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1. Introduction

The spatial structure of minerals is a fundamental factor in determining the morphol-
ogy, physical properties, and genesis of minerals [1–4]. Today, characterization techniques
used to investigate various features of the spatial structure of minerals include X-ray diffrac-
tion (XRD), thermogravimetric analysis (TG), Fourier transform infrared spectroscopy
(FTIR), Raman spectroscopy (Raman), and morphological observation techniques such as
scanning electron microscopy (SEM) and atomic force microscopy (AFM) [5,6]. The charac-
terization of the spatial structure of minerals can provide a scientific basis for explaining
the genesis and evolution of minerals, as well as revealing geological phenomena [7–9].

In recent years, research activity on the interaction mechanism and environmental
effects at the surface interface between minerals and environmental substances has been
increasing [10,11]. In conjunction with the latest mineralogical research methods such as
synchrotron radiation, in situ spectroscopy, adsorption modeling, and computational simu-
lation, the surface interface processes and mechanisms of minerals have been explored at
the atomic and molecular levels, as have the constraining mechanisms and the geochemical
behaviors of environmental substances interacting with surface source minerals [12].

Thermal and kinetic studies on the spatial structure of minerals are also of great
interest to the scientific community. Under high-pressure (i.e., high-temperature) conditions,
corresponding patterns of change and intrinsic relationships in the chemical composition,
internal structure, and physicochemical properties of minerals can be observed [13–15].
The study of high-pressure new minerals and the mechanism of mineral phase transition
are of great significance to the development and utilization of mineral resources.

This Special Issue reflects the diversity of spatial structure studies related to minerals.
We will provide a brief overview of the contents of this Special Issue in the following
paragraphs. We would like to make it clear, however, that the purpose of this Editorial is
not to elaborate extensively on each article, but to encourage readers to explore them.

2. An Overview of the Published Articles

Kang et al. (Contribution 1) [16] treated pyrite tailings slag using microbially induced
carbonate precipitation (MICP) technology. The mineral composition and the spatial
structure of the biocement samples were analyzed using X-ray diffraction (XRD) and Fourier
transform infrared absorption spectroscopy (FTIR); the thermal stability and microstructure
of the tailings slag were investigated via thermogravimetric analysis (TGA) and scanning
electron microscopy (SEM). The results showed that biocementation of pyrite tailings using
MICP technology can effectively reduce the permeability of the tailings. They further
revealed the biochemical mechanism underlying biocementation of pyrite tailings formed
via MICP and found that calcium carbonate precipitation was only induced after complex
biochemical and physicochemical reactions. Through further investigations, the authors
found that the generated calcium carbonate can also co-precipitate with heavy metal ions
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and that the carbonate precipitation on the surface of the tailings will further inhibit the
tailings from oxidizing and prevent the diffusion of heavy metals. On the basis of forming
a biocement barrier on the surface of the tailings sand, this study provides a theoretical
basis for the study of the interactive mechanism between the surface interface of minerals
and environmental substances and the environmental effects of this.

Luo et al. (Contribution 2) [17] observed four thermally altered coal-based graphite
(TACG) samples using polarizing microscopy and Raman spectrometry and the Zhuji
coal mine in the Huainan coal field as a case study. The results show that the degree of
graphitization intensifies as the distance from the intrusion decreases, while the Raman
wave peaks are shifted in the direction of a low wave number, the intensity of the G peaks
(graphite) increases, the intensity of the D peaks (disorder) decreases, and the full width
at maximum (FWHM) of the D peaks and the G peaks also decreases gradually. After a
theoretical analysis of the spatial structure of TACG, the authors arrived at some interesting
conclusions. They observed that a magma intrusion along the top plate of the coal seam
reduced the degree of lattice defects during graphitization, and the areas of structural
defects in the samples were attributed to primary structural defects. They also observed that
the clay minerals in the coal seams were distributed in bands and demonstrated a symbiotic
relationship between hydrothermal mineralization and coal and clay minerals, suggesting
that sphalerite and pyrite are the products of the late stage of magmatic hydrothermal
mineralization. In addition, this study demonstrated the intrinsic impact of geological
pressure on the formation of coal seams, which provides an important reference for and
a new perspective on the genesis and evolution of thermally metamorphosed coal-based
graphite in the Huainan coal field.

Shi et al. (Contribution 3) [18] carried out a study on the activation of biotite-based
polymers bound by sodium hydroxide to investigate the modification of clay using biotite-
based polymers. The authors also assessed the effects of multiple factors on the unconfined
compressive strength of the modified clay. The results showed that increasing the molar
concentrations of the metakaolin-based geopolymer (MKG) and alkali activator increased
the strength of the MKG, and the optimal experimental ratios were obtained, with the dam-
age mode of the soil changing to brittle damage after treatment. The authors characterized
the spatial structure of the modified clay via scanning electron microscopy (SEM) and X-ray
diffraction (XRD), which showed that the binder not only acted as a bonding agent but
also reacted with the clay to form a geopolymer, which produces gelling compounds that
will bond the clay particles firmly together and increase their strength. This article also
emphasizes that the treated soil has a denser structure, and that treatment enhances the
mechanical properties of the soil. This study provides a possible application of metakaolin
in soil improvement works.

The article by Hua et al. (Contribution 4) [19] describes how a new type of ceramite
was prepared using iron tailings as the main raw material under a nitrogen atmosphere at
1150 ◦C. The ceramite was characterized and analyzed in detail via XRF, XRD, SEM-EDS,
TGA, and specific surface area analysis. The results show that the prepared ceramite
has a stable structure and is uniformly dense, contains a small number of particles, is
high-strength, and exhibits good adsorption properties. In addition, the spatial structure
of the pyroxene and tremolite in the ceramite resulted in an improved performance in
terms of resistance to hydration. Further investigations revealed that silica, calcium oxide,
and alumina are the main constituents of ceramite and suggested that mineral phases
containing Al, Mg, or Ca are partially formed, with higher molecular weights, through
complex chemical reactions. In this study, iron tailings were used as a material to fabricate
lightweight high-strength ceramic stones with, which provides new possibilities for the
reuse of iron tailing resources.

Zhao et al. (Contribution 5) [20] utilized uniaxial compression tests to analyze Pisha
sandstone under a dry–wet cycle and to evaluate the changes in the mechanical properties
of the specimens after the dry–wet cycle. The chemical composition and spatial structure
of the specimens were analyzed via XRD and SEM. Results show that, on the one hand,
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a higher number of dry–wet cycles deteriorate the mechanical properties of the Pisha
sandstone, resulting in a more fragile damage pattern (peeling damage). As the number
of dry–wet cycles increases, the relative content of the clay minerals increases rapidly and
then slowly, while the relative content of the primary minerals gradually decreases. On
the other hand, it was found that the sandstone grains became rough and that a significant
increase in porosity occurs. The authors also quantified the deterioration trend of the
pore structure and put forward a predictive model for the correlation between uniaxial
compressive strength and porosity. These results provide a reference for analyzing the
evolution of Pisha sandstone slopes and predicting the geological phenomena of Pisha
sandstone in its natural state.

3. Conclusions

This Special Issue introduces the latest research on the physical and chemical properties
and modification mechanisms of pyrite tailings, the intrinsic structure and geological
genesis of thermally metamorphosed coal-based graphite, the mechanical properties and
spatial structure of geopolymer-modified clays, the characterization and utilization of the
mineral phases of iron ore tailings, and the spatial structure and mechanical properties of
Pisha sandstones under wet and dry cycling. This compilation of articles on the spatial
structure of minerals covers a diverse range of research directions, reflected, for example,
in the variety of research methods (such as the different techniques and equipment used
to characterize minerals), the flexibility of combining macro- and micro-applications, and
the range of media studied, such as rocks, industrial raw materials, and solid wastes. In
addition, the results presented in this Special Issue can serve as a reference for scholars
working in this research area. We invite such scholars to continue conducting further
research on the topics discussed.
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