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Abstract: Data on Henry’s law constants make it possible to systematize geochemical conditions
affecting atmosphere status and consequently triggering climate changes. The constants of Henry’s
law are desired for assessing the processes related to atmospheric contaminations caused by pollutants.
The most important are those that are capable of long-term movements over long distances. This
ability is closely related to the values of Henry’s law constants. Chemical changes in gaseous
mixtures affect the fate of atmospheric pollutants and ecology, climate, and human health. Since
the number of organic compounds present in the atmosphere is extremely large, it is desirable to
develop models suitable for predictions for the large pool of organic molecules that may be present
in the atmosphere. Here, we report the development of such a model for Henry’s law constants
predictions of 29,439 compounds using the CORAL software (2023). The statistical quality of the
model is characterized by the value of the coefficient of determination for the training and validation
sets of about 0.81 (on average).

Keywords: Henry’s law constant; SMILES; QSPR; Monte Carlo method; system of self-consistent
models; CORAL software

1. Introduction

The constants of Henry’s law are desired for assessing the processes related to atmo-
spheric pollutants, particularly those related to their transport in the atmosphere. Chemical
changes in the gaseous phase affect the fate of atmospheric pollutants and ecology, climate,
and human health.

Quantitative structure–property relationships (QSPRs) are one of the tools applied
to describe physicochemical endpoints, which characterize the status of the earth’s atmo-
sphere. Such endpoints could be, for example, the rate constants for the reaction of OH
radicals, the rate constants of reactions of ozone with organic and inorganic compounds,
vapor pressure, and Henry’s law constants [1].

The experimental measurements for Henry’s law constants are reported using different
techniques, including headspace gas chromatography, modified headspace techniques,
phase ratio variation, the differential headspace method, and dilution techniques [2]. How-
ever, accurate Henry’s law constants values are currently unavailable for many compounds.
Instrumental problems make the experimental determination of Henry’s law constants
values difficult and expensive. Consequently, applying theoretical methods to robustly
predict this endpoint for diverse compound types is essential [2].
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Global climate change, attributed to the increased levels of greenhouse gases produced
by the use of fossil fuels, is recognized as the most important challenge of nowadays.
The increasing concentration of greenhouse gases in the atmosphere contributes to global
warming, which already contributes to the increasing extreme weather events. Mitigating
climate change has proved very difficult due to complex distribution problems across
resources for different countries. In the future, geochemical and geophysical impacts are
expected to cause significant harm to ecosystems.

The use of regulatory impact assessment is increasingly becoming a standard proce-
dure in OECD countries to prepare regulations. As noted above, climate impact assessment
is one of the priority objects of regulatory activity around the world, aimed at controlling
and observing climate change [1,2]. Since Henry’s law constants are a source of valuable
information on the environmental effects of organic compounds, QSPRs can serve as a tool
to simulate the above constants [3–5].

It is necessary to take into account that in addition to the knowledge or at least
estimation of numerical values on Henry’s law constants, computer experiments aimed at
obtaining such data as they develop and improve can be a source of additional information
helping to formulate and test theoretical ideas about the nature of the influence of molecular
architecture by the values of the mentioned constants. This, in turn, can provide the basis
for finding technological solutions that are less dangerous in terms of impact on the
environment, as well as on human health and farm animals and plants.

Cross-validation was used initially to estimate the prediction error of a mathematical
modeling procedure. For a couple of decades, it was trusted that cross-validation estimates
the prediction error unbiasedly. Nonetheless, numerous reports in the cheminformatics
literature show that cross-validated figures of merit cannot be trusted. Instead of cross-
validation, other variants of algorithms are possible that can provide the user with statistical
measures of model reliability, or, more precisely, measures of reliability of the predictive
potential of models. The essence of such algorithms is to use many options for distributing
the available data into non-overlapping training and control samples. One can carry
out such distributions in any way one likes, but most likely, the most “reliable” or at
least the most impartial are random divisions into the above-mentioned sets. Another
important condition, if unsuccessful, then at least with greater confidence in the model
verification carried out this way, is the consideration and comparison of many such random
distributions. The more such divisions into training and control are considered, the more
reasons there are to read such assessments as reliable. Such verification is referred to
in the literature as a system of self-consistent models [6]. Unlike previous approaches
used to test/evaluate the predictive potential of models, the system of self-consistent
models is also a method for constructing a model. Due to the significant contribution of
random transformations of available data carried out when building such models, the
results obtained can hardly be assessed as artificial. They are as natural as chance itself.
However, this “naturalness” contains not only attractive but also unpleasant possibilities,
which are a consequence of the slow increase in accuracy/reliability with an increase in the
number of corresponding computer experiments. The Monte Carlo method is suitable for
analyzing and comparing the mentioned random distributions in training and validation
sets. Still, it also leads to the need to consider “extra” unsuccessful distributions. By taking
these “excess experiments” into account, the corresponding comparisons are characterized
by significant dispersion, for a fair assessment of which a large number of corresponding
samples (models) is necessary.

The present study reports the results of an attempt to apply a system of self-consistent
models [6,7] to assess the predictive potential of models of Henry’s law constants simulated
by the CORAL software (http://www.insilico.eu/coral, accessed on 12 October 2023).

http://www.insilico.eu/coral
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2. Results and Discussion
2.1. The System of Self-Consistent Models

The system of self-consistent models represents the process of testing the predictive
potential of an applied approach. It involves building models with several random distri-
butions of the available data into training and validation sets. Perhaps the process could be
considered a variation of the two-deep cross-validation [8]. The process can be represented
as the following:

M1 : V∗1 → R2∗
1,1 M1 : V∗2 → R2∗

1,2
M2 : V∗1 → R2∗

2,1 M2 : V∗2 → R2∗
2,2

· · · M1 : V∗n → R2∗
1,n

M2 : V∗n → R2∗
2,n

...
. . .

...
Mn : V∗1 → R2∗

n,1 Mn : V∗2 → R2∗
n,2 · · · Mn : V∗n → R2∗

n,n

(1)

Mi represents the i-th model calculated with Equation (3) with the correlation weights
obtained by the Monte Carlo optimization, which gives a maximum of the target function
calculated with Equation (5). Vk is the list of compounds distributed to the validation set in
a k-th split of data. Figure 1 shows the principle of the selection of compounds for the i-th
model validation with a k-th split validation set.
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Figure 2 shows the results of the model graphically. 

Figure 1. The principle of the selection of the list of compounds from the validation set of the k-th
split to confirm the predictive potential of the i-th model. Symbol ‘*’ denotes the subset of compounds
of the k-th validation set of k-th split without compounds that are included in the active training set,
passive training set, or the calibration set of the i-th split.

2.2. The Statistical Quality of Models

The model of pHLC observed in the case of split 1 is the following:

pHLC = 3.8465 (±0.0005) + 1.1055 (±0.0001) × DCW(3.15) (2)
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Figure 2 shows the results of the model graphically.
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Figure 2. The graphical representation of the model for pHLC was observed in the case of split 1. A1,
P1, C1, and V1 are the active training, passive training, calibration, and validation sets, respectively.

Table 1 contains the statistical quality of models observed for ten random splits,
showing several statistical parameters. The values of these parameters are quite similar for
the different splits, and this indicates that the methodology is robust and replicable. This
fact is reasonably expected due to the large number of substances within each split; thus,
we can assume that the distribution of the substances within each split is representative of
the general behavior, and there are not many substances with deviating values. The large
number of substances facilitates the task; still, the spread of values for Henry’s constant
is quite large, over N orders of magnitude. Thus, despite the modeling difficulties, the
developed model is a good one. Furthermore, within each split, the values related to the
different sets (active training, passive training, calibration, and validation) are also quite
constant and good, and this is another demonstration of the quality of the model, which
is expected to provide the same kind of performance when used on new substances. For
instance, the R2 values are good, around 0.8.

Table 1. The statistical quality of models observed for ten random splits into the active training (A),
passive training (P), calibration (C), and validation (V) sets.

Split Set n* R2 CCC Q2
F1 Q2

F2 Q2
F3 <Rm

2> RMSE MAE F Nac

1 A 7293 0.8089 0.8943 2.22 1.69 30,855

P 7270 0.8176 0.8980 2.20 1.68 32,575

C 7445 0.8114 0.8957 0.8114 0.8114 0.8060 0.7341 2.25 1.71 32,014

V 7431 0.8046 - - - - - 2.20 1.67 - 100
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Table 1. Cont.

Split Set n* R2 CCC Q2
F1 Q2

F2 Q2
F3 <Rm

2> RMSE MAE F Nac

2 A 7374 0.8288 0.9064 2.10 1.59 35,690

P 7156 0.8223 0.9019 2.14 1.61 33,112

C 7410 0.8226 0.9023 0.8226 0.8225 0.8173 0.7502 2.17 1.61 34,345

V 7499 0.8239 - - - - - 2.15 1.62 - 97

3 A 7258 0.8160 0.8987 2.14 1.62 32,179

P 7371 0.8187 0.9006 2.19 1.66 33,278

C 7473 0.8217 0.9015 0.8217 0.8217 0.8140 0.7425 2.18 1.65 34,436

V 7337 0.8157 - - - - - 2.19 1.64 - 96

4 A 7335 0.8174 0.8995 2.18 1.65 32,824

P 7364 0.8174 0.8987 2.18 1.65 32,955

C 7336 0.8293 0.9065 0.8293 0.8293 0.8243 0.7589 2.14 1.63 35,629

V 7404 0.8002 - - - - - 2.25 1.71 - 96

5 A 7431 0.8248 0.9040 2.13 1.61 34,978

P 7369 0.8187 0.9001 2.13 1.62 33,268

C 7313 0.8305 0.9078 0.8305 0.8305 0.8221 0.7617 2.13 1.60 35,828

V 7326 0.8239 - - - - - 2.15 1.63 - 95

6 A 7348 0.8130 0.8968 2.16 1.63 31,931

P 7413 0.8227 0.9028 2.16 1.65 34,391

C 7346 0.8149 0.8968 0.8148 0.8148 0.8065 0.7291 2.23 1.66 32,334

V 7332 0.8240 - - - - - 2.14 1.62 - 98

7 A 7264 0.8068 0.8931 2.23 1.70 30,321

P 7338 0.8068 0.8935 2.26 1.73 30,627

C 7453 0.8021 0.8911 0.8019 0.8019 0.8036 0.7230 2.26 1.73 30,191

V 7384 0.8030 - - - - - 2.26 1.74 - 98

8 A 7184 0.8232 0.9030 2.16 1.63 33,431

P 7413 0.8262 0.9039 2.14 1.61 35,239

C 7284 0.8335 0.9083 0.8334 0.8334 0.8293 0.7595 2.12 1.60 36,444

V 7558 0.8132 - - - - - 2.14 1.62 - 97

9 A 7470 0.8064 0.8928 2.27 1.73 31,109

P 7312 0.8002 0.8898 2.26 1.72 29,275

C 7389 0.7884 0.8823 0.7885 0.7884 0.7966 0.7043 2.31 1.75 27,523

V 7268 0.8067 - - - - - 2.27 1.74 - 100

10 A 7344 0.8092 0.8946 2.24 1.70 31,144

P 7360 0.8044 0.8930 2.28 1.73 30,254

C 7358 0.7973 0.8887 0.7971 0.7971 0.8023 0.7171 2.28 1.74 28,937

V 7377 0.8073 - - - - - 2.22 1.69 - 103

(*) n = the number of compounds in a set; R2 = determination coefficient; CCC = concordance correlation
coefficient [9]; Q2

F1, Q2
F2, and Q2

F3 = improved cross-validation criteria [10]; <Rm
2> = average rm2 metrics [11];

RMSE = root mean squared error; MAE = mean absolute error; F = Fischer F ratio; Nac = the number of parameters
for the Monte Carlo optimization (the number of active SMILES attributes).

Tables 2–4 represent the system of self-consistent models. Despite the similarity of the
statistical quality of the models, one can see that there is a difference. Various distributions
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of available data in training (i.e., A, P, and C) and validation sets resulted in somehow
different models, and some of them are better than others. Figure 3 shows that in the
overall splits, there is an anti-correlation between the number of SMLES attributes involved
in the Monte Carlo optimization and average values of determination coefficients for the
validation sets of the models. Thus, a paradoxical situation is observed: a smaller number
of optimized parameters is accompanied by an improvement in the predictive potential of
the model. A possible explanation is that there is a preferred number of inputs to the model
in order to be generally correct, and by adding more inputs, there is a loss of predictivity
due to overfitting [12].

Table 2. The numbers of compounds included in the process of checking the predictive potential of
the i-th model for the k-th split.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

M1 7431 1896 1809 1861 1891 1797 1846 1938 1642 1823

M2 1896 7499 1853 1926 1952 1872 1940 1916 1822 1931

M3 1809 1853 7337 1891 1790 1863 1846 1837 1817 1824

M4 1861 1926 1891 7404 1877 1797 1886 1873 1775 1872

M5 1891 1952 1790 1877 7326 1801 1805 1853 1857 1842

M6 1797 1872 1863 1797 1801 7332 1885 1835 1844 1826

M7 1846 1940 1846 1886 1805 1885 7384 1907 1855 1848

M8 1938 1916 1837 1873 1853 1835 1907 7558 1835 1919

M9 1842 1822 1817 1775 1857 1844 1855 1835 7268 1808

M10 1823 1931 1824 1872 1842 1826 1848 1919 1808 7377

Table 3. Determination coefficients were observed when testing the predictive potential of the i-th
model for the k-th split and the average values and dispersion of the determination coefficients.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 x ± ∆x

M1 0.8046 0.8191 0.8045 0.7898 0.7918 0.8105 0.8072 0.7958 0.7984 0.7873 0.8009 ± 0.0095

M2 0.8280 0.8239 0.8132 0.8040 0.8221 0.8283 0.8147 0.8265 0.8222 0.8271 0.8210 ± 0.0075

M3 0.8098 0.8048 0.8157 0.7895 0.8161 0.8194 0.8175 0.8107 0.8233 0.8206 0.8127 ± 0.0094

M4 0.7970 0.7901 0.7844 0.8002 0.8020 0.8065 0.8035 0.7924 0.8149 0.8146 0.8050 ± 0.0095

M5 0.8093 0.8226 0.8278 0.8099 0.8239 0.8233 0.8353 0.8180 0.8116 0.8406 0.8222 ± 0.0100

M6 0.8196 0.8227 0.8216 0.8083 0.8197 0.8240 0.8121 0.8184 0.8400 0.8204 0.8207 ± 0.0101

M7 0.7986 0.7932 0.8078 0.7931 0.8154 0.7982 0.8030 0.7861 0.8147 0.8166 0.8027 ± 0.0101

M8 0.8125 0.8227 0.8193 0.7985 0.8179 0.8240 0.8106 0.8132 0.8268 0.8282 0.8173 ± 0.0085

M9 0.7881 0.7970 0.8100 0.8003 0.7933 0.8262 0.8110 0.8100 0.8067 0.8177 0.8050 ± 0.0109

M10 0.7789 0.8005 0.8043 0.8059 0.8241 0.8053 0.8162 0.8083 0.8202 0.8073 0.8071 ± 0.0118

2.3. Why Are Models Needed?

The simplest and most traditional ideas for answering the question highlighted in
the title are that the experiment is expensive and takes time to complete. However, this is
just the tip of the iceberg. There are quite deep needs for building models in the aspect of
epistemology. Since practice is the basis of the development of society, the development of
various models is dictated primarily by the need for practical solutions to real problems, and
here, problems arise that are much more unpleasant and complex than the definitions of the
domain of applicability and unambiguity of algorithms. You should start by determining
who the consumer of the model is. The complication of models is rarely accompanied by
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their actual improvement. As a result, the consumer of the model, despite being interested
in using the model, often simply does not know how to do it. Under such circumstances,
it becomes likely that the only user of the model remains the developer of this model. To
avoid this simple, unpleasant situation, significant efforts are needed on the part of model
developers. All models are wrong [13], and only some of them are useful. How do we
recognize useful models? It seems that not the last condition for the usefulness of a model
is its popularity. In other words, the model is useful if it is used. However, popularity does
not mean usefulness. At least without the useful results of using the model, it cannot be
considered useful. Many factors determine the usefulness of a model, but the first one is the
clarity of the result or the ability to assess how reliable the outcome is quickly. The reliability
of a result starts with its reproducibility. Often, reproducibility may not be absolute and
is accompanied by some level of variance in the result, such as the statistical quality of
the model expressed in terms of the coefficient of determination and root mean squared
error. However, in reality, the model for the endpoint of interest is the value extracted from
complex computer experiments obtained for the only correct distribution of the available
data into the training and validation subsystems. What is bad about it? First of all, the
possibility for such a model to turn out to be a beautiful accident does not coincide with
the real difficulties and paradoxes of predicting the endpoint in question; of course, this
situation is especially “dangerous” when few data are available. If there are a lot of data,
the probability that some selected split into training and validation is successful becomes
smaller the greater the amount of data available for model development. The result is a
situation similar to the uncertainty principle: the more data, the more reliable the result,
which, however, is most likely less accurate. In other words, when determining a model
from a small number of available data, the coefficient of determination will be close to
1. Still, when determining the same model for a large number of data, the coefficient of
determination will not be comparable to 1. Since all models are wrong, the researcher,
whether a model developer or a model user, must be on guard; that is, to avoid a situation
where fighting mice (high prediction accuracy) distracts from the “tiger” present (the
impossibility of contradicting the uncertainty principle or the contradiction between the
need to consider large amounts of experimental data, which guarantees an increase in
uncertainty in the forecast). All this leads to the triumph of seditious thoughts, which is
bad if there are few data and equally bad if there are too many data. This means there must
be some kind of “correct” reliable middle ground where there are exactly as many data as
needed for a useful model (the model that is still incorrect).

Table 4. Mean absolute error values, which were observed when testing the predictive potential of
the i-th model for the k-th split.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

M1 1.67 1.66 1.67 1.71 1.71 1.64 1.65 1.69 1.67 1.63

M2 1.57 1.62 1.62 1.66 1.62 1.58 1.62 1.59 1.61 1.61

M3 1.63 1.66 1.64 1.70 1.64 1.60 1.67 1.63 1.66 1.58

M4 1.67 1.72 1.73 1.71 1.72 1.71 1.68 1.71 1.71 1.66

M5 1.63 1.61 1.60 1.67 1.62 1.60 1.61 1.66 1.67 1.56

M6 1.59 1.61 1.60 1.69 1.61 1.62 1.63 1.60 1.63 1.57

M7 1.70 1.77 1.76 1.75 1.73 1.73 1.74 1.76 1.73 1.68

M8 1.60 1.60 1.59 1.68 1.65 1.58 1.63 1.62 1.61 1.64

M9 1.73 1.73 1.76 1.78 1.78 1.72 1.73 1.70 1.74 1.67

M10 1.68 1.74 1.68 1.70 1.66 1.65 1.68 1.75 1.65 1.69
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part of model developers. All models are wrong [13], and only some of them are useful. 

How do we recognize useful models? It seems that not the last condition for the usefulness 

of a model is its popularity. In other words, the model is useful if it is used. However, 

popularity does not mean usefulness. At least without the useful results of using the 

model, it cannot be considered useful. Many factors determine the usefulness of a model, 

but the first one is the clarity of the result or the ability to assess how reliable the outcome 

is quickly. The reliability of a result starts with its reproducibility. Often, reproducibility 

may not be absolute and is accompanied by some level of variance in the result, such as 

the statistical quality of the model expressed in terms of the coefficient of determination 

and root mean squared error. However, in reality, the model for the endpoint of interest 

is the value extracted from complex computer experiments obtained for the only correct 

distribution of the available data into the training and validation subsystems. What is bad 

about it? First of all, the possibility for such a model to turn out to be a beautiful accident 

does not coincide with the real difficulties and paradoxes of predicting the endpoint in 

question; of course, this situation is especially “dangerous” when few data are available. 

If there are a lot of data, the probability that some selected split into training and valida-

tion is successful becomes smaller the greater the amount of data available for model de-

velopment. The result is a situation similar to the uncertainty principle: the more data, the 

more reliable the result, which, however, is most likely less accurate. In other words, when 

Figure 3. Anti-correlation between the number of active SMILES attributes involved in the Monte
Carlo optimization and the average determination coefficient of a model’s overall splits.

2.4. Model as a Hired Worker in a Workshop

Almost always, the model acts as a kind of assistant in solving various problems.
Here, a certain analogy arises with the cooperation between a hired worker and the owner
of a certain workshop or even production. If following this analogy, like a worker, the
model must have certain capabilities and qualities. A model must be able to do something.
In the context of the QSPR, the model must be able to, having received a standard task
(input data), predict something corresponding (the expected value) to the input data that
are offered to it. At the same time, a hired worker should not take on arbitrary tasks but
only those for which they are an expert. Likewise, the model should abandon a problem
that it cannot reliably solve. The model should at least abandon the attempt to solve the
impossible task, but it is better if the model is able to explain why this problem cannot be
solved using this model. This leads to the formulation of the quite important concept of
QSPR simulation known as the “applicability domain”. Typically, the applicability domain
is calculated based on distances in the multidimensional descriptor space or based on the
similarity of molecular graphs. However, another possibility is for the user to determine
the scope of the applicability of the model. It would be ideal to determine the applicability
domain during the process of building the model; that is, taking into account the wishes of
the potential user of the model. In other words, the model is self-sufficient, able to regulate
and adequately evaluate its actions by the “proposed task”.

2.5. A Model Is Either Knowledge or Delusion

A model can be knowledge if certain conditions for its development and use are met.
The model must be carefully tested. All models are wrong [13]. All models are random
events [14]. For a model to be useful, it must work to create new knowledge. For a model
to produce knowledge, its results must be reproducible according to elementary logic.

The approach considered here (the system of self-consistent models) is an attempt
to create, or at least simulate, the ability of a model, independent of the user, to “check
its actions”. The self-consistency means not only (or even not so much) the similarity of
the statistical quality of the models but rather the verification of the predictive potential
on compounds really “invisible” in the process of developing the model (i.e., compounds
selected according to the scheme that is shown in Figure 1).

It may seem that the system of self-consistent models is an approach conceptually
similar to cross-validation [15]. However, if within the framework of cross-validation, one
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model is used in which the effect of removing one or several (e.g., 5-fold [16]) participants
(compounds) is studied, then in the case of systems of self-consistent models, the predictive
potential of many models built based on different training sets is studied and compared.
The proposed approach will undoubtedly provide a departure from the naive Q2 [8] and
make it possible to evaluate the predictive potential in terms of the index of the ideality of
correlation, which incorporates information about both the determination coefficient and
the mean absolute error (MAE).

Similar to the world of material movements, in which all events visible and tangible to
us in everyday life take place, such as traffic, sports, or exchange rates, there is a world of
probabilistic actions, accidents, and even catastrophes that influence each other. However,
these are not visible and not tangible to us. Perhaps quantitative structure–property/activity
relationships (QSPRs/QSARs) allow you to look into this world of accidents and trends that
affect each other. There is no mysticism here, but the phenomena occurring in such a space
are not always described ideally and reliably. In other words, encountering situations that,
in contrast to logic, are possible and unpleasant. For example, the quality of calculations
(models) can be affected by the collection of substances that are available in the database or
a list of priorities and criteria selected in the software used to build up QSPRs. However, in
any case, it remains an indisputable axiom that models of random events are knowledge
only when they are understandable and allow the possibility of verification by establishing
and confirming their reproducibility.

The use of various descriptors to predict the physicochemical properties of substances
has been criticized many times. This criticism covered many aspects of the QSPR use. The
main point of criticism was the very idea of correlation. That is, correlation does not show
causes. Another point of criticism is the impossibility of accurately determining the appli-
cability domain. However, the practical use of QSPRs is increasing rather than decreasing.
Two circumstances able to improve the quality of discussion between critics and supporters
of QSPRs: (i) it cannot be expected that QSPRs are capable of replacing experiments; and
(ii) a QSPR can become undeniably useful if QSPRs become the language of communication
between the experimenter and the developer of a QSPR, not a mathematical tool itself.

Finally, last but not least, the proposed approach is implemented through one program
available on the internet (http://www.insilico.eu/coral, accessed on 12 October 2023), and
that has been used as a tool to develop QSPR/QSAR models many times [17–24].

3. Method
3.1. Data

Experimental Henry’s law constants (Atm m3/mole) were obtained from [1] as ex-
pressed via negative decimal logarithm (pHLC). They were examined as the endpoint for
QSPR analysis. The large experimental data set (n = 29,439) was applied to distribute ex-
perimental data into four sets using ten different splits. The resulting data sets included the
active training-A (≈25%), passive training-P (≈25%), calibration-C (≈25%), and validation-
V (≈25%) sets (the average percentage of similarity for these splits was less than 30%).
Each of the above sets has a defined task. The active training set is used to build the model:
molecular features extracted from the SMILES of the active training set are involved in
the process of Monte Carlo optimization aimed at providing correlation weights for the
above features, which give a maximal target function calculated using descriptors (the
sum of the correlation weights) and the endpoint on the active training set. The task of
the passive training set is to check whether the model obtained for the active training
set is satisfactory for the SMILES, which was not involved in the active training set. The
calibration set should detect the start of the overtraining (overfitting). At the beginning
of the optimization, the correlation coefficients between the experimental values of the
endpoint and the descriptor contemporaneously increase for all sets. Still, the correlation
coefficient for the calibration set reaches the maximum (this is the start of the overtraining),
and further optimization leads to a decrease in the calibration set’s correlation coefficient.
The optimization should be stopped when overtraining starts. After stopping the Monte

http://www.insilico.eu/coral
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Carlo optimization procedure, the validation set is used to assess the predictive potential
of the obtained model.

3.2. Model

The model values of Henry’s law constants were calculated as

pHLC = C0 + C1 ×DCW(3.15) (3)

where C0 and C1 are regression coefficients; the optimal SMILES-based descriptor DCW
applies two thresholds; the first threshold equal to 3 is used to define the active and inactive
attributes of the simplified molecular input-line entry system (SMILES); and the second
threshold, equal to 15, refers to the number of epochs in the Monte Carlo optimization
process [25]. See Supplementary Materials Table S1–S4.

3.3. Optimal Descriptor

Active SMILES attributes have so-called correlation weights (CWs), which are neces-
sary to calculate the descriptor DCW(3.15) by the formula:

DCW(3.15) = ∑ CW(Sk) + ∑ CW(SSk) (4)

Table 5 contains an example of the calculation of the DCW(3.15).

Table 5. The DCW(3.15) calculation for cyanamide (NC#N), using the correlation weights of the
model obtained with split-1. DCW(3.15) = 3.6993.

SMILES Attribute Correlation Weight

Sk CW (Sk)

N........... 0.9532

C........... −0.0412

#........... 0.2896

N........... 0.9532

SSk CW (SSk)

N...C....... 0.9275

C...#....... 0.0088

N...#....... 0.6083
# triple bond.

3.4. The Monte Carlo Optimization

Equation (4) needs the numerical data on the above correlation weights. Monte Carlo
optimization is a tool to calculate those correlation weights. The following target functions
for the Monte Carlo optimization are used:

TF = rAT + rPT − |rAT − rPT| × 0.1 (5)

The rAT and rPT are correlation coefficients between the observed and predicted
endpoints for the active and passive training sets.

4. Conclusions

In this work, the application of the system of self-consistent models, which are gener-
ated by the CORAL software, was used to develop a predictive model based on a large set
of substances with values of Henry’s law constants. The suggested version of the optimal
descriptor and the Monte Carlo optimization provide satisfactory predictive potential for
all ten random splits of the experimental data. Nevertheless, the model self-consistency
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system showed that though the predictive potential of the models does not differ too much,
this difference is noticeable. In addition, reducing the number of optimized parameters
improves the predictive potential of the model (Figure 3). This circumstance can be used
to determine the quality of the partition used: the fewer parameters to be optimized, the
more likely it is to improve the predictive potential of the model.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules28207231/s1. The Supplementary Materials section contains
details on the model calculated with Equation (3). Tables S1–S4 contain technical details for active
and passive training, calibration, and validation sets, respectively.
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