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Abstract: Thermally assisted occupation density functional theory (TAO-DFT) has been an efficient
electronic structure method for studying the ground-state properties of large electronic systems with
multi-reference character over the past few years. To explore the time-dependent (TD) properties of
electronic systems (e.g., subject to an intense laser pulse), in this work, we propose a real-time (RT)
extension of TAO-DFT, denoted as RT-TAO-DFT. Moreover, we employ RT-TAO-DFT to study the
high-order harmonic generation (HHG) spectra and related TD properties of molecular hydrogen
H2 at the equilibrium and stretched geometries, aligned along the polarization of an intense linearly
polarized laser pulse. The TD properties obtained with RT-TAO-DFT are compared with those
obtained with the widely used time-dependent Kohn–Sham (TDKS) method. In addition, issues
related to the possible spin-symmetry breaking effects in the TD properties are discussed.

Keywords: RT-TAO-DFT; TAO-DFT; multi-reference character; real-time electron dynamics;
time-dependent properties; high-order harmonic generation

1. Introduction

Over the last thirty years, Kohn–Sham density functional theory (KS-DFT) [1] has
been a popular electronic structure method for the ground-state (GS) properties of physical
systems in the presence of static external potentials at zero electronic temperature (θel = 0)
due to its low computational cost and reasonable accuracy [2–5]. Conventional time-
dependent density functional theory (TD-DFT) [6] (also called the time-dependent Kohn–
Sham (TDKS) method, real-time TD-DFT (RT-TD-DFT), or real-time density functional
theory (RT-DFT)), which is the time-dependent (TD) extension of KS-DFT, has been recently
applied to explore the TD and excited-state properties of electronic systems under the
influence of TD external potentials [7–9]. Recently, a frequency-domain formulation of
linear-response TD-DFT (LR-TD-DFT) [10] has also been adopted to obtain excitation
energies (i.e., limited to the weak-field perturbative regime), owing to its computational
efficiency and reasonable accuracy [7–9]. Nevertheless, for the study of TD phenomena or
excitation energies beyond the linear response, conventional TD-DFT [6], which involves
propagating the TDKS equation in the time domain without any restriction to the TD
external potentials, remains a promising method.

In KS-DFT [1], since the exact exchange-correlation (xc) energy functional Exc[ρ], in
terms of the GS density ρ(r), has not been discovered, it remains necessary to adopt density
functional approximations (DFAs) for Exc[ρ] to perform practical calculations [2–5]. The
xc energy functionals based on the frequently adopted DFAs, such as the LDA (local
density approximation) [11,12] and GGAs (generalized gradient approximations) [13], are
computationally efficient for the study of large systems. However, the DFA xc energy
functionals have a few intrinsic shortcomings [2–5] and can yield the following qualitative
errors: the self-interaction error (SIE), non-covalent interaction error (NCIE), and static
correlation error (SCE). Since conventional TD-DFT [6], which usually takes the GS of a
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physical system as the initial state and often employs the GS xc potential (i.e., the functional
derivative of Exc[ρ]) evaluated at the instantaneous density ρ(r, t) in the so-called adiabatic
approximation [7–9], the qualitative errors of Exc[ρ] can also degrade the accuracy of
conventional TD-DFT results [14–17].

These qualitative errors can generally be reduced with the modification of the DFA
functionals. For example, the SIE can be reduced by mixing the Hartree–Fock (HF) exchange
energy into the parent DFA functionals (commonly called hybrid functionals) [18–20]. The
NCIE can be reduced by combining the parent DFA functionals with the dispersion energy
correction (also known as dispersion-corrected functionals) [21,22] or with the second-
order Møller–Plesset (MP2) correlation energy (often called double-hybrid functionals) [23].
The SCE can be reduced by incorporating a fully nonlocal correlation energy component,
such as the RPA (random phase approximation) correlation energy [24,25], into the parent
DFA functionals. Nonetheless, the DFA, dispersion-corrected, hybrid, and double-hybrid
functionals fail to resolve the SCE problem, while the RPA and related functionals are very
demanding in computational expense and hence are impractical for large systems.

To circumvent the SCE problem at low computational cost, thermally assisted occupation
density functional theory (TAO-DFT) [26] (i.e., a density functional theory with fractional
orbital occupations) has been recently developed. Note that TAO-DFT is an electronic
structure method for the GS properties of physical systems at zero electronic temperature
(θel = 0), even though it adopts a reference system of noninteracting electrons at some
fictitious temperature θ. The xc energy functionals developed in KS-DFT can also be used
in TAO-DFT [26–29]. Nonetheless, in strong contrast to KS-DFT, TAO-DFT, even with the
commonly used DFA, dispersion-corrected, and hybrid functionals, can approximately
describe strong static correlation effects, especially when an appropriate value of θ is
chosen [26–28]. Consequently, TAO-DFT is very promising for studying the GS properties
of large systems with strong static correlation effects [30–37]. Other TAO-DFT extensions in-
clude the schemes that determine the system-independent [38] and system-dependent [39]
values of θ, TAO-DFT-based ab initio molecular dynamics (for equilibrium thermodynamic
and dynamical properties) [40], and TAO-DFT-based polarizable continuum model (for
solvation effects) [41].

Within the framework of TAO-DFT, Yeh et al. have recently proposed a frequency-
domain formulation of linear-response time-dependent TAO-DFT [42], denoted as TDTAO-
DFT (or, more precisely, LR-TDTAO-DFT by its inherent linear-response (LR) nature), allowing
excitation energy calculations in the frequency domain (i.e., using Casida’s formulation [10]).
In TDTAO-DFT, the TD effective one-electron potential (see Equations (6) and (B6) of Ref. [42])
is defined with the TD pure state

∣∣ΨTAO(t)
〉

of a noninteracting reference system (also see
Appendix B1 of Ref. [42]). However, the TD density ρ(r, t) (see Equation (5) of Ref. [42]) in
TDTAO-DFT is generally not associated with a TD noninteracting pure state

∣∣ΨTAO(t)
〉

but
associated with a TD noninteracting ensemble (which should be described by a TD density
operator, as will be discussed later). For example, in TDTAO-DFT (with θ 6= 0), at the initial
time t0, the initial density ρ(r, t0) is simply the TAO-DFT GS density ρ(r) (see Equation (1)
of Ref. [42]), which should be associated with a thermal ensemble [26] (i.e., not associated
with a pure state) of noninteracting electrons at a nonvanishing fictitious temperature
(θ 6= 0). Therefore, the underlying assumption of TDTAO-DFT (i.e., that the TD density
ρ(r, t) is assumed to be associated with the TD pure state

∣∣ΨTAO(t)
〉

of a noninteracting
reference system) is generally incorrect, except only for the θ = 0 case (wherein TDTAO-
DFT reduces to conventional TD-DFT [6] or, more precisely, LR-TD-DFT [10] by its inherent
LR nature).

To resolve the aforementioned inconsistency of TDTAO-DFT (especially for θ 6= 0) [42],
in the work, we reformulate the TD extension of TAO-DFT by introducing a new reference
system, consisting of an ensemble of noninteracting electrons moving in a TD local potential.
This real-time (RT) extension of TAO-DFT is denoted as RT-TAO-DFT. Moreover, since
the assumption of a weak perturbation is not required in RT-TAO-DFT, we also employ



Molecules 2023, 28, 7247 3 of 24

RT-TAO-DFT to study strong-field electron dynamics in molecules as well as high-order
harmonic generation (HHG) [43–60].

The rest of this paper is organized as follows. In Section 2, we review TAO-DFT and
discuss closely related electronic structure methods. The formulation of RT-TAO-DFT is
presented in Section 3. In Section 4, we describe the details of our RT-TAO-DFT calculations
for the HHG spectra and related TD properties of molecular hydrogen H2 at the equilibrium
and stretched geometries, aligned along the polarization of an intense linearly polarized
laser pulse. The TD properties computed using RT-TAO-DFT are discussed and compared
with the results of conventional TD-DFT [6]. Moreover, issues related to the possible spin-
symmetry breaking effects in the TD properties are also discussed. Our conclusions are
provided in Section 5.

2. Ground-State Theory: TAO-DFT
2.1. Overview of TAO-DFT

Consider a physical system of N interacting electrons moving in an external potential
vext(r) at zero electronic temperature (θel = 0). In TAO-DFT [26], the GS density ρ(r)
of the physical system is represented by the thermal equilibrium density of a reference
system (called the thermally assisted occupation (TAO) reference system) of noninteracting
electrons in the presence of a local potential vTAO(r) (called the TAO potential) at some
fictitious temperature θ (i.e., the temperature of the TAO reference system). In other words,
ρ(r) is represented by the TAO orbitals {φj(r)} and TAO orbital occupation numbers
(TOONs) { f j} (atomic units (a.u.) are adopted throughout this work):

ρ(r) = ∑
j

f j|φj(r)|2. (1)

Here, f j is the occupation number of the j-th TAO orbital φj(r), given by the Fermi–Dirac
(FD) distribution function

f j = {1 + exp[(εj − µ)/θ]}−1, (2)

where 0 ≤ f j ≤ 1, εj is the energy of the j-th TAO orbital φj(r) and µ is the chemical
potential chosen to conserve N (i.e., the number of electrons):

∑
j
{1 + exp[(εj − µ)/θ]}−1 = N. (3)

On the basis of the Hohenberg–Kohn (HK) theorems [61] for the physical system at θel = 0
and the Mermin theorems [62] for the TAO reference system at the fictitious temper-
ature θ, a set of self-consistent equations (i.e., the TAO equations) that determine the
TAO orbitals {φj(r)}, the TAO orbital energies {εj}, and hence the TOONs { f j} (see
Equations (2) and (3)) and the GS density ρ(r) (see Equation (1)) are given by [26]

ĥTAO(r)φj(r) = εjφj(r). (4)

Here, ĥTAO(r) is the TAO effective one-electron Hamiltonian:

ĥTAO(r) = −
1
2
∇2

r + vTAO(r), (5)

with the TAO potential (i.e., the TAO effective one-electron potential)

vTAO(r) = vext(r) +
δEH[ρ]

δρ(r)
+

δExcθ [ρ]

δρ(r)

= vext(r) + vH(r) + vxcθ(r),
(6)
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where vext(r) is the external potential of the physical system, vH(r) =
δEH[ρ]
δρ(r) =

∫
dr′ ρ(r′)
|r−r′ |

is the Hartree potential (i.e., the functional derivative of the Hartree energy functional
EH[ρ] =

1
2

∫
dr
∫

dr′ ρ(r)ρ(r
′)

|r−r′ | ), and vxcθ(r) =
δExcθ [ρ]

δρ(r) is the xcθ potential, which is the func-
tional derivative of the xcθ energy functional Excθ [ρ] = Exc[ρ] + Eθ [ρ], with Exc[ρ] being the
xc energy functional (as defined in KS-DFT [1]) and Eθ [ρ] being the θ-dependent energy
functional (e.g., see Equation (14) of Ref. [26]).

In TAO-DFT [26], to obtain the GS density ρ(r) (i.e., represented by Equation (1) with
the TAO orbitals {φj(r)} and TOONs { f j}) of the physical system, Equations (1) to (6)
should be solved self-consistently. After the self-consistency is achieved, the GS energy
E[ρ] of the physical system (at θel = 0) is given by

E[ρ] =
∫

dr ρ(r)vext(r) + Aθ
s [{ f j, φj}] + EH[ρ] + Excθ [ρ], (7)

where the first term is the external potential energy, EH[ρ] and Excθ [ρ] are the Hartree
and xcθ energy functionals, respectively, and Aθ

s [{ f j, φj}] is the noninteracting kinetic free
energy at the fictitious temperature θ:

Aθ
s [{ f j, φj}] = Tθ

s [{ f j, φj}] + Eθ
S[{ f j}], (8)

i.e., the sum of the kinetic energy

Tθ
s [{ f j, φj}] = −

1
2 ∑

j
f j

∫
dr φ∗j (r)∇2

r φj(r) (9)

and entropy contribution

Eθ
S[{ f j}] = θ ∑

j
[ f j ln( f j) + (1− f j) ln(1− f j)] (10)

of noninteracting electrons at the fictitious temperature θ, which can be exactly computed
using the TAO orbitals {φj(r)} and TOONs { f j}. Note that, for the special case of θ = 0,
Eθ=0[ρ] = 0 and TAO-DFT (with Excθ [ρ]) [26] reduce to KS-DFT (with Exc[ρ]) [1].

2.2. Density Representation in TAO-DFT

The GS density ρ(r) of a physical system is interacting v-representable (I-VR) as the
exact ρ(r) belongs to a GS wavefunction of an interacting N-electron Hamiltonian for
some external potential vext(r), which can be exactly computed using the full configuration
interaction (FCI) method at the complete basis set limit [63]. Moreover, the exact ρ(r) can
be represented by the natural orbitals {χj(r)} and natural orbital occupation numbers
(NOONs) {nj} [64]:

ρFCI(r) = ∑
j

nj|χj(r)|2, (11)

where the NOONs {nj} satisfy the following conditions,

0 ≤ nj ≤ 1, ∑
j

nj = N. (12)

Nevertheless, in KS-DFT [1], ρ(r) is assumed to be noninteracting pure-state v-
representable (NI-PS-VR) as it belongs to a one-determinantal GS wavefunction of a nonin-
teracting N-electron Hamiltonian (i.e., the Kohn–Sham (KS) Hamiltonian) for some local
potential (i.e., the KS potential) [65–67]. Accordingly, in KS-DFT, ρ(r) is represented by the
occupied KS orbitals {φKS

i (r)}:

ρKS(r) =
N

∑
i=1
|φKS

i (r)|2. (13)
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As has been shown in a number of studies [66–71], there are some reasonable GS densities
(e.g., the GS densities of some electronic systems with strong static correlation effects) that
are not NI-PS-VR. Apparently, these GS densities cannot be obtained with KS-DFT even
adopting the exact xc energy functional Exc[ρ].

On the other hand, in TAO-DFT [26], ρ(r) (given by Equation (1)) is assumed to be
noninteracting thermal ensemble v-representable (NI-TE-VR) as it belongs to a thermal
ensemble of a reference system of noninteracting electrons in the presence of a local potential
(i.e., the TAO potential) at some fictitious temperature θ. Consequently, in TAO-DFT, ρ(r)
is represented by the TAO orbitals {φj(r)} and TOONs { f j}:

ρTAO(r) = ∑
j

f j|φj(r)|2. (14)

where the TOONs { f j} (given by the FD distribution function) satisfy the following conditions,

0 ≤ f j ≤ 1, ∑
j

f j = N. (15)

Owing to the similar expressions of the TAO-DFT GS density ρTAO(r) (see Equation (14))
and the exact GS density ρFCI(r) (see Equation (11)), the fictitious temperature θ in TAO-
DFT can be so chosen that the distribution of TOONs is close to the distribution of the
exact NOONs, which is closely related to the stability (i.e., the single-reference (SR)/multi-
reference (MR) character) of the GS of an electronic system [26]. Accordingly, the exact
GS density is more likely to be NI-TE-VR with this choice of θ. In contrast to KS-DFT (i.e.,
TAO-DFT with θ = 0), TAO-DFT has an extra degree of freedom in choosing the θ value to
improve the GS density representability.

2.3. Approximate Energy Functionals and Fictitious Temperatures in TAO-DFT

Since the exact xcθ energy functional Excθ [ρ] (i.e., one of the key ingredients in TAO-
DFT), in terms of the GS density ρ(r), has not been known, it remains necessary to employ
DFAs for Excθ [ρ] to perform practical calculations using TAO-DFT. Conventional DFAs,
such as the LDA and GGAs, for Excθ [ρ] (i.e., the DFA xcθ energy functional EDFA

xcθ [ρ]) can be
adopted [26,27]. In addition to TAO-DFA (i.e., TAO-DFT with the DFA functional EDFA

xcθ [ρ]),
TAO-DFT with the exact exchange [28] and related hybrid functionals [28,29] may also
be employed.

For the GS of an electronic system, the fictitious temperature θ of a given energy
functional in TAO-DFT should be so selected that the distribution of TOONs simulates the
distribution of the exact NOONs. In this situation, the static correlation associated with
the electronic GS can be properly captured by the entropy contribution (see Equation (10))
in TAO-DFT [26]. In other words, the optimal θ should be closely related to the SR/MR
character of the electronic GS. For systems with electronic ground states possessing SR
character (i.e., SR systems), all the NOONs should be close to either 0 (fully empty) or
1 (fully occupied), and, hence, the optimal θ values in TAO-DFT should be sufficiently small
(but nonvanishing for real electronic systems [38]). However, for systems with electronic
ground states possessing MR character (i.e., MR systems), the distributions of NOONs
(and hence the optimal θ values) can be highly system-dependent. While it remains very
challenging to devise a scheme that always yields the best θ of each system for a given
energy functional in TAO-DFT, some progress has been achieved in recent years.

For a given energy functional in TAO-DFT, if the optimal θ values of electronic sys-
tems can be kept within a narrow range of values, it would be very useful to define
an optimal system-independent θ value. Recently, TAO-DFT with the optimal system-
independent θ scheme [26–28,38], which is as efficient as KS-DFT (i.e., TAO-DFT with
θ = 0) in computational cost, can be comparable to KS-DFT in performance for various SR
systems [26–28,38,41], and can outperform KS-DFT for several MR systems [26–28,30–38,40,41].
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To improve the optimal system-independent θ scheme, a self-consistent scheme that deter-
mines the optimal θ values of electronic systems has been recently proposed [39].

2.4. Comparison of KS-DFT, TAO-DFT, and FT-DFT

Here, we compare three generally different electronic structure methods (see Table 1):
KS-DFT [1], TAO-DFT [26], and FT-DFT (finite-temperature density functional theory, also
called the Mermin–Kohn–Sham (MKS) method) [1,62], each of which employs a reference
system of noninteracting electrons in the presence of a local potential at some fictitious
temperature θ.

Table 1. Comparison of KS-DFT [1], TAO-DFT [26], and FT-DFT [1,62].

KS-DFT TAO-DFT FT-DFT

Electronic Temperature θel 0 0 ≥0
Fictitious Temperature θ 0 ≥0 ≥0
Is θ = θel assumed? Yes No Yes
Electronic Property GS GS Thermal Equilibrium
Electron Density GS GS Thermal Equilibrium
Density Representation NI-PS-VR NI-TE-VR NI-TE-VR
Universal Functional Hohenberg–Kohn Hohenberg–Kohn Mermin
Approximate Functional Exc[ρ] Excθ [ρ] Fθel

xc [ρ
θel ]

Both KS-DFT and TAO-DFT are electronic structure methods for the GS properties of
physical systems at zero electronic temperature (θel = 0). Note that θ ≡ θel = 0 is assumed
in KS-DFT, while the fictitious temperature (θ ≥ 0) can be different from the electronic
temperature (θel = 0) in TAO-DFT. Accordingly, the GS density ρ(r) of a physical system at
θel = 0 is assumed to be NI-PS-VR in KS-DFT and NI-TE-VR in TAO-DFT. Moreover, in
KS-DFT, the HK universal functional (i.e., the sum of the interacting kinetic energy and the
electron–electron repulsion energy at θel = 0) [61], which is a functional of the GS density
ρ(r), is given by

FHK[ρ] = Ts[{φKS
i }] + EH[ρ] + Exc[ρ], (16)

where Ts[{φKS
i }] (exactly computed using the occupied KS orbitals {φKS

i (r)}) is the nonin-
teracting kinetic energy at zero fictitious temperature (θ = 0), and Exc[ρ] is the xc energy
functional, which needs to be approximated for practical KS-DFT calculations. By contrast,
in TAO-DFT, the HK universal functional [61], which is a functional of the GS density ρ(r),
is expressed as

FHK[ρ] = Aθ
s [{ f j, φj}] + EH[ρ] + Excθ [ρ], (17)

where Aθ
s [{ f j, φj}] (exactly computed using the TAO orbitals {φj(r)} and TOONs { f j}) is

the noninteracting kinetic free energy at the fictitious temperature θ, and Excθ [ρ] is the xcθ
energy functional, which needs to be approximated for practical TAO-DFT calculations.
Note that TAO-DFT (with θ = 0) reduces to KS-DFT.

On the other hand, FT-DFT (i.e., the MKS method) is an electronic structure method
for the thermal equilibrium properties of physical systems at finite electronic temperatures
(θel ≥ 0), and θ ≡ θel is assumed in FT-DFT. Therefore, the thermal equilibrium density
ρθel (r) of a physical system at θel is assumed to be NI-TE-VR in FT-DFT. Moreover, in
FT-DFT, the Mermin (M) universal functional (i.e., the sum of the interacting kinetic free
energy and the electron–electron repulsion energy at θel) [62], which is a θel-dependent
functional of the thermal equilibrium density ρθel (r), is given by

Fθel
M [ρθel ] = Aθel

s [{ f MKS
k , φMKS

k }] + EH[ρ
θel ] + Fθel

xc [ρ
θel ], (18)

where Aθel
s [{ f MKS

k , φMKS
k }] (exactly computed using the MKS orbitals {φMKS

k (r)} and MKS
orbital occupation numbers { f MKS

k }) are the noninteracting kinetic free energy at the

fictitious temperature θ ≡ θel , and Fθel
xc [ρ

θel ] is the xc free energy functional, which needs
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to be approximated for practical FT-DFT calculations. Note that FT-DFT (with θel = 0)
reduces to KS-DFT.

Consequently, for the GS properties of physical systems at θel = 0, FT-DFT reduces to
KS-DFT, while TAO-DFT (with θ 6= 0) can be very different from KS-DFT (especially for
MR systems) [26,38,41].

2.5. TAO-DFT-Related Methods
2.5.1. TAO-DFT with Excθ [ρ] ≈ Exc[ρ]

Here, we compare two approximate methods (see Table 2) that are closely related to
TAO-DFT [26] and FT-DFT (i.e., the MKS method) [1,62].

Table 2. Comparison of TAO-DFT (with Excθ [ρ] ≈ Exc[ρ]) [26] and FT-DFT (with Fθel
xc [ρ

θel ] ≈
Exc[ρθel ]) [1,62].

TAO-DFT (with Excθ[ρ] ≈ Exc[ρ]) FT-DFT (with Fθel
xc [ρθel ] ≈ Exc[ρθel ])

Electronic Temperature θel 0 ≥0
Fictitious Temperature θ ≥0 ≥0
Is θ = θel assumed? No Yes
Electronic Property GS Thermal Equilibrium
Electron Density GS Thermal Equilibrium
Density Representation NI-TE-VR NI-TE-VR
Approximate Functional Exc[ρ] Exc[ρθel ]

As mentioned previously, TAO-DFT is an electronic structure method for the GS
properties of physical systems at zero electronic temperature (θel = 0). In TAO-DFT, the
xcθ energy functional Excθ [ρ] = Exc[ρ] + Eθ [ρ]. At zero fictitious temperature (θ = 0),
Eθ=0[ρ] = 0 and hence Excθ [ρ] = Exc[ρ]. At a sufficiently small fictitious temperature
(θ ≈ 0), the magnitude of Eθ≈0[ρ] should remain small compared to that of Exc[ρ], and
hence the approximation Excθ [ρ] ≈ Exc[ρ] can be reasonably justified. Clearly, TAO-DFT
with Excθ [ρ] ≈ Exc[ρ] (also called TAO-DFT without Eθ [ρ]) is an approximate TAO-DFT
method (good for θ ≈ 0), which may be adopted to describe the strong static correlation
effects of some GS systems (wherever θ ≈ 0 can be an appropriate fictitious temperature)
at θel = 0.

On the other hand, FT-DFT is an electronic structure method for the thermal equilibrium
properties of physical systems at finite electronic temperatures (θel ≥ 0), wherein θ ≡ θel is
assumed. In FT-DFT, at zero electronic temperature (θel = 0), Fθel=0

xc [ρθel=0] = Exc[ρ]. At a suffi-
ciently small electronic temperature (θel ≈ 0), the approximation
Fθel

xc [ρ
θel ] ≈ Exc[ρθel ] can be reasonably justified. Apparently, FT-DFT with Fθel

xc [ρ
θel ] ≈ Exc[ρθel ]

is an approximate FT-DFT method (good for θ ≡ θel ≈ 0), which may be used to study the
temperature effects of thermal equilibrium systems at θel ≈ 0 [72,73].

According to their mathematical expressions, TAO-DFT with Excθ [ρ] ≈ Exc[ρ] [26]
is strikingly similar to FT-DFT with Fθel

xc [ρ
θel ] ≈ Exc[ρθel ] [1,62]. However, owing to their

distinctly different physical meanings, one can easily distinguish the two approximate
methods simply based on the electronic properties computed. For example, for the GS
properties of physical systems at θel = 0, FT-DFT with Fθel

xc [ρ
θel ] ≈ Exc[ρθel ] reduces

to KS-DFT with Exc[ρ], while TAO-DFT with Excθ [ρ] ≈ Exc[ρ] at a nonvanishing ficti-
tious temperature (θ 6= 0) can be very different from KS-DFT with Exc[ρ] (especially for
MR systems) [26,38,41]. Therefore, a number of recent studies on the GS properties of
physical systems at θel = 0 [74–81] have actually been performed using TAO-DFT with
Excθ [ρ] ≈ Exc[ρ] [26] rather than FT-DFT with Fθel

xc [ρ
θel ] ≈ Exc[ρθel ] (which, in fact, should

reduce to KS-DFT with Exc[ρ] at θel = 0) [1,62].
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2.5.2. KS-DFA with the rTAO Energy Correction

On the basis of the TAO-DFA (with some fictitious temperature θ) energy expression [26,27],
Yeh, Yang, and Hsu have recently proposed a post-KS energy correction, called the rTAO
energy correction [82], which is a θ-dependent energy correction evaluated with the KS-
DFA (i.e., KS-DFT with the DFA xc energy functional) orbitals. Owing to the post-KS nature,
for clarity, we denote this method as the KS-DFA+rTAO method.

For a small fictitious temperature (θ . 40 mhartree), the KS-DFA+rTAO method has
been shown to approximately reproduce the TAO-DFA results for some selected electronic
properties [82]. This may in part be due to the post-KS nature (i.e., good for small θ) and a
very limited amount of test data. For a considerably large θ (e.g., the optimal θ of TAO-DFT
with the exact exchange for the dissociation of molecular hydrogen H2 [28,38]) or for other
electronic properties (e.g., atomization energies), the results obtained with this method can
be very different from those obtained with TAO-DFT.

More importantly, the GS density obtained with the KS-DFA+rTAO method (with any
value of θ) is the same as the KS-DFA GS density (i.e., NI-PS-VR). In other words, some
reasonable non-NI-PS-VR GS densities (e.g., the GS densities of some MR systems) cannot
be obtained with KS-DFA and the KS-DFA+rTAO method (with any value of θ) [66–71].

In particular, whenever the spin-symmetry constraint [3,4,26,83] on the singlet GS
density of an electronic system is violated with KS-DFA (which can commonly happen
for MR systems), it must also be violated with the KS-DFA+rTAO method (with any
value of θ). In such a situation, the spin-unrestricted KS-DFA/KS-DFA+rTAO results
can be very different from the corresponding spin-restricted KS-DFA/KS-DFA+rTAO
results, yielding unphysical spin-symmetry breaking effects in the spin-unrestricted KS-
DFA/KS-DFA+rTAO calculations. By contrast, the spin-symmetry breaking issues can be
greatly resolved by TAO-DFA (with an appropriate θ) [26–28,30,33,38–41], highlighting the
significance of the GS density representation in TAO-DFT.

3. Real-Time Theory: RT-TAO-DFT
3.1. RT-TAO Equation

Consider a physical system of N interacting electrons moving in a TD external potential
vext(r, t). The Hamiltonian operator of the physical system is given by

Ĥ(t) = T̂ + V̂ee + v̂ext(t), (19)

containing the operators of the kinetic energy

T̂ = −1
2

N

∑
i=1
∇2

ri
, (20)

the electron–electron interaction

V̂ee =
N

∑
i=1

N

∑
j>i

1
|ri − rj|

, (21)

and the TD external potential

v̂ext(t) =
N

∑
i=1

vext(ri, t). (22)

Let
∣∣Ψ(t)

〉
be the TD state of the physical system. For most TD cases of physical interest,

in this work, the time propagation is assumed to start from the GS
∣∣ΨGS

〉
(i.e., the lowest

energy eigenstate of Ĥ(t0), which is a stationary state) of the unperturbed physical system
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at time t = t0, and
∣∣ΨGS

〉
is assumed to be non-degenerate. Accordingly, the TD state∣∣Ψ(t)

〉
of the physical system is a solution of the TD Schrödinger equation (TDSE):

i
∂

∂t
∣∣Ψ(t)

〉
= Ĥ(t)

∣∣Ψ(t)
〉
, (23)

with the initial state ∣∣Ψ(t0)
〉
=
∣∣ΨGS

〉
. (24)

From the TD state
∣∣Ψ(t)

〉
, the TD density ρ(r, t) of the physical system can be determined by

ρ(r, t) =
〈

Ψ(t)
∣∣∣∣ρ̂(r)∣∣∣∣Ψ(t)

〉
, (25)

where ρ̂(r) = ∑N
i=1 δ(r − ri) is the number density operator. In particular, the initial

density ρ(r, t0) of the physical system is given by the GS density ρGS(r) of the unperturbed
physical system:

ρ(r, t0) = ρGS(r) =
〈

ΨGS

∣∣∣∣ρ̂(r)∣∣∣∣ΨGS

〉
. (26)

According to the Runge–Gross (RG) theorems for the physical system (i.e., consisting
of a TD pure state) [6], the TD state

∣∣Ψ(t)
〉

is a functional of the TD density ρ(r, t) (i.e.,
formally depending on the density ρ(r, t′) at all previous times t′ ≤ t) and the initial state∣∣Ψ(t0)

〉
, i.e.,

∣∣Ψ(t)
〉
=
∣∣Ψ[ρ,

∣∣Ψ(t0)
〉
](t)
〉
. In this work, the initial state

∣∣Ψ(t0)
〉
=
∣∣ΨGS

〉
is

a functional of the initial density ρ(r, t0) = ρGS(r) based on the HK theorems [61]. Since
the dependence of initial state

∣∣Ψ(t0)
〉

is implicitly included in the TD density ρ(r, t), for
brevity,

∣∣Ψ[ρ,
∣∣Ψ(t0)

〉
](t)
〉

is denoted as
∣∣Ψ[ρ](t)

〉
hereafter. Now, we define the action

functional of the physical system:

A[ρ] =
∫ t1

t0

dt
〈

Ψ[ρ](t)
∣∣∣∣(i

∂

∂t
− Ĥ(t)

)∣∣∣∣Ψ[ρ](t)
〉

=
∫ t1

t0

dt
〈

Ψ[ρ](t)
∣∣∣∣(i

∂

∂t
− T̂ − V̂ee − v̂ext(t)

)∣∣∣∣Ψ[ρ](t)
〉

= B[ρ]−
∫ t1

t0

dt
∫

dr ρ(r, t)vext(r, t),

(27)

where B[ρ] is a universal functional of the TD density ρ(r, t):

B[ρ] =
∫ t1

t0

dt
〈

Ψ[ρ](t)
∣∣∣∣(i

∂

∂t
− T̂ − V̂ee

)∣∣∣∣Ψ[ρ](t)
〉

. (28)

Note that the action functional A[ρ] has a stationary point at the exact TD density ρ(r, t) of
the physical system, given by the Euler equation:

δA[ρ]

δρ(r, t)
=

δB[ρ]
δρ(r, t)

− vext(r, t) = 0. (29)

In order to develop an RT method compatible with TAO-DFT [26], we introduce the
RT-TAO reference system, consisting of an ensemble of noninteracting electrons moving in
a TD local potential vs(r, t). The RT-TAO reference system can interchange electrons with
its environment, and, hence, the electron number Ne in the RT-TAO reference system can be
varied from 0 to ∞. The Hamiltonian operator of the RT-TAO reference system is given by

Ĥs(t) = T̂s + v̂s(t), (30)

containing the operators of the kinetic energy T̂s and the TD local potential v̂s(t).
At time t = t0, the time propagation starts from the grand canonical ensemble (i.e.,

a stationary ensemble) of the TAO reference system at some fictitious temperature θ,
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obtained with TAO-DFT [26]. Therefore, the initial density operator Γ̂s(t0) of the RT-TAO
reference system is given by the TAO density operator Γ̂TAO (i.e., the grand canonical
density operator [84] of the TAO reference system at the fictitious temperature θ):

Γ̂s(t0) = Γ̂TAO = ∑
Ne

∑
n

wNe ,n
∣∣Φ0

Ne ,n
〉〈

Φ0
Ne ,n
∣∣ (31)

with the equilibrium statistical weights

wNe ,n =
exp[−(ENe ,n − µNe)/θ]

∑Ne ∑n exp[−(ENe ,n − µNe)/θ]
, (32)

satisfying the following conditions,

0 ≤ wNe ,n ≤ 1, ∑
Ne

∑
n

wNe ,n = 1. (33)

Here,
∣∣Φ0

Ne ,n
〉

denotes the n-th Ne-electron eigenstate of Ĥs(t0) = ĤTAO (i.e., the Hamilto-
nian operator of the TAO reference system) and ENe ,n the corresponding energy eigenvalue.

For t > t0, the noninteracting ensemble of the RT-TAO reference system is generally
non-stationary due to the presence of the TD local potential vs(r, t). According to the TDSE

i
∂

∂t
∣∣ΦNe ,n(t)

〉
= Ĥs(t)

∣∣ΦNe ,n(t)
〉
, (34)

with the initial state
∣∣ΦNe ,n(t0)

〉
=
∣∣Φ0

Ne ,n
〉
, we know how the TD state

∣∣ΦNe ,n(t)
〉

evolves
in time. Therefore, the TD noninteracting ensemble of the RT-TAO reference system can be
properly defined by the following TD density operator Γ̂s(t):

Γ̂s(t) = ∑
Ne

∑
n

wNe ,n
∣∣ΦNe ,n(t)

〉〈
ΦNe ,n(t)

∣∣, (35)

where the statistical weights wNe ,n, which are assumed to be time-independent, are given
by Equation (32), i.e., the initial statistical weights. Note that the TD density operator Γ̂s(t)
of the RT-TAO reference system is a solution of the Liouville–von Neumann equation:

i
∂

∂t
Γ̂s(t) = [Ĥs(t), Γ̂s(t)], (36)

with the initial density operator Γ̂s(t0) = Γ̂TAO (given by Equation (31)). From the TD
density operator Γ̂s(t), the TD density ρs(r, t) of the RT-TAO reference system can be
determined by

ρs(r, t) = Tr
{

Γ̂s(t)ρ̂s(r)
}

= ∑
Ne

∑
n

wNe ,n

〈
ΦNe ,n(t)

∣∣∣∣ρ̂s(r)
∣∣∣∣ΦNe ,n(t)

〉
, (37)

where ρ̂s(r) is the number density operator [84]. In particular, the initial density ρs(r, t0)
of the RT-TAO reference system is given by the thermal equilibrium density ρTAO(r) (see
Equation (14)) of the TAO reference system [26], which is the same as the GS density ρGS(r)
of the unperturbed physical system (note that ρGS(r) is assumed to be NI-TE-VR with this
θ) and hence the initial density ρ(r, t0) of the physical system (see Equation (26)):

ρs(r, t0) = ρTAO(r) = Tr
{

Γ̂TAOρ̂s(r)
}

= ∑
Ne

∑
n

wNe ,n

〈
Φ0

Ne ,n

∣∣∣∣ρ̂s(r)
∣∣∣∣Φ0

Ne ,n

〉
= ρGS(r) = ρ(r, t0).

(38)

Here, we seek vs(r, t) that yields the same solution ρs(r, t) = ρ(r, t) for t ≥ t0. Ac-
cording to the Li–Tong (LT) theorems for the RT-TAO reference system (i.e., consisting of
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a TD noninteracting ensemble) [85], the TD density operator Γ̂s(t) is a functional of the
TD density ρs(r, t) (i.e., formally depending on the density ρs(r, t′) at all previous times
t′ ≤ t) and the initial density operator Γ̂s(t0), i.e., Γ̂s(t) = Γ̂s[ρs, Γ̂s(t0)](t). In this work,
the initial density operator Γ̂s(t0) = Γ̂TAO (see Equation (31)) is a functional of the initial
density ρs(r, t0) = ρTAO(r) (see Equation (14)) based on the Mermin theorems [62]. Since
the dependence of initial density operator Γ̂s(t0) is implicitly included in the TD density
ρs(r, t), for brevity, Γ̂s[ρs, Γ̂s(t0)](t) is denoted as Γ̂s[ρs](t) hereafter. Now, we define the
action functional of the RT-TAO reference system:

As[ρs] =
∫ t1

t0

dt Tr
{

Γ̂s[ρs](t)
(

i
∂

∂t
− Ĥs(t)

)}
=
∫ t1

t0

dt Tr
{

Γ̂s[ρs](t)
(

i
∂

∂t
− T̂s − v̂s(t)

)}
= Bs[ρs]−

∫ t1

t0

dt
∫

dr ρs(r, t)vs(r, t),

(39)

where Bs[ρs] is a universal functional of the TD density ρs(r, t):

Bs[ρs] =
∫ t1

t0

dt Tr
{

Γ̂s[ρs](t)
(

i
∂

∂t
− T̂s

)}
(40)

Note that the action functional As[ρs] has a stationary point at the exact TD density ρs(r, t)
of the RT-TAO reference system, given by the Euler equation:

δAs[ρs]

δρs(r, t)
=

δBs[ρs]

δρs(r, t)
− vs(r, t) = 0. (41)

In RT-TAO-DFT, the universal functional B[ρ] (given by Equation (28)) is partitioned as

B[ρ] = Bs[ρ]− AH[ρ]− Axcθ [ρ], (42)

where the universal functional Bs[ρ] is given by Equation (40), AH[ρ] is the Hartree ac-
tion functional:

AH[ρ] =
1
2

∫ t1

t0

dt
∫

dr
∫

dr′
ρ(r, t)ρ(r′, t)
|r− r′| , (43)

and Axcθ [ρ] is the xcθ action functional:

Axcθ [ρ] ≡ Bs[ρ]− B[ρ]− AH[ρ], (44)

which is a universal functional of the TD density ρ(r, t). Applying Equation (42) to
Equation (29), we obtain

δBs[ρ]

δρ(r, t)
− δAH[ρ]

δρ(r, t)
− δAxcθ [ρ]

δρ(r, t)
− vext(r, t) = 0. (45)

Comparing Equation (41) with Equation (45) shows that the same solution ρs(r, t) = ρ(r, t)
can be obtained if we choose the TD effective one-electron potential vs(r, t) (up to a purely
TD function C(t)) of the RT-TAO reference system as

vs(r, t) = vext(r, t) +
δAH[ρ]

δρ(r, t)
+

δAxcθ [ρ]

δρ(r, t)

= vext(r, t) + vH(r, t) + vxcθ(r, t),
(46)

where vext(r, t) is the TD external potential of the physical system, vH(r, t) = δAH[ρ]
δρ(r,t) =∫

dr′ ρ(r
′ ,t)

|r−r′ | is the TD Hartree potential, and vxcθ(r, t) = δAxcθ [ρ]
δρ(r,t) is the TD xcθ potential.
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Since the RT-TAO reference system consists of a TD noninteracting ensemble, the
Hamiltonian Ĥs(t) (see Equation (30)) is separable, with the RT-TAO effective
one-electron Hamiltonian

ĥs(r, t) = −1
2
∇2

r + vs(r, t), (47)

where the TD effective one-electron potential vs(r, t) (denoted as the RT-TAO potential)
is given by Equation (46). The RT-TAO orbitals {φj(r, t)} evolve in time according to the
effective one-electron TDSE (denoted as the RT-TAO equation):

i
∂

∂t
φj(r, t) = ĥs(r, t)φj(r, t), (48)

with
φj(r, t0) = φ0

j (r), (49)

i.e., the initial j-th RT-TAO orbital φj(r, t0) is given by the j-th TAO orbital φ0
j (r) (the j-th

energy eigenfunction of ĥs(r, t0) = ĥTAO(r) (see Equation (5)), associated with the GS of the
unperturbed physical system) [26]. The TD density ρ(r, t) of the physical system, which is
the same as the TD density ρs(r, t) (given by Equation (37)) of the RT-TAO reference system,
can be computed using [84]

ρ(r, t) = ρs(r, t) = ∑
j

f j|φj(r, t)|2, (50)

where the occupation number f j of the j-th RT-TAO orbital φj(r, t), which is time-independent,
is given by Equation (2), i.e., its initial occupation number [26], also satisfying the conditions
0 ≤ f j ≤ 1 and ∑j f j = N.

For the special case of θ = 0, RT-TAO-DFT (with the xcθ action functional Axcθ [ρ])
reduces to conventional TD-DFT (with the xc action functional Axc[ρ]) [6], providing that,
at time t = t0, the initial state of the physical system is the non-degenerate GS of the
unperturbed physical system.

Here, we discuss the representation of the TD density ρ(r, t) of a physical system in
conventional TD-DFT [6] and RT-TAO-DFT. In conventional TD-DFT, ρ(r, t) is assumed
to be TD noninteracting pure-state v-representable (TD-NI-PS-VR) as it belongs to a TD
one-determinantal wavefunction of a noninteracting N-electron Hamiltonian for some TD
local potential. By contrast, in RT-TAO-DFT, ρ(r, t) (given by Equation (50)) is assumed
to be TD noninteracting ensemble v-representable (TD-NI-E-VR) as it belongs to a TD
noninteracting ensemble (described by a TD density operator; e.g., see Equation (35)) in the
presence of a TD local potential (i.e., the RT-TAO potential).

In RT-TAO-DFT, since we specify the initial state
∣∣Ψ(t0)

〉
=
∣∣ΨGS

〉
of the physical

system and the initial density operator Γ̂s(t0) = Γ̂TAO of the RT-TAO reference system, the
two conditions (i) the same initial density ρ(r, t0) = ρs(r, t0) and (ii) the same initial time
derivative of the density ∂

∂t ρ(r, t)
∣∣
t=t0

= ∂
∂t ρs(r, t)

∣∣
t=t0

= 0 can be satisfied for the physical
and RT-TAO reference systems, providing that the GS density ρGS(r) of the unperturbed
physical system is NI-TE-VR with a given value of θ (see Equation (38)). Note that condi-
tions (i) and (ii), which ensure the existence of TD-NI-PS-VR densities [86], may also be the
conditions for the existence of TD-NI-E-VR densities [87].

In particular, condition (i) highlights the significance of the initial density representabil-
ity or the GS density representability (for most TD cases of physical interest, the initial state
is chosen as the GS of the unperturbed physical system). For an MR system, condition (i)
can be violated with conventional TD-DFT since the corresponding GS theory, i.e., KS-DFT,
can suffer from the aforementioned issues related to the GS density representability [66–71]
and the spin-symmetry constraint [3,4,26,83]. By contrast, these issues can be greatly re-
solved by TAO-DFT (i.e., the underlying GS theory of RT-TAO-DFT) [26–28,30,33,38–41]
when an appropriate θ is chosen.
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3.2. Matrix Representation

In RT-TAO-DFT, the j-th RT-TAO orbital φj(r, t) can be expanded in the orthonormal
one-electron basis {φ0

p(r)}, spanned by the GS TAO orbitals (i.e., the TAO orbitals associated
with the GS of the unperturbed physical system) [26]:

φj(r, t) = ∑
p

Cpj(t)φ0
p(r), (51)

where {Cpj(t)} are the TD expansion coefficients. Accordingly, the TD density ρ(r, t) (see
Equation (50)) can be expressed as

ρ(r, t) = ∑
pq

Ppq(t)φ0
p(r)φ

0∗
q (r), (52)

where P(t) is the one-electron density matrix at time t, with matrix elements

Ppq(t) = ∑
j

f jCpj(t)C∗qj(t). (53)

Moreover, at time t, F(t) is the RT-TAO matrix (commonly known as the Fock matrix),
which is the matrix representation of the RT-TAO effective one-electron Hamiltonian ĥs(r, t)
(see Equation (47)), with matrix elements

Fpq(t) =
∫

dr φ0∗
p (r)ĥs(r, t)φ0

q(r). (54)

In the orthonormal one-electron basis {φ0
p(r)}, the RT-TAO equation (given by

Equation (48)) can be reformulated in terms of the TD one-electron density matrix P(t) [8]:

i
d
dt

P(t) = [F(t), P(t)]. (55)

As the time propagation is assumed to start from the GS of the unperturbed physical system
at time t = 0 (without loss of generality, the initial time t0 ≡ 0 is assigned hereafter), the
initial one-electron density matrix is given by

Ppq(0) = fpδpq, (56)

and the initial RT-TAO matrix is given by

Fpq(0) = εpδpq, (57)

where fp and εp are the occupation number and energy, respectively, of the p-th GS TAO
orbital φ0

p(r) [26].
The formal solution of RT-TAO equation (see Equation (55)) for the TD one-electron

density matrix P(t) is given by [60,88,89]

P(t) = U(t, 0)P(0)U†(t, 0). (58)

Here, U(tb, ta) is a unitary time propagator from ta to tb:

U(tb, ta) = T̂ exp
[
− i

∫ tb

ta
dt′ F(t′)

]
, (59)

where T̂ denotes time ordering. However, since F(ta) does not necessarily commute with
F(tb) for ta 6= tb (see Equation (59)), it remains challenging to obtain P(t) directly from P(0)
(see Equation (58)) for a long time interval [0, t] in RT-TAO-DFT.



Molecules 2023, 28, 7247 14 of 24

In practical calculations, to reduce the error in the propagation for a long time in-
terval [0, t], U(t, 0) is commonly split into a product of multiple time propagators, each
corresponding to a small time step ∆t:

U(t, 0) =
m−1

∏
n=0

U(tn+1, tn), (60)

where tn = n∆t denotes the value of t at the n-th time step, noting that t0 = 0 and
tm = m∆t = t. U(tn+1, tn) is the time propagator from tn to tn+1 = tn + ∆t, given by

U(tn+1, tn) = T̂ exp
[
− i

∫ tn+∆t

tn
dt′ F(t′)

]
, (61)

which takes P(tn) to P(tn+1):

P(tn+1) = U(tn+1, tn)P(tn)U†(tn+1, tn). (62)

We denote Un = U(tn+1, tn) and Pn = P(tn) for brevity and apply Equation (60) to
Equation (58). Accordingly, the density matrix Pm = P(tm) = P(t) can be obtained from
the initial density matrix P0 = P(t0) = P(0) via the following expression:

Pm =

( m−1

∏
n=0

Un

)
P0

( m−1

∏
n=0

Un

)†

= Um−1Um−2 · · ·U1U0P0U†
0U†

1 · · ·U†
m−2U†

m−1. (63)

For a sufficiently small time step ∆t, F(tn) remains nearly commutative with F(tn + ∆t),
and, hence, Un = U(tn+1, tn) (see Equation (61)) can be computed without considering the
time ordering. Note, however, that the exact time-ordered propagator can only be obtained
in the limit of an infinitesimal time step (i.e., ∆t→ 0).

Recently, various algorithms [60,88,89] have been developed for the numerical con-
struction of the time propagation of TDKS equation [6], which may also be adopted for the
time propagation of RT-TAO equation.

In short, it takes the following key steps to run an RT-TAO-DFT calculation for de-
scribing the time evolution of the electron density following a perturbation:

• Construct the initial one-electron density matrix P(0) (see Equation (56)) and the initial
RT-TAO matrix F(0) (see Equation (57)) for the GS of the unperturbed physical system
at time t = 0 using TAO-DFT (i.e., the respective GS theory).

• Apply the TD field to the physical system for t > 0, and propagate the one-electron
density matrix P(t) and the RT-TAO matrix F(t) in the time domain, according to the
RT-TAO equation (given by the matrix representation, e.g., see Equation (55)).

• Post-process the resulting TD observables (electron density, dipole moment, etc.).

4. HHG Spectra from RT-TAO-DFT

HHG from an electronic system (e.g., an atom or molecule) is a nonlinear optical
process driven by an intense laser pulse, wherein the laser frequency can be converted into
its integer multiples [43–60]. HHG has recently attracted much attention since it can be
used to explore the structure and dynamics of electronic systems and chemical reactions on
a femtosecond timescale. In addition, HHG can be employed to generate attosecond pulse
trains as well as individual attosecond pulses [45,46].

HHG can be qualitatively described by the semiclassical three-step model [43,44].
First, an electron tunnels out from an electronic system in an intense laser field (i.e., tunnel
ionization). Second, the electron is driven away from or back to the parent ion by the laser
field. Finally, the electron recombines with the parent ion, emitting a high-energy photon.

In this work, we perform RT-TAO-DFT calculations to explicitly obtain the HHG
spectra and related TD properties of molecular hydrogen H2 at the equilibrium and
stretched geometries:



Molecules 2023, 28, 7247 15 of 24

• H2 with an equilibrium bond length of 1.45 bohr (≈0.767 Å).
• H2 with a stretched bond length of 3.78 bohr (≈2.00 Å).

Here, the nuclei of H2 are positioned along the z-axis (i.e., the laser polarization) with the
center of mass being located at the origin.

To obtain the HHG spectrum, the electronic system H2, which starts from the GS at
time t = 0, experiences an intense laser pulse for t > 0. In order to mimic the commonly
used Ti:sapphire laser [90], the strong-field interaction is generated by a laser pulse with an
oscillating electric field linearly polarized along the z-axis (see Figure 1):

vlaser(r, t) = zA0 cos2
[

π

2σp
(t− σp)

]
cos[ω0(t− σp)]. (64)

Here, the interaction with the electric field is treated in the dipole approximation and
the length gauge [91]. The electric-field amplitude of the laser pulse A0 = 0.0534 a.u.
(corresponding to the peak intensity I0 ≈ 1× 1014 W/cm2), the laser frequency (also called
the fundamental frequency) ω0 = 1.5498 eV (corresponding to the wavelength λ0 ≈ 800 nm),
and σp = 500 a.u. (≈12.1 fs) are adopted.

0 200 400 600 800 1000
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Time (a.u.)

El
ec

tr
ic

Fi
el

d
(a

.u
.)

Figure 1. Electric field of the laser pulse adopted.

In the HHG process, the electron released by tunnel ionization can travel far away
from the center of the electronic system H2. To capture strong-field ionization process and
to remove artificial reflections induced by the finite extent of Gaussian basis set (which
will be adopted to describe the TAO/RT-TAO orbitals), a complex absorbing potential
(CAP) [60], −ivCAP(r), is also employed for t > 0. For an electronic system consisting
of NA atoms, the CAP function vCAP(r) is defined as the minimum of the values of the
atom-centered spherical absorbing potentials:

vCAP(r) = min{g1(r), ..., gNA(r)}. (65)

Here, gI(r) is a spherical absorbing potential around the I-th nucleus:

gI(r) =


0, for |r− RI | < r0
η(|r− RI | − r0)

2, for r0 ≤ |r− RI | < r0 +
√

Vmax/η

Vmax, for r0 +
√

Vmax/η ≤ |r− RI |
(66)

for I = 1, ..., NA, where RI is the position of the I-th nucleus. The cutoff radius r0 should
be small enough to interact with the electron density (because the space extended by the
Gaussian basis set is finite), while it should be large enough to not overly perturb the
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original electronic system. Here, we adopt the cutoff radius r0 = 9.524 bohr (≈5.040 Å), the
curvature η = 4.0 hartree/bohr2, and the maximum potential value Vmax = 10 hartree.

To sum up, in the present HHG study, the RT-TAO effective one-electron Hamiltonian
ĥs(r, t) (see Equation (47)) is given by

ĥs(r, t) =
{

ĥ0
s (r, t), for t ≤ 0

ĥ0
s (r, t) + vlaser(r, t)− ivCAP(r), for t > 0

(67)

where ĥ0
s (r, t) is the field-free RT-TAO effective one-electron Hamiltonian, vlaser(r, t) (see

Equation (64)) is the strong-field interaction, and −ivCAP(r) (see Equation (65)) is the CAP.
To propagate the one-electron density matrix P(t) in the time domain, we adopt

a time step of ∆t = 0.02 a.u. (≈ 0.484 as) and a total propagation time of τ = 1000 a.u.
(≈24.1 fs), which corresponds to a total of 5× 104 time steps. The modified mid-point
unitary transformation (MMUT) algorithm [88,89] is employed for the numerical time
propagation of P(t). As the use of the CAP breaks the conservation of the norm of the
RT-TAO orbitals, the time propagation is no longer unitary [60].

Following sufficient time propagation, the TD one-electron density matrix P(t) is
determined, and the TD density ρ(r, t) is given by Equation (52), yielding various TD
properties. While the RT-TAO orbital occupation numbers, which are the same as the GS
TOONs { f j}, are time-independent, the norm of the RT-TAO orbitals can decrease with
time t due to the CAP. To describe electron ionization, the number of bound electrons is
computed using

Nb(t) =
∫

dr ρ(r, t) =
∫

dr ∑
j

f j|φj(r, t)|2 = Tr{P(t)}. (68)

Moreover, the induced dipole moment along the laser polarization (i.e., the z-axis) is
calculated by

µ(t) = −
∫

dr zρ(r, t). (69)

Accordingly, the HHG spectrum can be computed using [9,92]

H(ω) =
1

2π

∣∣∣∣∫ τ

0
dt wH(t)

d2µ(t)
dt2 e−iωt

∣∣∣∣2, (70)

where the HHG spectrum has been smoothed using the Hamming window function

wH(t) = 0.54− 0.46 cos(
2πt

τ
) (71)

to reduce the numerical noise. In the HHG spectrum, the harmonic order is defined as
ω/ω0, with ω0 being the fundamental frequency (see Equation (64)).

Here, we present the approximations made in the RT-TAO-DFT calculations, the compu-
tational details, and the numerical results. As the exact TD xcθ potential vxcθ(r, t) = δAxcθ [ρ]

δρ(r,t)
(see Equation (46)) remains unknown, approximations to vxcθ(r, t) are necessary for practi-
cal RT-TAO-DFT calculations. While the exact vxcθ(r, t) formally depends on the density
ρ(r, t′) at all previous times t′ ≤ t, in this study, we make the adiabatic approximation:

vxcθ(r, t) ≈ δExcθ [ρ]

δρ(r)

∣∣∣∣
ρ(r)=ρ(r,t)

, (72)

where the TD xcθ potential vxcθ(r, t) is approximated by the GS xcθ potential δExcθ [ρ]
δρ(r) (see

Equation (6)) evaluated at the instantaneous density ρ(r, t). In the adiabatic approximation,
since the exact xcθ energy functional Excθ [ρ] also remains unknown, a DFA to Excθ [ρ]
should be made as well. In this work, we adopt the LDA (i.e., the simplest DFA) xcθ
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energy functional ELDA
xcθ [ρ] = ELDA

xc [ρ] + ELDA
θ [ρ], with ELDA

xc [ρ] being the LDA xc energy
functional [11,12] and ELDA

θ [ρ] being the LDA θ-dependent energy functional [26]. For
brevity, RT-TAO-DFT with the adiabatic LDA xcθ potential is denoted as RT-TAO-ALDA.
At time t = 0, the initial state (i.e., the GS of the unperturbed H2 with a given bond length)
is obtained with the underlying GS theory, TAO-LDA (i.e., TAO-DFT with the LDA xcθ
energy functional ELDA

xcθ [ρ]) [26]. Note that RT-TAO-ALDA (with θ = 0) corresponds to
TD-ALDA (i.e., conventional TD-DFT with the adiabatic LDA xc potential) [7–9], and its
underlying GS theory, TAO-LDA (with θ = 0), corresponds to KS-LDA (i.e., KS-DFT with
the LDA xc energy functional ELDA

xc [ρ]) [11,12].
In this study, we also investigate the possible spin-symmetry breaking effects in the

TD properties, in analogy to the GS counterparts [3,4,26,83]. At time t = 0, the initial state
(i.e., the GS of the unperturbed H2 with a given bond length) is a singlet state, and, hence,
the initial up-spin and down-spin densities obtained with an exact theory must be the
same based on the spin-symmetry constraint [3,4,26,83]. Moreover, for t > 0, since the
TD external potential adopted is spin-independent (see Equation (67)), the up-spin and
down-spin densities, which are equally propagated in the time domain, must be the same
at any subsequent time t [93]. Therefore, the TD properties (which depend on the TD spin
densities) of H2 obtained with the spin-unrestricted formalism must be identical to those
obtained with the spin-restricted formalism.

To examine whether this spin-symmetry constraint can be satisfied by RT-TAO-ALDA,
we perform spin-restricted and spin-unrestricted RT-TAO-ALDA (with θ = 0, 7, 20, and
40 mhartree) calculations for the TD properties, such as the number of bound electrons,
induced dipole moment, and HHG spectrum, of H2 at the equilibrium and stretched
geometries (aligned along the polarization of an intense linearly polarized laser pulse)
using the d-aug-cc-pVTZ basis set and a high-quality grid EML(99,590) containing 99 Euler–
Maclaurin radial grid points and 590 Lebedev angular grid points. We note that the choice
of basis set can significantly affect the HHG spectrum [94]. For the special case of θ = 0, RT-
TAO-ALDA reduces to TD-ALDA. All numerical results are obtained with a development
version of Q-Chem 5.4 [95].

Since the GS of the unperturbed H2 with an equilibrium bond length of 1.45 bohr
exhibits mainly SR character, the spin-symmetry constraint can be satisfied by spin-
unrestricted TAO-LDA (with θ = 0, 7, 20, and 40 mhartree) [26], producing the same
up-spin and down-spin densities at time t = 0. In addition, for t > 0, owing to the use
of a TD spin-independent external potential, the up-spin and down-spin densities, which
are equally propagated in the time domain, should be the same at any subsequent time
t [93]. Therefore, the TD properties, such as the number of bound electrons (see Figure 2),
induced dipole moment (see Figure 3), and HHG spectrum (see Figure 4), of H2 with an
equilibrium bond length of 1.45 bohr, obtained with spin-restricted and spin-unrestricted
RT-TAO-ALDA (with θ = 0, 7, 20, and 40 mhartree), are essentially the same (i.e., within the
numerical precision considered).

On the other hand, the GS of the unperturbed H2 with a stretched bond length of
3.78 bohr exhibits a noticeable MR character [26], and, hence, the spin-symmetry con-
straint is violated with spin-unrestricted KS-LDA (i.e., TAO-LDA with θ = 0), producing
symmetry-broken spin densities at time t = 0. In this situation, even when a TD spin-
independent external potential is applied to the initial state (i.e., a spin-symmetry-broken
GS) for t > 0, the TD effective one-electron potentials can be spin-dependent, and, hence,
the up-spin and down-spin densities, which are unequally propagated in the time domain,
can be very different at any subsequent time t. As shown, the TD properties, such as the
number of bound electrons (see Figure 5), induced dipole moment (see Figure 6), and
HHG spectrum (see Figure 7), of H2 with a stretched bond length of 3.78 bohr, obtained
with spin-restricted and spin-unrestricted TD-ALDA (i.e., RT-TAO-ALDA with θ = 0), are
distinctly different, yielding unphysical spin-symmetry breaking effects in all the TD prop-
erties examined. Such an unphysical spin-symmetry breaking feature of spin-unrestricted
TD-ALDA is apparently undesirable for RT simulations. By contrast, the spin-symmetry
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breaking effects in the TD properties obtained with RT-TAO-ALDA are shown to be re-
ducible with the increase in θ at essentially no additional computational cost. In particular,
the TD properties obtained with spin-restricted and spin-unrestricted RT-TAO-ALDA (with
θ = 40 mhartree) are essentially the same, yielding essentially no unphysical spin-symmetry
breaking effects in all the TD properties examined. This desirable feature can be attributed
to the satisfaction of spin-symmetry constraint on the singlet GS density of the stretched
H2 by spin-unrestricted TAO-LDA (with θ = 40 mhartree) [26].
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Figure 2. Number of bound electrons for H2 with an equilibrium bond length of 1.45 bohr, obtained
with spin-restricted and spin-unrestricted RT-TAO-ALDA (with various θ). Here, the θ = 0 case
corresponds to TD-ALDA.
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Figure 3. Induced dipole moment for H2 with an equilibrium bond length of 1.45 bohr, obtained
with spin-restricted and spin-unrestricted RT-TAO-ALDA (with various θ). Here, the θ = 0 case
corresponds to TD-ALDA.
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Figure 4. HHG spectrum for H2 with an equilibrium bond length of 1.45 bohr, obtained with spin-
restricted and spin-unrestricted RT-TAO-ALDA (with various θ). Here, the θ = 0 case corresponds
to TD-ALDA.
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Figure 6. Induced dipole moment for H2 with a stretched bond length of 3.78 bohr, obtained
with spin-restricted and spin-unrestricted RT-TAO-ALDA (with various θ). Here, the θ = 0 case
corresponds to TD-ALDA.
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5. Conclusions

In conclusion, we have developed RT-TAO-DFT (i.e., an RT extension of TAO-DFT [26]),
allowing the study of TD properties of both SR and MR systems. By resorting to an ensem-
ble formalism, RT-TAO-DFT has resolved the aforementioned inconsistency of TDTAO-DFT
(especially for θ 6= 0) [42]. Since the assumption of a weak perturbation is not required
in RT-TAO-DFT, spin-restricted and spin-unrestricted RT-TAO-DFT (with various θ) cal-
culations have been performed to explore the TD properties (e.g., the number of bound
electrons, induced dipole moment, and HHG spectrum) of H2 at the equilibrium and
stretched geometries, aligned along the polarization of an intense linearly polarized laser
pulse. The TD properties obtained with RT-TAO-DFT (with various θ) have been compared
with those obtained with conventional TD-DFT [6], which corresponds to RT-TAO-DFT
(with θ = 0). Moreover, issues related to the possible spin-symmetry breaking effects in the
TD properties are also discussed.
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