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Abstract: C. berlandieri ssp. berlandieri (C. berlandieri) is one of the most common members of
the group of plants known as quelites, which are dark leafy greens widely consumed in Mex-
ico. This study aimed to evaluate the impact of two drying procedures (oven drying and freeze-
drying/lyophilization) on the polyphenolic composition, antioxidant capacity, and proximal chemical
analysis of C. berlandieri leaves and inflorescences (raw or boiled). The results indicated that the raw
freeze-dried samples had higher amounts (p < 0.05) of total phenolic compounds, total flavonoids, and
antioxidant capacity, mainly in the inflorescence. The oven-dried samples showed an increased con-
centration of polyphenols after boiling, while the lyophilized samples showed a slightly decreased
concentration. The drying process was observed to have little impact on the proximal chemical
composition. Quantification by UPLC-DAD-ESI-QToF/MS identified up to 23 individual phenolic
compounds, with freeze-dried samples showing higher amounts of individual compounds compared
with oven-dried. Procyanidin B2 was found exclusively in the inflorescences. The inflorescences have
a higher content of phenolic compounds and greater antioxidant capacity than the leaves. Regardless
of the drying process, the leaves and inflorescences of C. berlandieri contain an interesting variety of
phenolic compounds that may have beneficial effects on health.

Keywords: Chenopodium berlandieri ssp. Berlandi; lyophilization; proximal chemical analysis;
oven-drying; phenolic compounds; quelites

1. Introduction

Humankind has relied on plants as a food source since its earliest origins. Modern
science has set itself the task of analyzing plants’ nutritional composition and identifying
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their bioactive compounds. Compounds of interest are phenolic compounds, consid-
ered natural antioxidants with the potential to prevent the risk of non-communicable
diseases such as cancer, type 2 diabetes, and cardiovascular diseases, among other condi-
tions [1]. By identifying the bioactive compounds of edible plants, scientists can improve
dietary recommendations and identify the plants that are the best sources of these com-
ponents. One such plant is the quelites group, comprising more than 500 native Mexican
plants whose leaves, tender stalks, and inflorescences have been used as a food source
in Mesoamerica since pre-Hispanic times. These include Amaranthus spp., (amaranth),
Portulaca oleracea (purslane, known in Mexico as verdolaga), Cnidoscolus aconitifolius (tree
spinach, or chaya), Chenopodium berlandieri ssp. nuttaliiae (huauzontle), and Chenopodium
berlandieri ssp. Berlandieri (quelite cenizo) [2,3].

The last of these, quelite cenizo, is one of the most widely consumed plants in Mexico,
and it is used extensively in several typical dishes and preparations [4]. Moreover, its leaves
and inflorescences presumably exhibit antibacterial, chemopreventive, hepatoprotective,
anti-inflammatory, and antioxidant effects, based on analyses of other Chenopodium
species [2]. The leaves and inflorescences can be consumed raw, as decoctions (boiling
process), fried or dried, or as spices to improve the flavor, color, or texture characteristics of
the food preparations in which they are used [5].

It is well known that the biological effects of phenolic compounds depend largely on
their chemical stability and the manner in which the plant that contains them is processed.
Environmental effects, such as ultraviolet radiation, temperature, and oxygen, must be
considered, as well as the intrinsic characteristics of the product, including water activity
or processing conditions, such as the type of drying and heat treatments used in culinary or
industrial processes [6]. Drying a plant sample lengthens its shelf life and can preserve the
quality and quantity of the components of the sample, and in the food industry, drying is
an essential method for inhibiting microbial growth [7]. However, some types of drying can
affect nutritional compounds due to the enzymatic and non-enzymatic effects that occur
during the drying process [8]. Prevalent drying methods include convection drying with
hot air and freeze-drying [7]. Various studies have shown that hot-air drying has a negative
effect on nutritional components because it degrades the proteins found in plant samples.
Freeze-drying, in contrast, removes moisture from samples through sublimation, but it is
an expensive process due to its high energy consumption and in some samples it has been
observed that the freezing process can modify the properties of fiber in foods [9]. Most
quelites can be dried to extend their shelf life by reducing enzymatic and non-enzymatic
processes. Different drying methods may be used: sun drying, oven drying, and lyophiliza-
tion. As it is known that ultraviolet radiation can degrade phenolic compounds and other
components with antioxidant capacity, this method is not currently recommended, but
it is useful to compare how the content of phenolic compounds is affected by two other
methods: oven drying and freeze drying. Likewise, it is important to document how
the culinary heat treatment used in the preparation of the plant influences the content of
phenolic compounds in edible botanical structures, such as leaves and inflorescence [8].
Finally, in C. berlandieri, the leaves are consumed more often than the inflorescences, so
it would be useful to determine which botanical structure holds the greater quantity of
phenolic compounds. This research aimed to assess the impact of two drying methods
(oven drying and lyophilization) on the proximal chemical analysis, phenolic profile, and
antioxidant capacity of raw and boiled leaves and inflorescences of C. berlandieri.

2. Results and Discussion
2.1. Impact of Drying Method on the Proximal Composition of C. berlandieri Leaves and
Inflorescences

Table 1 shows the proximal chemical composition of the leaves and inflorescences of C.
berlandieri processed by oven drying and lyophilization. No significant differences (p > 0.05)
were found in the moisture or protein content of the samples analyzed. The leaves had
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higher ash content (p < 0.05) than the inflorescences, but inflorescences contained a higher
amount of total carbohydrates (p < 0.05).

Table 1. Proximate chemical analysis of raw leaves and inflorescences of C. berlandieri by dry matter
weight.

Component
(%) ROL RLL ROI RLI

Moisture 2.91 ± 0.08 a 2.66 ± 0.04 a 2.59 ± 0.01 a 2.80 ± 0.02 a

Protein 23.17 ± 1.79 a 23.97 ± 0.55 a 23.28 ± 0.72 a 23.00 ± 0.10 a

Lipids 0.71 ± 0.02 b 0.72 ± 0.02 b 0.55 ± 0.54 c 1.06 ± 0.05 a

Ash 24.19 ± 0.22 a 22.59 ± 0.04 a 15.95 ± 0.18 b 14.71 ± 0.33 b

Total carbohydrates 29.79 ± 0.26 d 32.45 ± 0.26 c 41.71 ± 0.02 a 35.67 ± 0.23 b

Dietary fiber 19.23 ± 1.96 b 17.61 ± 2.45 c 15.92 ± 0.40 d 22.76 ± 0.93 a

The results are expressed in percentages as the mean ± SD of three independent experiments. Different letters by
row express significant differences (p < 0.05) by Tukey–Kramer’s test. ROL: Raw oven-dried leaves; RLL: Raw
lyophilized leaves; ROI: Raw oven-dried inflorescences; RLI: Raw lyophilized inflorescences.

There was no clear trend in the impact of the drying process on chemical composition,
but both types of lyophilized inflorescences (BLI and RLI) displayed higher amounts of
lipids and dietary fiber than the other groups. The protein values obtained are higher than
those indicated by Santiago-Saenz et al. [10] in samples of the same species (3.45%), and
even in other species such as Amaranthus hybridus (1.81%) and Portulaca oleracea (3.65%), but
it should be noted that the values of that study are reported for fresh matter. Considering
the protein values reported for the leaves of the quelite cenizo (26.2%) [11], protein loss
could be attributed to the drying process [12]. Drying method can positively or negatively
affect the nutritional value of foods; in most cases, freeze- drying is better than oven
drying for ensuring that plant samples retain their content of nutrients and bioactive
compounds [13]. Although the scientific literature mentions that freeze-drying is a gentle
dehydration method, it has been observed that, in some foods, it can cause certain changes
in their physicochemical properties, even more than oven drying [14]. In a study carried
out by Li et al. [15], freeze-drying of Vocia faba Linn (beans) removed more protein content
than oven-drying, although the authors noted that the result may have been influenced by
the drying time as well as the pre-freezing of the sample at a temperature of −80 ◦C. In
a study by Oliveira-Alves et al. [12], in contrast, a decrease in the amount of protein was
observed after oven drying samples of Salicornia ramosissima (sea asparagus); the authors
mention a possible denaturation of the protein at a temperature of 70 ◦C for 72 h. However,
other studies with different plant samples—including the present study—do not report
significant differences [16].

Still, even when dried, C. berlandieri leaves and inflorescences show higher protein
content than conventional edible leaves, such as cabbage (12.8%) and lettuce (14%) [17].
Differences in dietary fiber content could be attributed to chemical changes linked to
polysaccharide reordering, which would increase the dietary fiber content of raw oven-
dried leaves (ROL). However, the amount found in raw lyophilized inflorescences (RLI)
could be comparable to the fiber content found in lyophilized and dried cauliflower (20.6
and 19.1–19.8%, respectively) [18], where the authors found that the degree of esterification
of pectic polysaccharides experienced a significant heat-induced dietary fiber change. Di-
etary fiber is composed of water-soluble polymers (pectins, gums) and insoluble polymers
(cellulose, hemicellulose, lignin) [19]. Some studies have found that heating foods can cause
a breakdown of the cell matrix of the fiber plant sample [7]. Heat drying can cause the
hydrolyzation of structural pectin or protopectin, transforming them into soluble pectins,
thus increasing the amount of soluble fiber. However, this type of drying can also cause the
degradation of hemicellulose and cellulose, transforming them into simple carbohydrates
by decreasing the amount of insoluble fiber [20]. Freeze-drying can modify some fiber
components (insoluble pectins) by activating the enzyme pectin-methyl-esterase, causing
de-esterification of the fiber components and generating digestible carbohydrates [9]. It has
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been observed that the type of drying, whether hot or cold, can increase or decrease the
amount of fiber in different plant samples [19], as observed in the present study. This is
particularly true, for the purposes of our study, for ash content, where obtained values are
higher than other quelites [10,21], even when dried [17].

2.2. Impact of the Drying Process on the Phytochemical Composition and Antioxidant Capacity of
Raw and Boiled Leaves and Inflorescences of C. berlandieri

Inflorescences showed the highest total phenolic compounds (TPC), total flavonoids
(TF), and the highest antioxidant capacity quantified by the DPPH, ABTS, and FRAP
(Table 2) methods.

Table 2. Effect of drying on the total phenolic composition and antioxidant capacity of raw and boiled
leaves and inflorescences of C. berlandieri ssp. berlandieri.

Sample TPC
(mg GAE/g LE)

TFC
(mg CE/g LE)

DPPH
(µM TE/g LE)

ABTS
(µM TE/g LE)

FRAP
(µM TE/g LE)

ROL 23.29 ± 0.11 a 6.79 ± 0.11 c 100.32 ± 171 b 384.15 ± 20.9 ab 528.21 ± 15.9 b

RLL 26.38 ± 0.08 a 9.24 ± 0.08 a 116.58 ± 0.93 a 387.01 ± 28.3 ab 545.49 ± 25.6 b

BOL 26.09 ± 0.13 b 8.02 ± 0.07 b 114.68 ± 1.85 a 424.80 ± 11.1 a 525.12 ± 8.35 b

BLL 22.06 ± 0.10 d 7.92 ± 0.13 b 101.52 ± 1.20 b 341.82 ± 20.1 b 635.00 ± 16.6 a

ROI 27.69 ± 0.10 c 11.99 ± 0.44 c 117.76 ± 0.18 c 554.52 ± 15.8 b 656.60 ± 20.3 bc

RLI 52.52 ± 0.15 a 23.14 ± 0.13 a 337.15 ± 7.75 a 732.99 ± 61.3 a 803.52 ± 53.3 a

BOI 26.60 ± 0.11 d 10.92 ± 0.07 d 119.63 ± 0.21 c 536.48 ± 36.3 b 570.19 ± 20.6 c

BLI 34.77 ± 0.18 b 20.30 ± 0.10 b 255.40 ± 3.39 b 501.26 ± 38.9 b 757.22 ± 52.8 ab

The results are expressed as the mean± SD of three independent experiments in triplicate. Different letters indicate
significant differences (p < 0.05) by Tukey–Kramer’s test for the leaves or in-florescences. TPC: total phenols, TFC:
total flavonoids, DPPH: 2,2-diphenyl-1-picrylhydrazyl, ABTS: 2,2-355 azino-bis(3-ethylbenzothiazoline-6-sulfonic
acid), FRAP: ferric reducing antioxidant power, GAE: gallic acid equivalent, CE: catechin equivalent, LE: freeze
dried extract, TE: Trolox equivalent, BLI: Boiled lyophilized inflorescences, RLI: raw lyophilized inflorescences,
BOI: boiled oven-dried inflorescences, ROI: raw oven-dried inflorescences, BLL: boiled lyophilized leaves, RLL:
raw lyophilized leaves, BOL: boiled oven-dried leaves, ROL: raw oven-dried leaves.

As observed, boiling reduced TPC and FT, but resulted in higher FRAP in freeze-dried
leaves than other treatments. In both types of plant material, freeze-drying contributed
to preserving TPC and TF as well as antioxidant capacity. It has been reported that
freeze-drying preserves the polyphenolic composition of food matrices and prevents their
oxidation due to the combined effect of vacuum and low temperature [22]. There are
no studies on the impact of drying methods on the phytochemical composition of the
leaves and inflorescences of C. berlandieri. The TPC and TF contents obtained in this study
are lower than those reported for the leaves of other quelites, but the inflorescences of
C. berlandieri showed higher TPC values than several other Amaranthus spp. flowers [23]
and values similar to those reported for flowers of common mullein (Verbascum thapsus) [24].
The highest values of phenolic compounds in boiled and oven-dried leaves are similar to
the values reported by Godínez-Santillan et al. [25] in C. aconitifolius leaves previously dried
at 40 ◦C and boiled for 10 min. Other studies, such as Fauziah et al. [26], also observed an
increase in the amount of phenolic compounds and the antioxidant capacity of samples
boiled for 5, 10 and 15 min. It has been observed that the thermal treatment of different
plant foods causes an increase or decrease in the amount of phenolic compounds depending
on the type of plant matter and the time invested in the process [27]. Coupled with this
thermal effect, oven drying may cause a greater extraction of the polyphenolic compounds
that are attached to the cell wall and subcellular compartments; compounds which likely
contain more hydroxyl groups, increasing hydrogen donation [25].

Regarding antioxidant capacity, heat treatment did not improve radical scavenging,
as analyzed by DPPH, FRAP, and ABTS assays. The freeze-dried raw vegetable samples
presented greater radical scavenging activity, but a decrease in antioxidant capacity was
observed after heat treatment, except in the FRAP assay. This may be due to an intermediate
oxidation state of the polyphenolic compounds produced by the increasing number of
reducing sugars or some products that may be generated by the Maillard reaction during the
thermal processing of foods, resulting in a lower amount of polyphenols and an increase
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in antioxidant capacity [28]. Furthermore, it should be recognized that the vegetable
matrix Is complex and contains different bioactive compounds that may respond with
greater antioxidant capacity. In the antioxidant capacity tests, the results may also be
influenced by different reaction mechanisms with the antioxidant compounds of the plant
samples [23,29]. This phenomenon has been described for other quelites such as Portulaca
oleracea, Amaranthus hypochondriacus, and Amaranthus caudatus [10,23,30]. However, heat
treatment is essential for inactivating enzymes such as polyphenol oxidase and several
peroxidases [27].

Individual phenolic compounds (Table 3) were identified by their exact molecular
mass, by which 23 compounds were found (Table S1). Figure 1 shows the normalized
abundance of each compound in the C. berlandieri samples, based on the amounts displayed
in Table 3. Flavanols, flavanones, and flavonols were more abundant in the inflorescences
than in the leaves, particularly quercetin-rhamnosyl-rhamnosyl-hexoside, (iso)-rhamnetin
hexoside, and quercetin, coinciding with the higher amount of TF in inflorescences than in
leaves, presented in Table 3. However, naringin, quercetin-rhamnosyl-rhamnosyl-hexoside,
quercetin rutinoside, (iso)-rhamnetin hexoside, and dihydroxybenzoic acid hexoside were
more abundant in the leaves. Quercetin rutinoside has been reported as one of the main
flavanols of C. berlandieri and C. ambrosioides species [10,31], whereas kaempferol has
not been previously reported for C. berlandieri. Procyanidin B2 was found, but only in
the inflorescences. There are some current studies of the genus Chenopodium spp. that
show it has hepatoprotective, antioxidant, antitumor, antibacterial, chemopreventive, and
anticancer biological properties [2], probably due to its bioactive compounds.
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Table 3. Phenolic compounds from raw and boiled oven-dried and lyophilized C. berlandieri ssp. berlandieri leaves and inflorescences, quantified by UPLC-DAD-ESI-
QTOF-MS (µg of each phenolic compound/g of lyophilized extract).

Samples

Compounds ROL RLL BOL BLL ROI RIL BOI BLI

Flavanols
Pro-cyanidin dimer B2 * n. d. n. d. n. d. n. d. 599.3 ± 209.9 c 2287.0 ± 33.4 a 759.8 ± 148.5 c 1939.5 ± 384.9 b

(+)-Catechin * n. d. 39.9 ± 0.6 d 20.7 ± 10.0 d 11.2 ± 1.4 d 1151.4 ± 193.7 c 3326.8 ± 41.9 a 1204.0 ± 100.5 c 2538.7 ± 238.2 b

Flavanones
Naringin * 4032.3 ± 474.0 a 1768.5 ± 511.3 c 4146.0 ± 215.9 a 1480.6 ± 42.4 c 3371.8 ± 170.9 b 1863.5 ± 97.9 c 3972.9 ± 86.4 a 1868.7 ± 168.4 c

Naringenin hexoside 45.8 ± 1.3 c 42.9 ± 11.8 c 46.0 ± 7.8 c 31.6 ± 1.1 cd 24.2 ± 7.8 d 91.9 ± 9.3 a 21.6 ± 1.8 d 61.3 ± 1.0 b

Flavonols
Quercetin

rhamnosyl-rhamnosyl-hexoside 1806.2 ± 122.3 g 3766.8 ± 310.3 d 2741.0 ± 52.7 fg 3152.8 ± 64.3 e 4654.4 ± 29.9 bc 5570.0 ± 356.5 a 5098.3 ± 35.2 ab 4784.6 ± 6.8 b

Quercetin pentosyl-rutinoside 2520.1 ± 536.9 bcd 3350.6 ± 1162.1 abc 2520.7 ± 636.9 bcd 2791.4 ± 73.9 abcd 2512.8 ± 408.2 cd 3496.3 ± 21.7 a 2341.5 ± 77.4 d 3487.8 ± 5.3 a

Quercetin rutinoside (rutin) * 3659.9 ± 5.8 d 7652.8 ± 29.2 a 4858.7 ± 905.0 c 5695.7 ± 63.8 b 3702.4 ± 358.2 d 5454.6 ± 148.7 bc 3998.5 ± 175.7 d 5098.8 ± 70.8 b

Quercetin hexoside 1827.9 ± 16.3 d 2050.5 ± 29.1 c 1966.5 ± 38.3 c 1987.3 ± 46.3 c 2334.2 ± 169.0 b 2686.1 ± 146.2 a 2363.2 ± 30.1 b 2388.7 ± 63.3 b

Kaempferol pentosyl-hexoside 255.5 ± 17.9 bd 526.4 ± 51.6 a 260.3 ± 0.7 bd 537.50 ± 37.0 a 241.7 ± 8.8 de 201.8 ± 13.9 ce 296.9 ± 9.4 b 183.8 ± 11.5 c

Quercetin pentoside 56.5 ± 5.2 d 46.0 ± 0.3 d 57.6 ± 0.9 d 45.8 ± 1.7 d 207.3 ± 22.3 c 285.6 ± 6.7 a 232.2 ± 3.8 b 241.5 ± 14.3 b

Kaempferol hexoside-rhamnoside 169.0 ± 36.1 bd 246.2 ± 88.1 a 175.8 ± 36.2 b 193.7 ± 2.2 ab 65.4 ± 12.3 c 108.2 ± 0.8 cd 74.7 ± 0.8 c 95.8 ± 0.8 c

(Iso)-rhamnetin hexoside 3052.9 ± 230.9 c 2859.0 ± 453.6 cd 2926.4 ± 140.9 cd 2563.8 ± 177.3 d 5114.9 ± 481.3 b 5876.0 ± 197.8 a 5292.4 ± 3.8 b 5078.6 ± 140.1 b

(Iso)-rhamnetin rutinoside 43.7 ± 3.8 bc 59.8 ± 4.9 b 42.5 ± 2.3 cd 48.9 ± 1.2 bcd 35.1 ± 9.0 d 73.8 ± 2.8 a 41.8 ± 0.5 cd 56.8 ± 2.1 b

Quercetin * 381.7 ± 151.6 c 848.1 ± 213.9 c 547.0 ± 264.0 c 744.5 ± 163.8 c 1872.1 ± 1235.0 b 4099.0 ± 466.4 a 2164.7 ± 336.0 b 4393.1 ± 520.9 a

Kaempferol * n. d. 51.1 ± 15.0 b 24.3 ± 0.2 c 60.9 ± 3.8 b 18.7 ± 0.5 c 88.2 ± 7.9 a n. d. 53.1 ± 9.1 b

Hydroxybenzoic acids
Vanillic acid * 69.3 ± 20.6 e 56.40 ± 0.4 e 60.4 ± 3.7 e 68.8 ± 2.4 e 190.5 ± 27.6 a 162.6 ± 21.4 c 164.2 ± 9.8 bc 124.9 ± 0.3 d

Dihydroxybenzoic acid hexoside 2995.0 ± 618.9 b 3842.30 ± 467.6 a 3126.5 ± 214.8 b 3136.9 ± 255.7 b 4192.1 ± 448.0 a 234.8 ± 10.3 c 4073.9 ± 9.4 a 3078.0 ± 21.2 b

4-Hydroxy-benzoic acid * 67.1 ± 13.0 d n. d. 61.0 ± 2.5 d 62.7 ± 1.3 d 202.3 ± 29.2 bc 234.0 ± 9.9 a 234.5 ± 59.3 a 161.9 ± 7.8 c

3,4-Dihydroxy-benzoic acid
(protocatechuic acid) * 80.6 ± 13.5 f 134.30 ± 9.8 d 107.1 ± 8.9 e 148.0 ± 7.0 cd 189.4 ± 30.6 c 300.3 ± 13.9 a 237.9 ± 23.3 b 244.4 ± 5.6 b

Hydroxycinnamic acids
p-Coumaric acid * 63.9 ± 14.1 e 84.30 ± 11.3 de 73.2 ± 11.3 e 64.3 ± 2.8 e 106.3 ± 3.8 bc 101.0 ± 8.7 cd 126.0 ± 12.5 a 106.3 ± 3.8 bc

Cinnamic acid * 219.6 ± 37.2 a 62.40 ± 1.5 c 239.6 ± 24.9 a 43.9 ± 2.8 c 161.7 ± 18.9 b 58.3 ± 0.3 c 177.5 ± 11.7 b 65.6 ± 10.9 c

Ferulic acid hexoside n. d. 27.80 ± 1.8 cd n. d. 21.1 ± 0.3 e 38.4 ± 6.4 b 31.1 ± 1.2 bc 42.5 ± 1.4 a 24.9 ± 1.0 de

Ferulic acid * n. d. 90.10 ± 5.7 a 73.8 ± 3.6 a 80.6 ± 4.5 a 45.5 ± 12.5 b 82.3 ± 5.7 a 50.5 ± 9.3 b 83.8 ± 9.6 a

The results are the mean± SD of three independent experiments in triplicate. Different letters in each row indicate significant differences by Tukey–Kramer’s test (p < 0.05). * Identification
confirmed by comparison with commercial standards. BLI: Boiled lyophilized inflorescences; BLI: Boiled lyophilized inflorescences; BLL: Boiled lyophilized leaves; BOI: Boiled
oven-dried inflorescences; BOL: Boiled oven-dried leaves; RLI: Raw lyophilized inflorescences; RLL: Raw lyophilized leaves; ROI: Raw oven-dried inflorescences; ROL: Raw oven-dried
leaves; n. d.: not detected.
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The samples of raw freeze-dried leaf and inflorescences (RLL and RLI) presented
higher amounts of individual phenols than the raw oven-dried raw samples of either leaves
or inflorescence (ROL and ROI). Similarly, as mentioned above, after boiling, the oven-dried
leaves and oven-dried inflorescence samples showed an increase in the quantity of phenolic
compounds, while the lyophilized leaves and lyophilized inflorescences showed a decrease.

The results are the average normalized abundance of three independent experiments
in triplicate. A min–max normalization was conducted as: (sample–min)/(max–min). BLI:
Boiled lyophilized inflorescences; RLI: Raw lyophilized inflorescences; BOI: Boiled oven-
dried inflorescences; ROI: Raw oven-dried inflorescences; BLL: Boiled lyophilized leaves;
RLL: Raw lyophilized leaves; BOL: Boiled oven-dried leaves; ROL: Raw oven-dried leaves.

Coinciding with the results presented in Table 2. (+)-Catechin, kaempferol, and ferulic
acid were found in the RLL but not in the ROL. However, after boiling the boiled oven-dried
leaves (BOL), these compounds appeared. This may be due to a release of low-molecular-
weight phenolic compounds that are bound to the plant fiber and were probably not
released during oven drying [32]. In general, boiling favored the increase in phenolic
compounds in the oven-dried samples and caused a slight decrease in the amount of some
compounds in the freeze-dried samples, as shown in Table 3.

2.3. Principal Component Analysis (PCA) of Oven-Drying and Lyophilization Clustering

Figure 2 shows the PCA analysis of the variables and phytochemicals evaluated in
raw and boiled C. berlandieri leaves (Figure 2A) and inflorescences (Figure 2B), clustered by
drying process.
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Figure 2. Principal component analysis (PCA) of C. berlandieri (A) leaves and (B) inflorescences, clus-
tered by drying process. BLI: Boiled lyophilized inflorescences; RLI: Raw lyophilized inflorescences;
BOI: Boiled oven-dried inflorescences; ROI: Raw oven-dried inflorescences; BLL: Boiled lyophilized
leaves; RLL: Raw lyophilized leaves; BOL: Boiled oven-dried leaves; ROL: Raw oven-dried leaves.
Blue and red areas indicate dots areas given by the cluster analysis.
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Two components explained >80% of the variance (Table 4) in both the leaves and
inflorescences. Moreover, a differential clustering was observed for the leaves and inflores-
cences depending on the drying process: ABTS and phenolics such as naringin, cinnamic
acid, quercetin pentoxide, and ferulic acid hexoside were the components most affected
by oven drying. In contrast, TPC, DPPH, p-coumaric acid, dihydroxybenzoic acid hexo-
side, quercetin-hexoside, and protocatechuic acid were the most affected by lyophilization.
Based on the loading of each variable on each component (Table S2), it was shown that
quercetin hexoside, naringenin hexoside, TPC, and DPPH were the most influential vari-
ables in principal component 1 (PC1). In contrast, ABTS, naringenin hexoside, vanillic acid,
(Iso)-rhamnetin-hexoside, and ferulic acid hexoside were the most influential variables in
PC2. The close relationship between the drying process and polyphenolic composition is
explained by variations in the abundance of phenolics from dried plant material, which is
critical considering that quelites are sold in both fresh and dried forms [5]. During food
drying, the generation and accumulation of different bioactive compounds that could have
antagonistic or synergistic effects upon each other, or upon other constituents of the sample
occurs; these chemical interactions are still under investigation [33].

The analysis of the phenolic compound content and the antioxidant capacity of both
botanical structures (leaves and inflorescences) suggests that it may be useful to include
inflorescence in the human diet as a food or ingredient in different food dishes. In fact, the
inflorescence of some quelites is the main edible product, such is the case of Chenopodium
berlandieri ssp. nuttaliiae (huauzontle), which has been rarely studied.

Table 4. Percentages and cumulative percentages of principal component analysis (PCA) analysis
from C. berlandieri ssp. berlandieri (A) leaves and (B) inflorescences.

(A)

Principal Component (PC) Percentage Cumulative Percentage

1 70.924 70.924
2 18.074 88.998
3 5.270 94.269
4 3.158 97.426
5 1.260 98.687
6 0.879 99.566
7 0.433 99.999
8 0.001 100.000

(B)

1 69.529 69.529
2 20.203 89.732
3 4.919 94.651
4 2.947 97.598
5 1.176 98.774
6 0.082 98.856
7 0.404 99.260
8 0.001 99.261

3. Materials and Methods
3.1. Chemical Reagents

Ethanol, absolute methanol, sodium carbonate, aluminum trichloride, sodium hydroxide,
sodium nitrate, potassium persulfate, hydrochloric acid, sodium acetate, glacial acetic acid,
ferric chloride hexahydrate, gallic acid, catechin, 6-hydroxy-2,5,7,8-tetramethylchroman-2-
carboxylic acid (Trolox), 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), 2,4,6-tris (2-pyridyl)-s-
triazine (TPTZ), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), Folin–Ciocalteu
reagent, and phenolic HPLC-grade standards (p-coumaric acid, hydroxybenzoic acid, hes-
peridin, quercetin rutinoside, and rutin) were purchased from Sigma-Aldrich (St. Louis,
MO, USA).
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3.2. Plant Material and Study Design

Different samples of Chenopodium berlandieri were collected during August–September
2021 in La Barreta (Queretaro, Mexico), a town located at Lat. 20◦49′47.6′′ N and Lon.
100◦30′11.9′′ West and 2150 m above sea level. Plants were identified and registered
(code: 00006282) by a specialist from the Jerzy Rzedowski Herbarium of the Universidad
Autonoma de Queretaro. The study used a 23 factorial design according to the following
variables: (1) the botanical part analyzed: leaves or inflorescences; (2) the type of drying:
oven-drying or lyophilization; (3) whether the samples were left raw or were boiled before
the corresponding analyses. This resulted in 8 groups of samples: boiled lyophilized
inflorescences (BLI); raw lyophilized inflorescences (RLI); boiled oven-dried inflorescences
(BOI); raw oven-dried inflorescences (ROI); boiled lyophilized leaves (BLL); raw lyophilized
leaves (RLL); boiled oven-dried leaves (BOL); and raw oven-dried leaves (ROL).

3.3. Drying Process

Immediately after collection, the samples were manually cleaned, separating the
leaves and inflorescences. The samples were divided into two equal parts to be dried in
an oven or by lyophilization. For the oven-drying procedure, the samples (leaves and
inflorescences) were placed in a forced-ventilation oven (FX 1375, Shel Lab, Cornelius, OR,
USA) at 40 ◦C for 48 h. For the lyophilization procedure, the samples were frozen at−80 ◦C
for 24 h, and then placed in a freeze dryer (Scientz-10N, Ningbo Scientz Biotechnology
Co., Zhejiang, China) at −60 ◦C and 1 Pa. Once dried, samples were ground in an electric
blender (Thomas Model 4 Wiley Mill®, Thomas Scientific, Swedesboro, NJ, USA) and
sieved through a 500 µm mesh. The resulting powders were then placed in sealed bags and
stored at −80 ◦C for further analysis.

3.4. Proximate Chemical Analysis

For the raw leaves and inflorescences, analysis was performed according to AOAC
(Association of Analytical Communities) procedures [34], as follows: quantification of ash
(method 942.05), protein (method 920.87), lipids (920.39), moisture (method 925.10), lipids
(method 920.39), and dietary fiber (method 962.09). Total carbohydrates were calculated by
difference, according to equation [12]. Determinations were performed in triplicate in each
analysis and the results were expressed as a percentage by weight of dry matter.

Total carbohydrates (%) = 100 − % (moisture + fiber + fat + ash + protein) (1)

3.5. Extraction, Identification, and Quantification of Phenolic Compounds
3.5.1. Methanolic Extraction of Raw and Boiled Samples

The dried samples (oven dried and freeze dried) were separated into two groups, the
first group was left as is (raw) and the second part was boiled, as follows. The sample
was mixed with distilled water (5 g in 100 mL), heated at 100 ◦C for 5 min, and then
cooled to room temperature. The amount lost from the initial 100 mL of distilled water
was volumetrically completed. Subsequently, it was topped up to 400 mL with absolute
methanol to obtain a proportion of 80:20 v/v. Subsequently, a hydroalcoholic extraction was
carried out as described in Figure 3. The raw samples were mixed directly in a proportion
of 5 g of plant sample to 500 mL of the hydroalcoholic dilution (80:20 v/v, again, absolute
methanol to water). All extractions were left for 16 h under constant stirring (100 rpm) at
room temperature (25 ± 1 ◦C) protected from light. Then extracts were filtered through
Whatman No. 40 paper and rota-evaporated (R-200, Büchi, Essen, Germany) at 40 ◦C and
100 mm Hg pressure. The resulting solution was lyophilized as described above. The
powdered extracts were packed in sealed bags, protected from light, and stored at −80 ◦C
for further analysis.
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3.5.2. Spectrophotometric Determination of Total Phenolic Compounds (TPC) and Total
Flavonoids (TF)

The total phenolic compounds (TPC) were quantified as reported by Singleton et al. [35]
using the Folin–Ciocalteu reagent, and the results were expressed in mg gallic acid equiva-
lents (GAE)/g sample. The total flavonoids (TF) were determined as described by Zhishen
et al. [36], and the results were reported in mg of (+)-catechin equivalents/g sample.

3.5.3. Identification and Quantification of Individual Phenolic Compounds by
UPLC-DAD-ESI-QToF/MS

Individual phenolic compounds were identified and quantified by ultra-high per-
formance liquid chromatography (UPLC) coupled to diode array detection (DAD) with
electrospray ionization (ESI) coupled to a quadrupole time-of-flight (QToF) mass spectrom-
etry (MS) [37]. Before the injection (2 µL sample) into the equipment, 25 mg of lyophilized
extract was resuspended in 500 µL UPLC-grade water, and the sample was separated on a
BEH Acquity C18 column (2.1 × 100 mm, 1.7 µm granule size) (Waters Corp., Milford, MA,
USA) at 35 ◦C. The separation was performed using two solvents: MS-grade water adjusted
with 0.1% formic acid (A) and 100% MS-grade acetonitrile (B) using the gradient conditions
(0.5 mL/min) as follows: 0% B (0 min), 15% B (2.5 min), 21% B (10 min), 90% B (12 min),
95% B (13 min), and 0% B (15 min). The absorbances were read at 214, 280, 320, and 360 nm.
For the quantification of individual compounds, commercial HPLC-grade standards of
procyanidin dimer B2, (+)-catechin, naringin, rutin, quercetin, kaempferol, vanillic acid,
4-hydroxybenzoic acid, protocatechuic acid, p-coumaric acid, cinnamic acid, and ferulic
acid were used. The mass spectrometer was operated under the following conditions:
capillary voltage: 2.0 kV; cone voltage: 40 eV; low-collision energy: 6 V; high-collision
energy: 15–45 V; source temperature: 120 ◦C; cone gas flow: 50 L/h, desolvation gas (N2)
flow: 800 L/h (450 ◦C). Data acquisition was carried out in negative ionization mode (ESI-)
with a mass range 100–1200 Da. A leucine enkephalin solution (50 pg/mL) was used to lock
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mass correction (10 µL/min). Compounds were identified through the exact mass analysis
of pseudomolecular ions (mass error < 5 ppm), isotope distribution, and fragmentation
pattern. The results were expressed as µg of each compound/g lyophilized extract.

3.5.4. Antioxidant Capacity

Antioxidant capacity was determined by three different methods: the 1,1-diphenyl-2-
picrylhydrazyl (DPPH) method reported by Brand-Williams et al. [38], the 2,2-azino-bis(3-
ethylbenzothiazoline)-6-sulfonic acid (ABTS) method reported by Ozgen et al. [39], and
the ferric reducing antioxidant power (FRAP) method reported by Benzie and Strain [40].
Results from the 3 methods were reported in µmol equivalents of Trolox/g sample. For all
the assays, a Trolox standard curve was established (0–700 µM).

3.6. Statistical Analysis

The results were expressed as the mean ± SD of three independent experiments in
triplicates. An analysis of variance (ANOVA) followed by post-hoc Tukey–Kramer’s test
was conducted, establishing significance as p < 0.05. A Principal Component Analysis
(PCA) was also carried out using a correlation matrix between the analyzed variables and
the drying method (oven-dried or lyophilized), and all the analysis were performed in JMP
v. 17 (SAS, Cary, NC, USA).

4. Conclusions

The study revealed that freeze-drying could better preserve the phenolic compounds
and antioxidant capacity of C. berlandieri than oven drying. Despite the decrease in indi-
vidual phenolic compounds in the freeze-dried samples after heat treatment, they present
acceptable amounts of phenolic composition, mainly in the inflorescence. Several popular
types of quelites are boiled before being consumed, which, as observed in the present study,
results in some loss of phenolic compounds. Thus, plant products that are consumed dry
and without any heat treatment may be an important source of phenolic compounds with
potential antioxidant activity. In the present investigation, it was observed that the inflores-
cence is richer in phenolic compounds and antioxidant capacity than leaves. However, both
plant samples show an interesting content of phenolic compounds that may have beneficial
effects on health. Further in vitro and in vivo investigations should be performed to assess
these biological effects.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28207235/s1, Table S1: Phenolic compounds from C.
berlandieri leaves and inflorescences, identified by UPLC-DAD-ESI-QToF/MS, Table S2: Loading of
each variable on each component from the PCA analysis for C. berlandieri ssp. berlandieri (A) leaves
and (B) inflorescences.
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