2) K, orange
prism, (0.11 × 0.17 × 0.56) mm3, transmission 0.6946–0.7456, 39,950 measured reflections,
2597 independent (Rint 0.044), 173 parameters, R1 = 0.0367 (for 2379 observed I > 2σ(I)),
wR2 = 0.1435 (all data), GOOF 1.05, largest diff. peak and hole 0.50 and−0.40 e·A−3. CCDC
number 2299127.

Crystallographic data for compound 6: C10H8N4O3, M 232.20, monoclinic, P21/n,
a 7.0578(14), b 13.434(3), c 11.160(2) Å, β 96.736(6)◦, V 1050.8(4) Å3, Z 4, Dcalcd 1.468 g·cm–3,
µ(Mo-Kα) 0.113 mm–1, F(000) 480, (θ 2.4–27.9◦, completeness 99.8%), T 162(2) K, orange
needle, (0.04× 0.05× 0.15) mm3, transmission 0 0.6291–0.7456, 39,950 measured reflections,
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23,472 independent (Rint 0.273), 155 parameters, R1 = 0.0852 (for 1013 observed I > 2σ(I)),
wR2 = 0.2504 (all data), GOOF 0.941, largest diff. peak and hole 0.31 and −0.28 e·A−3.
CCDC number 2299128.

The data set for the single crystal 5a was collected on a Rigaku Synergy S instrument
(Rigaku Oxford diffraction, Tokyo, Japan) with a HyPix detector and a PhotonJet microfocus
X-ray tube using Cu Kα (1.54184 Å) radiation at a low temperature. Images were indexed
and integrated using the CrysAlisPro data reduction package. Data were corrected for
systematic errors and absorption using the ABSPACK module: numerical absorption
correction based on Gaussian integration over a multifaceted crystal model and empirical
absorption correction based on spherical harmonics according to point-group symmetry
using equivalent reflections. The GRAL module was used for the analysis of systematic
absences and space-group determination. The structure was solved by direct methods
using SHELXT [85] and refined by full-matrix least-squares on F2 using SHELXL [86].
Non-hydrogen atoms were refined anisotropically. The hydrogen atoms were inserted at
the calculated positions and refined as riding atoms. The figures were generated using the
Mercury v4.1 [87] program. Crystals were obtained by the slow evaporation method.

Crystallographic data for compound 5a: C12H11N5O6 (M = 321.26 g/mol): triclinic,
space group P-1 (no. 2), a = 7.7774(2) Å, b = 9.7999(2) Å, c = 9.96110(10) Å, α = 102.833(2)◦,
β = 111.543(2)◦, γ = 92.620(2)◦, V = 681.72(3) Å3, Z = 2, T = 110.0(5) K, µ(Cu Kα) = 1.107 mm−1,
Dcalc = 1.565 g·cm−3, 7375 reflections measured (9.348◦ ≤ 2Θ ≤ 153.212◦), 2745 unique
(Rint = 0.0229, Rsigma = 0.0227), which were used in all calculations. The final R1 was 0.0347
(I > 2σ(I)), and wR2 was 0.0938 (all data). CCDC number 2294752.

CCDC 2299127, 2299128, and 2294752 contain the supplementary crystallographic
data for this paper. These data can be obtained free of charge via https://www.ccdc.cam.
ac.uk/structures/ (accessed 20 October 2023) (or from the Cambridge Crystallographic
Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or de-
posit@ccdc.cam.uk).

5-Chloro-3-methyl-4-nitro-1-(4-nitrophenyl)-1H-pyrazole (3). Acetic anhydride (6 mL) was
added to 5-chloro-3-methyl-1-phenyl-1H-pyrazole 2 (0.44 g, 2.3 mmol), the reaction mixture
was cooled to 0 ◦C, and then fuming nitric acid (97–99%, 4 mL) was added dropwise. The
reaction mixture was stirred at room temperature for 4 h and then poured over crushed
ice. The obtained precipitate was filtered off, washed with cold water (100 mL), and
dried under vacuum (0.06 mm Hg) at 40 ◦C to constant weight. The crude product was
recrystallized from acetone to give the target compound. Yellow powder, yield 0.55 g (85%),
m.p.: 148–150 ◦C. IR (ν, cm–1): 691, 787, 860, 1005, 1147, 1317, 1346 (NO2 symm), 1381, 1459,
1503, 1532 (NO2 asymm), 1553, 1596. 1H NMR (500 MHz, CDCl3): δ = 8.41 (d, J = 8.6 Hz,
2H), 7.83 (d, J = 8.6 Hz, 2H), 2.64 (s, 3H). 13C NMR (126 MHz, CDCl3): δ = 148.7, 147.9,
141.7, 131.2, 128.2, 126.0, 125.0, 14.7. Anal. calcd (%) for C10H7ClN4O4: C, 42.50; H, 2.50; Cl,
12.54; N, 19.82. Found: C, 42.54; H, 2.48; Cl, 12.53; N, 19.85.

5-Azido-3-methyl-4-nitro-1-(4-nitrophenyl)-1H-pyrazole (4). To a solution of 5-chloro-3-methyl-
4-nitro-1-(4-nitrophenyl)-1H-pyrazole 3 (0.50 g, 1.8 mmol) in acetone (5 mL) at room tem-
perature was added a solution of sodium azide (0.15 g, 2.3 mmol) in 1 mL of water. The
reaction mixture was stirred for 1 h (the reaction was monitored by thin-layer chromatogra-
phy; eluent: toluene–ethylacetate (2:1, v/v)). After completion of the reaction, the solvent
was removed under reduced pressure, washed with cold water, and dried in vacuum
(0.06 mm Hg) at 40 ◦C to constant weight. Light brown powder, yield 0.45 g (86%), Rf 0.31,
m.p.: 104–106 ◦C. IR (ν, cm–1): 690, 751, 822, 857, 1347 (NO2 symm), 1382, 1418, 1439, 1557
(NO2 asymm), 1561, 2152 (N3). 1H NMR (500 MHz, Acetone-d6): δ = 8.40–8.43 (m, 2H),
8.07–8.11 (m, 2H), 2.55 (s, 3H). 13C NMR (101 MHz, Acetone-d6): δ = 147.9, 147.6, 142.5,
138.5, 126.2, 125.2, 125.1, 14.4. Anal. calcd (%) for C10H7N7O4: C, 41.53; H, 2.44; N, 33.90.
Found: C, 41.58; H, 2.47; N, 33.87.

Synthesis of compounds 5a–d (general method). 5-Azido-3-methyl-4-nitro-1-(4-nitro-
phenyl)-1H-pyrazole 4 (0.1 g, 0.34 mmol) was heated in 3 mL of acid/butanol at 118 ◦C

https://www.ccdc.cam.ac.uk/structures/
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for 5 h (for acetic acid) or 10 h (for propionic and butyric acids and butanol). Then, the
solvent was removed under reduced pressure. In the case of propionic and butyric acids
and butanol, the crude product was purified by column chromatography on silica gel
(eluent: toluene–ethylacetate (10:1, v/v)) to give the target compound (the side product 6
was isolated in trace amounts).

5-Amino-4-nitro-1-(4-nitrophenyl)-1H-pyrazol-3-yl)methyl acetate (5a). Gray pearlescent solid
(0.08 g) was obtained in 78% yield. Rf 0.17, m.p.: 198–199 ◦C. IR (ν, cm–1): 820, 863, 1032,
1253, 1346 (NO2 symm), 1464, 1520, 1599 (NO2 asymm), 1637 (CO), 1721 (C=O), 3293, 3408
(NH2). 1H NMR (400 MHz, Acetone-d6): δ = 8.46 (d, J = 9.0 Hz, 2H), 7.99 (d, J = 9.0 Hz, 2H),
7.35 (br.s, 2H), 5.33 (s, 2H), 2.08 (s, 3H). 13C NMR (101 MHz, Acetone-d6): δ = 169.6, 147.1,
144.7, 142.3, 125.1, 124.9, 116.9, 58.7, 19.6. Anal. calcd (%) for C12H11N5O6: C, 44.87; H, 3.45;
N, 21.80. Found: C, 44.83; H, 3.52; N, 21.85. ESI, m/z for C12H11N5O6: 319.99 [M − H]−.
(5-Amino-4-nitro-1-(4-nitrophenyl)-1H-pyrazol-3-yl)methyl propionate (5b). Orange oil, yield
0.085 g (73%). Rf 0.15. IR (ν, cm–1): 694, 753, 819, 860, 1099, 1182, 1291, 1347 (NO2 symm),
1460, 1526, 1598 (NO2 asymm), 1635 (CO), 1708, 1738 (C=O), 3328, 3430 (NH2). 1H NMR
(400 MHz, Acetone-d6): δ = 8.38–8.42 (m, 2H), 7.91–7.97 (m, 2H), 7.36 (br.s, 2H), 5.31 (s,
2H), 2.38 (q, J = 7.6 Hz, 2H), 1.11 (t, J = 7.6 Hz, 3H). 13C NMR (101 MHz, Acetone-d6):
δ = 173.9, 147.9, 145.7, 143.1, 125.9(4), 125.9(1), 125.6, 117.7, 59.5, 27.7, 9.4. Anal. calcd (%)
for C13H13N5O6: C, 46.57; H, 3.91; N, 20.89. Found: C, 46.72; H, 4.02; N, 20.92. ESI, m/z for
C13H13N5O6: 334.04 [M − H]−.

(5-Amino-4-nitro-1-(4-nitrophenyl)-1H-pyrazol-3-yl)methyl butyrate (5c). Orange oil, yield
0.096 g (80%). Rf 0.27. IR (ν, cm–1): 753, 769, 821, 860, 1012, 1110, 1178, 1290, 1347 (NO2
symm), 1459, 1526, 1598 (NO2 asymm), 1634 (CO), 1705, 1734 (C=O), 3324, 3434 (NH2). 1H
NMR (600 MHz, Acetone-d6): δ = 8.42–8.48 (m, 2H), 7.95–8.01 (m, 2H), 7.36 (br.s, 2H), 5.33
(s, 2H), 2.35 (t, J = 7.4 Hz, 2H), 1.65 (q, J = 7.4 Hz, 2H), 0.95 (t, J = 7.4 Hz, 3H). 13C NMR
(126 MHz, Acetone-d6): δ = 173.1, 148.0, 147.9, 145.7, 143.2, 125.9(5), 125.8(9), 125.7, 59.4,
36.3, 19.1, 13.8. Anal. calcd (%) for C14H15N5O6: C, 48.14; H, 4.33; N, 20.05. Found: C, 48.20;
H, 4.37; N, 20.01. ESI, m/z for C14H15N5O6: 348.05 [M − H]−.

3-(Butoxymethyl)-4-nitro-1-(4-nitrophenyl)-1H-pyrazol-5-amine (5d). Orange oil, yield 0.075 g
(68%). Rf 0.30. IR (ν, cm–1): 694, 753, 770, 820, 860, 1013, 1111, 1172, 1290, 1346 (NO2
symm), 1457, 1525, 1598 (NO2 asymm), 1634 (CO), 1702 (C=O), 3330, 3430 (NH2). 1H NMR
(400 MHz, Acetone-d6): δ = 8.41–8.45 (m, 2H), 7.94–7.99 (m, 2H), 7.29 (br.s, 2H), 4.68 (s, 2H),
3.59 (t, J = 6.5 Hz, 2H), 1.62–1.53 (m, 2H), 1.48–1.32 (m, 2H), 0.89 (t, J = 7.4 Hz, 3H). 13C
NMR (101 MHz, Acetone-d6): δ = 147.9, 147.7(4), 147.6(8), 143.4, 125.9, 125.6, 117.9, 71.3,
65.9, 32.5, 19.9, 14.1. Anal. calcd (%) for C14H17N5O5: C, 50.15; H, 5.11; N, 20.89. Found: C,
50.23; H, 5.17; N, 20.82. ESI,) m/z for C14H17N5O5: 334.08 [M − H]−.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/molecules28217335/s1, Figures S1–S12 (p. 2–7)—copies of NMR
spectra of all synthesized compounds; S13–S14 (p. 8)—the X-ray diffraction data of compound 3;
p. 9–24—computational data; p. 25—references for computational data. Refs. [88–92] are cited in
Supplementary Materials.
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