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Abstract: This study was conducted to examine the chemical composition of the essential oils (EOs)
from six Tunisian Eucalyptus species and to evaluate their anti-enzymatic and antibiofilm activities.
The EOs were obtained through hydro-distillation of dried leaves and subsequently analyzed using
GC/MS. The main class of compounds was constituted by oxygenated monoterpenes, particularly
prominent in E. brevifolia (75.7%), E. lehmannii (72.8%), and E. woollsiana (67%). Anti-enzymatic
activities against cholinesterases, α-amylase, and α-glucosidase were evaluated using spectrophoto-
metric methods. Notably, the E. brevifolia, E. extensa, E. leptophylla, E. patellaris, and E. woollsiana EOs
displayed potent acetylcholinesterase (AChE) inhibition (IC50: 0.25–0.60 mg/mL), with E. lehman-
nii exhibiting lower activity (IC50: 1.2 mg/mL). E. leptophylla and E. brevifolia showed remarkable
α-amylase inhibition (IC50: 0.88 mg/mL), while E. brevifolia and E. leptophylla significantly hindered
α-glucosidase (IC50 < 30 mg/mL), distinguishing them from other EOs with limited effects. Addition-
ally, the EOs were assessed for their anti-biofilm properties of Gram-positive (Staphylococcus aureus
and Listeria monocytogenes) and Gram-negative (Acinetobacter baumannii, Pseudomonas aeruginosa and
Escherichia coli) bacterial strains. The E. extensa EO demonstrated the main antibiofilm effect against
E. coli and L. monocytogenes with an inhibition > 80% at 10 mg/mL. These findings could represent
a basis for possible further use of Eucalyptus EOs in the treatment of human microbial infections
and/or as a coadjutant in preventing and treating Alzheimer’s disease and/or diabetes mellitus.

Keywords: Eucalyptus; essential oil; biofilm; cholinesterase; α-amylase; α-glucosidase

1. Introduction

The rise of antimicrobial resistance in recent years highlights a critical global health
concern. This emergence of resistance underscores the urgency for innovative approaches
in combating bacterial infections. In this context, the potential significance of natural
products, particularly essential oils (EOs), becomes apparent in the quest to identify and
develop novel antibacterial agents [1].

EOs have garnered attention due to their complex compositions, which often encom-
pass a diverse array of bioactive compounds. Their multifaceted nature offers a unique
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advantage in circumventing bacterial resistance mechanisms, making them promising
candidates for the development of effective antibacterial agents.

Furthermore, EOs have attracted attention beyond their direct antimicrobial proper-
ties. In recent times, research has unveiled their capacity to inhibit acetylcholinesterase
(AChE) and/or butyrylcholinesterase (BChE), which are enzymes that play pivotal roles in
neurodegenerative disorders such as Alzheimer’s disease [2,3].

This dual functionality of EOs, both as antimicrobial agents and potential contributors
to neurodegenerative disease management, underscores their versatility and the value of
exploring their various applications.

Moreover, the plant kingdom offers a rich reservoir of compounds with diverse
therapeutic potentials. Among these potentials, the search for natural substances with hy-
poglycemic activities, notably α-glucosidase and α-amylase inhibitors, has gained interest.
These enzymes are involved in the regulation of glucose levels, and their inhibition holds
promise in managing conditions like diabetes [4,5]. The exploration of botanical sources
for such bioactive compounds opens doors to developing new strategies for diabetes
management and prevention.

As part of this context, the Eucalyptus genus, belonging to the Myrtaceae family, has
attracted significant scientific interest with its extensive diversity of species and diverse
biological activities, like antioxidant [6], anti-diabetic [7], phytotoxic [8] antimicrobial [9],
and insecticidal [10] properties.

Moreover, many Eucalyptus species show antimicrobial activity: Elaissi and coworkers
studied the antibacterial activity of 20 Eucalyptus species, among them, E. odorata EO
showed the best inhibition zone diameter against S. aureus and E. cinera and E. gunni
essential oils were the most active against P. aeruginosa [9]. Other Eucalyptus species like E.
gunnii inhibited the biofilm formation of S. aureus [11]. Moreover, E. globulus was active
against the biofilms of E. coli and P. aeruginosa [8] and showed a high potential to treat
Streptococcus pneumoniae infections [12], while E. bicostata EO was reported to inhibit A.
baumannii, S. aureus, and L. monocytogenes biofilms [13].

Regarding the anti-diabetic activity of EOs, plants from the Eucalyptus genus such as
E. globulus have been used in the traditional treatment of diabetes [7]; moreover, E. camaldu-
lensis EO inhibits both α-amylase and α-glucosidase in a non-competitive manner [14].

Although, recently, many EOs have been studied for their possible anti-cholinesterases
activity, only two studies have been carried out in this direction for Eucalyptus species
and regarding only E. globulus [15,16]. This study aimed to determine the chemical com-
position of the EOs of six Tunisian Eucalyptus species and to evaluate their antibacterial
and anti-enzymatic activity. The six selected species are as follows: Eucalyptus brevifolia
F. Muell., E. extensa L.A.S. Johnson and K.D. Hill, E. lehmannii (Schauer) Benth., E. leptophylla
F. Muell. ex Miq., E. patellaris F. Muell., and E. woollsiana R.T. Baker. The antibiofilm activity
was evaluated against Gram-positive (S. aureus and L. monocytogenes) and Gram-negative
(E. coli, P. aeruginosa, and A. baumannii) pathogenic strains. The anti-enzymatic activity was
evaluated against cholinesterases, α-amylase, and α-glucosidase.

2. Results
2.1. Yields and Chemical Composition

The hydro-distillation process of Eucalyptus leaves resulted in the extraction of yellow
oils with yields of 2.42%, 2.03%, 1.91%, 1.66%, 1.43%, and 0.25% for E. brevifolia, E. leptophylla,
E. lehmannii, E. woollsiana, E. extensa, and E. patellaris, respectively.

The analysis of the EOs allowed us to identify a total of 139 components: 40 in the
E. brevifolia EO (97.2% of the total), 46 in the E. extensa EO (97.4%), 7 in the E. lehmanii EO
(95.3%), 42 in the E. lephophylla EO (97.5%), 65 in the E. patellaris EO (94.1%), and 53 in
the E. woollsiana EO (97.0%). In almost all EOs, oxygenated monoterpenes were the most
representative class: 75.7, 58.8, 72.8, 39.2, and 67.0%, respectively, for the E. brevifolia, E.
extensa, E. lehmanii, E. leptophylla, and E. woollsiana EOs. Instead, oxygenated sequiterpenes
predominated in the EO from E. patellaris (46.2%) (Table 1).
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Table 1. Chemical composition (%, v/v) of the EOs.

A B C D E F KI a KI b Identification c

3-Ethyl-2-pentanone - - - 0.2 - - 783 - 1, 2

3-Methylbutyl acetate - - - 0.2 - - 815 1132 1, 2

4-Methyl-2-pentyl acetate - - - - - 0.2 831 - 1, 2

2-Methylbutanoic anhydride - - - 31.0 - - 833 - 1, 2

α-Pinene 16.6 12.0 21.4 0.7 1.3 7.5 857 1012 1, 2, 3

2,4-Dimethyl-3-ethylpentane - - - 0.3 - - 859 - 1, 2

Camphene 1.0 0.2 0.9 0.1 - 0.3 868 1075 1, 2, 3

β-Pinene 0.2 0.3 - - 0.3 0.7 891 1110 1, 2, 3

Myrcene - 0.2 - - 0.6 0.1 893 1166 1, 2

α-Phellandrene 0.1 1.0 - - 1.5 0.1 918 1177 1, 2, 3

2-Ethyl-1-pentanol - - - 0.1 - - 921 - 1, 2

α-Terpinene - 0.1 0.2 - 0.4 - 930 1170 1, 2, 3

p-Cymene - - - - 1.8 - 938 1250 1, 2

Eucalyptol 57.0 50.0 70.5 32.2 26.3 53.6 943 1210 1, 2, 3

cis-β-Ocimene 0.3 0.1 - - - 0.1 955 1225 1, 2

γ-Terpinene 1.1 0.1 - - 1.0 0.3 971 1221 1, 2, 3

trans-p-Mentha-2,8-dienol 0.1 - - - - - 981 -

Fenchone 0.2 - - - - - 994 -

Terpinolene - 0.2 - - 0.5 - 996 1267 1, 2, 3

6-Camphenol 0.3 - - 0.1 - 0.2 998 - 1, 2

p-Cymenene - 0.1 - - - - 999 1269 1, 2

3-Methylbutyl
2-methylbutanoate - - - 0.1 - - 1008 - 1, 2

Linalool - - - - 0.4 - 1009 1506 1, 2, 3

α-Pinene oxide 0.1 - - - 0.1 0.1 1012 1384 1, 2

Butanoic acid, 3-methyl-,
3-methylbutyl ester 0.2 - - 0.5 0.2 0.7 1015 1285 1, 2

endo-Fenchol - - - - 0.1 0.6 1016 - 1, 2, 3

exo-Fenchol 1.2 0.3 1.3 0.2 - - 1019 - 1, 2, 3

cis-p-Menth-2-en-1-ol - - - - 0.3 - 1024 - 1, 2

α-Campholenal 0.2 0.1 - - - 0.1 1027 - 1, 2

2,4,4-Trimethylcyclopentanol - - - 0.1 - - 1029 - 1, 2

allo-Ocimene 0.3 0.1 - - - 0.1 1036 1388 1, 2

trans-Pinocarveol 5.8 2.1 - 4.6 0.1 4.6 1040 1664 1, 2

trans-p-Menth-2-en-1-ol - - - - 0.3 0.1 1042 1571 1, 2

Camphor 0.2 1043 1491 1, 2, 3

Camphene hydrate - 0.2 - - - - 1046 - 1, 2

trans-Pinocamphone 0.2 1049 - 1, 2

Pinocarvone 1.7 0.6 - 0.9 - - 1065 - 1, 2

Borneol 1.9 0.3 0.9 0.3 0.3 - 1067 1715 1, 2, 3

neo-iso-Isopulegol 0.1 0.2 - - - - 1068 - 1, 2
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Table 1. Cont.

A B C D E F KI a KI b Identification c

Pinocampheol 0.3 1069 - 1, 2

Terpinen-4-ol 0.6 0.5 - - 2.1 - 1078 1636 1, 2, 3

Cryptone - - - - 0.4 - 1084 1659 1, 2

trans-p-Mentha-1(7),8-dien-2-ol - 0.4 - 0.2 - - 1088 1810 1, 2

α-Terpineol 4.1 1.6 0.1 - 1.6 0.6 1090 1662 1, 2, 3

cis-Piperitenol - - - - 0.2 - 1091 - 1, 2

Dihydrocarveol - - - - - 0.4 1092 - 1, 2, 3

Myrtenol 0.3 - - 0.2 - 0.7 1093 - 1, 2

Safranal - - - - 0.1 - 1095 1648 1, 2

Verbenone - - - - 0.2 - 1097 - 1, 2

trans-Piperitenol - - - - 0.3 - 1102 - 1, 2

Pulegone - - - - 0.2 - 1111 1662 1, 2

endo-Fenchyl acetate 0.1 - - - - - 1112 - 1, 2

trans-Chrysantenyl acetate - - - - 0.2 - 1114 - 1, 2

Isobornyl acetate 0.1 - - - - - 1118 1582 1, 2

p-Menth-8-en-2-ol 0.6 - - - - - 1226 - 1, 2

Carveol - - - 0.1 - 0.1 1131 - 1, 2, 3

Cumin aldehyde - - - - 0.2 - 1138 1802 1, 2

cis-Ocimenone - - - - - 0.6 1139 1225 1, 2

Piperitone - - - - 0.1 - 1144 1748 1, 2

trans-Piperitenone oxide - - - 0.4 - - 1148 - 1, 2

Phellandral - - - - 0.3 - 1164 1720 1, 2

Bornyl acetate 0.2 1176 1575 1, 2

Carvacrol - - - - 0.7 - 1191 2219 1, 2, 3

p-Cymen-7-ol - - - - - 0.5 1197 2113 1, 2

δ-Elemene - 0.3 - - 0.2 0.2 1208 1479 1, 2

Piperitenone - 0.1 - - 0.1 - 1215 - 1, 2

Elixene - - - - 0.9 - 1218 - 1, 2

exo-2-Hydroxycineole acetate 0.3 - - - 0.1 - 1226 - 1, 2

α-Terpinyl acetate - 2.4 - - - - 1232 1685 1, 2

Isoledene - - - - 0.1 - 1251 - 1, 2

α-Copaene - 0.3 - - - - 1253 1477 1, 2

β-Elemene - - - - 0.3 - 1275 - 1, 2

Longifolene - - - 0.1 0.3 - 1283 1575 1, 2

trans-Caryophyllene - 0.1 - - 0.1 0.2 1284 1617 1, 2

α-Gurjunene - 0.2 - - - 0.1 1285 1535 1, 2

β-Gurjunene - - - - - 0.2 1298 1655 1, 2

β-Cedrene - - - - 0.9 - 1299 1613 1, 2

β-Copaene - - - 0.1 0.1 - 1301 - 1, 2

α-Panasinsene 0.1 - - - - - 1307 - 1, 2



Molecules 2023, 28, 7211 5 of 19

Table 1. Cont.

A B C D E F KI a KI b Identification c

α-Guaiene - - - - 1.5 - 1307 1600 1, 2

Aromadendrene - 2.9 - 4.4 - 4.7 1308 1631 1, 2

allo-Aromadendrene - 0.9 - 0.5 - 1.1 1312 1660 1, 2

cis-Cadina-1(6).4-diene - - - - 0.1 - 1322 - 1, 2

Dauca-5,8-diene - - - - 0.1 - 1325 - 1, 2

trans-Cadina-1(6),4-diene - - - - 0.2 - 1332 - 1, 2

γ-Gurjunene - 0.6 - 0.1 - 0.6 1335 - 1, 2

β-Selinene - - - 0.2 - - 1343 1725 1, 2

Guaia-1(10),11-diene - 0.1 - - - - 1344 - 1, 2

Viridiflorene - 0.8 - 0.2 - - 1350 - 1, 2

α-Selinene - - - 0.1 - - 1351 1713 1, 2

9-epi-β-Caryophyllene - - - - - 0.4 1352 - 1, 2

Eudesma-4(14),11-diene - - - - 0.1 - 1353 1708 1, 2

6-[1-(Hydroxymethyl)vinyl]-
4,8a-dimethyl-1,2,3,5,6,7,8,8a-
octahydro-2-naphthalenol

- - - - 0.7 - 1356 - 1, 2

Longifolene 0.1 - - - - - 1364 1574 1, 2

dehydro-Aromadendrene - 0.4 - - 0.4 - 1366 - 1, 2

γ-Muurolene - 0.1 - - - 0.1 1376 1725 1, 2

trans-Muurola-4(14),5-diene - - - - - 0.4 1381 - 1, 2

trans-Cycloisolongifol-5-ol - - - - 0.1 - 1387 - 1, 2

Cadina-3,9-diene - 0.2 - - - - 1392 - 1, 2

γ-Vetivenene - - - - 0.2 - 1411 - 1, 2

α-Amorphene - - - - - 1.3 1419 1750 1, 2

Macrocarpal - - - - 0.5 - 1420 - 1, 2

10-epi-Cubebol - - - 3.4 - 4.6 1421 - 1, 2

trans-β-Guaiene - 0.5 - - - - 1425 1651 1, 2

δ-Selinene - - - - - 0.6 1426 - 1, 2

Isoaromadendrene epoxide - - - - 0.3 - 1431 - 1, 2

γ-Patchoulene - - - - - 1.3 1436 - 1, 2

Germacrene B - - - 10.2 - - 1437 1795 1, 2

Spathulenol 0.1 2.3 - - 28.3 - 1438 2127 1, 2

Globulol - 3.9 - 1.2 - 0.1 1442 2104 1, 2

Epiglobulol 0.1 - - - 0.6 - 1444 - 1, 2

α-Cadinene - - - - - 1.3 1450 - 1, 2

Cubeban-11-ol - 0.3 - 0.6 - - 1453 - 1, 2

Guaiol 0.1 - - - - - 1454 2094 1, 2

Rosifoliol - 0.5 - 1.0 - 0.5 1461 - 1, 2

cis-Cadin-4-en-7-ol - - - - - 0.3 1473 - 1, 2

Khusimone - 0.6 - - - - 1474 - 1, 2

9,11-epoxy-Guaia-3,10(14)-
diene - - - 0.6 - - 1475 - 1, 2
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Table 1. Cont.

A B C D E F KI a KI b Identification c

γ-Eudesmol - 2.9 - 0.1 - - 1477 2178 1, 2

1,7-diepi-α-Cedrenal - - - 0.1 - - 1493 - 1, 2

Cubenol - - - - 0.3 0.4 1484 2080 1, 2

β-Eudesmol - 3.2 - 0.8 3.9 1.6 1485 2248 1, 2

Cedr-8(15)-en-9-α-ol - - - - 2.0 - 1487 - 1, 2

α-Eudesmol - 2.8 - 0.6 - 0.4 1489 2247 1, 2

α-Cadinol - - - - 0.7 - 1490 2224 1, 2

Selin-11-en-4-α-ol - - - - 0.3 - 1492 2273 1, 2

Murolan-3,9(11)-diene-10-
peroxy - - - 0.2 - - 1497 - 1, 2

7-epi-α-Eudesmol - - - - 1.8 - 1506 - 1, 2

Germacra-4(15),5,10(14)-trien-1-
α-ol - - - - 0.8 - 1521 - 1, 2

Corymbolone - - - 0.1 - - 1567 - 1, 2

Eudesma-4(15),7-dien-1β-ol - - - - 0.2 - 1571 - 1, 2

Cyperotundone - - - - 3.0 - 1584 - 1, 2

Eudesm-7(11)-en-4-ol - - - - 1.9 - 1586 - 1, 2

1,1,4,6-Tetramethyldecahydro-
1H-cyclopropa[e]azulene-4,5,6-
triol

- - - 0.2 - - 1587 - 1, 2

epi-Cyclolorenone - - - - 0.8 - 1602 - 1, 2

Stigmasterol acetate 0.1 - - - - - 2735 - 1, 2

Stigmastan-3,5,22-trien 0.1 - - - - - 2748 - 1, 2

Stigmast-5-en-3-ol, oleate 0.6 - - 0.2 0.1 - 2769 - 1, 2

Total 97.2 97.4 95.3 97.5 94.1 97

Monoterpene hydrocarbons 19.6 14.1 22.5 0.8 7.4 9

Oxygenated monoterpenes 75.7 58.8 72.8 39.2 34.7 67

Sesquiterpene hydrocarbons 0.2 8.0 - 15.9 5.5 12.2

Oxygenated sesquiterpenes 0.7 16.5 - 8.9 46.2 7.9

Others 1.0 - - 32.7 0.3 0.9

A = E. brevifolia, B = E. extensa, C = E. lehmanii, D = E. leptophylla, E = E. patellaris, and F = E. woolsiana. a,b The
Kovats retention indices are relative to a series of n-alkanes (C10–C35) in the apolar HP-5 MS and the polar HP
Innowax capillary columns, respectively. c Identification method: 1 = comparison of the Kovats retention indices
with published data; 2 = comparison of mass spectra with those listed in the NIST 02 and Wiley 275 libraries and
with published data; and 3 = coinjection with authentic compounds. t = trace (<0.1%). - = absent.

In the E. brevifolia EO, in addition to oxygenated monoterpenes, monoterpenes hydro-
carbons (19.6%), oxygenated sesquiterpenes (0.7%), sesquiterpenes hydrocarbons (0.2%),
and compounds from different classes (1.0%) were present. The main component was euca-
lyptol (57.0%) followed by α-pinene (16.6%). Other compounds present in amounts of 1%
or greater were trans-pinocarveol (5.8%), α-terpineol (4.1%), borneol (1.9%), pinocarvone
(1.7%), exo-fenchol (1.2%), γ-terpinene (1.1%), and camphene (1.0%).

In the EO of E. extensa, in addition to oxygenated monoterpenes, oxygenated sesquiter-
penes (16.5%), hydrocarbon monoterpenes (14.1%), and hydrocarbon sesquiterpenes (8.0%)
were present. The main components were eucalyptol (50.0%) and α-pinene (12.0%). Other
compounds present in amounts of 1% or greater were globulol (3.9%), β-eudesmol (3.2%),
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aromadendrene (2.9%), γ-eudesmol (2.9%), α-eudesmol (2.8%), α-terpinyl acetate (2.4%),
spathulenol (2.3%), trans-pinocarveol (2.1%), α-terpineol (1.6%), and α-phellandrene (1.0%).

Only monoterpene hydrocarbons (22.5%) have been detected in the EO of E. lehmanii;
in addition to the oxygenated monoterpenes, eucalyptol (70.5%) and α-pinene (21.4%) are
the main components (1.3%).

In the E. leptophylla EO, in addition to oxygenated monoterpenes, hydrocarbon sesquiter-
penes (15.9%), oxygenated sesquiterpenes (8.9%), hydrocarbon monoterpenes (0.8%), and
other classes different from these (32.7%) were present. The main component was euca-
lyptol but in lower quantities than the other EOs (32.2%), followed by 2-methylbutanoic
anhydride (31.0%). Other components present in amounts of 1% or greater were germa-
crene B (10.2%), trans-pinocarveol (4.6%), aromadendrene (4.4%), 10-epi-cubebol (3.4%),
globulol (1.2%), and rosifoliol (1.0%).

In the E. patellaris EO, in addition to oxygenated monoterpenes and sesquiterpenes,
monoterpene hydrocarbons (7.4%), sesquiterpene hydrocarbons (5.5%), and other com-
pounds from different classes (0.3%) were present. The main component, unlike what was
detected in the other OEs studied in this work, was not eucalyptol (26.3%) but spathu-
lenol (28.3%). Other components at or above 1% were β-eudesmol (3.9%), cyperotundone
(3.0%), terpinen-4-ol (2.1%), cedr-8(15)-en-9-α-ol (2.0%), eudesm-7(11)-en-4-ol (1.9%), 7-epi-
α-eudesmol (1.8%), α-terpineol (1.6%), α-phellandrene and α-guaiene (1.5%), α-pinene
(1.3%), and γ-terpinene (1.0%).

In the E. woollsiana EO, in addition to oxygenated monoterpenes, sesquiterpene hy-
drocarbons (12.2%), monoterpene hydrocarbons (9.0%), oxygenated sesquiterpenes (7.9%),
and compounds from different classes (0.9%) were present. The main component was
eucalyptol (53.6%). Other components present in amounts of 1% or greater were α-pinene
(7.5%), aromadendrene (4.7%), trans-pinocarveol (4.6%), 10-epi-cubebol (4.6%), β-eudesmol
(1.6%), pinocarvone (1.4%), α-amorphene (1.3%), γ-patchoulene (1.3%), α-cadinene (1.3%),
and allo-aromadendrene (1.1%).

2.2. Antibiofilm Activity

The investigated EOs demonstrated a robust inhibitory activity on biofilm, with MIC
values ranging from 16 mg/mL to values exceeding 50 mg/mL, as delineated in Figure 1.
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To evaluate the association between the EOs and their respective antibacterial prop-
erties, a hierarchical cluster analysis (HCA) was conducted using the mean MIC values.
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The antimicrobial effects of the EOs displayed significant variations among both Eucalyptus
species and bacterial strains (p < 0.05).

The HCA analysis resulted in the classification of two distinct EO groups, designated
as Group A and Group B, based on their antibacterial efficacy, with a dissimilarity exceeding
or equal to 12 (Figure 2).
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Group A was primarily comprised of E. extensa, which stood out as a notable exception.
This particular species exhibited strong antibacterial activity against all tested strains, with
an MIC of 16 mg/mL, except for A. baumanii (MIC > 30 mg/mL).

Group B was further divided into three subgroups, labeled B1, B2, and B3, which
collectively displayed moderate and stable antibacterial activity across all species.

In Subgroup B1, represented by E. lehmannii, the MIC against L. monocytogenes was
38 ± 4 mg/mL, while it showed moderate activity against P. aeruginosa (28 ± 2 mg/mL),
S. aureus (30 ± 3 mg/mL), and 35 mg/mL for Gram-negative bacteria.

Subgroup B2, characterized by the EOs of E. patillaris and E. leptophylla, exhibited a
moderate inhibitory effect against all tested bacterial strains. The E. patellaris EO demon-
strated a more pronounced impact on Gram-positive bacteria, with an MIC of 28 mg/mL,
compared with its effects on Gram-negative strains such as E. coli (MIC = 30 ± 2 mg/mL)
and A. baumanii (MIC = 35 ± 2 mg/mL). Conversely, the E. leptophylla EO displayed an MIC
of 30 ± 2 mg/mL against E. coli, 30 ± 3 mg/mL against L. monocytogenes, and 28 mg/mL
for the remaining bacterial strains.

Within Subgroup B3, characterized by the E. woolsiana and E. brevifolia EOs, limited
antibacterial activity was observed against the tested strains. Both EOs exhibited the highest
MIC values (>50) when tested against two Gram-negative bacteria (E. woolsiana vs. E. coli
and E. brevifolia vs. A. baumannii). The lowest recorded MIC values were 32 ± 4 for S. aureus
with E. woolsiana and 28 ± 2 for E. coli with E. brevifolia.

It is important to note that the tested EOs demonstrated lower activity when com-
pared with tetracycline, as indicated in Figure 1. In terms of MIC values, the EOs rich in
oxygenated sesquiterpenes like globulol, spathulenol, and β-eudesmol, exemplified by E.
extensa (16.5%) and E. patellaris (46.2%), exhibited the lowest MIC values.

The MIC values offered valuable insights into the potential of the EOs to influence
bacterial biofilms. Additionally, an assessment was conducted to ascertain the capacity of
the EOs to impact established biofilms and modify the metabolic processes of bacterial cells.
The results are depicted in Tables 2 and 3.
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Table 2. Inhibitory activity of the EOs on mature biofilm.

Doses (mg/mL) A. baumannii E. coli L. monocytogenes P. aeruginosa S. aureus

E. brevifolia 10 0.00 ± 0.00 70.91 ± 3.47 d 73.53 ± 5.07 d 39.71 ± 2.78 d 0.00± 0.00
20 0.00 ± 0.00 77.30 ± 1.67 d 87.38 ± 1.23 d 44.25 ± 2.67 d 35.69 ± 3.08 d

E. extensa
5 0.00 ± 0.00 30.89 ± 2.67 d 55.10 ± 1.25 d 57.11 ± 4.45 d 9.94 ± 0.78 d

10 0.00 ± 0.00 89.76 ± 2.06 d 83.27± 1.36 d 63.61 ± 1.67 d 73.73 ± 3.37 d

E. lehmannii
10 0.00 ± 0.00 21.52 ± 1.44 d 14.98 ± 0.76 d 75.38 ± 3.98 d 16.06 ± 1.02 d

20 34.28 ± 2.24 d 39.08 ± 2.44 d 32.27 ± 2.01 d 78.13 ± 3.35 d 61.15 ± 3.65 d

E. leptophylla 10 84.96 ± 1.02 d 54.92 ± 3.52 d 15.40 ± 2.01 d 83.12 ± 2.09 d 58.05 ± 1.76 d

20 88.91 ± 1.32 d 60.86 ± 5.05 d 60.47 ± 4.54 d 93.17 ± 1.02 d 79.12 ± 2.67 d

E. patellaris 10 32.37 ± 2.45 d 56.04 ± 4.12 d 77.34 ± 2.76 d 74.41 ± 2.87 d 72.48 ± 0.01 d

20 37.63 ± 1.98 d 59.83 ± 2.86 d 88.56 ± 1.08 d 84.70 ± 2.05 d 89.39 ± 3.02 d

E. woollsiana
10 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 12.91 ± 1.67 d 45.89 ± 4.01 d

20 37.59 ± 2.47 d 6.05 ± 0.33 d 0.00 ± 0.00 15.60 ± 1.54 d 67.27 ± 5.97 d

The results are the mean of three independent experiments ± SD. d: p < 0.0001 compared with the positive control
(inhibition = 0) according to two-way ANOVA followed by Dunnet’s multiple comparison test at the significance
level of p < 0.05.

Table 3. Inhibitory activity of the EOs on the metabolism of the bacterial sessile cell in mature biofilm.

Doses (mg/mL) A. baumannii E. coli L. monocytogenes P. aeruginosa S. aureus

E. brevifolia 10 18.99 ± 2.76 d 27.46 ± 1.66 d 25.53 ± 2.07 d 20.27 ± 1.89 d 12.21 ± 0.98 d

20 28.83 ± 1.87 d 78.8 ± 4.07 d 32.46 ± 3.33 d 30.1 ± 2.76 d 76.26 ± 2.65 d

E. extensa
5 49.95 ± 4.44 d 17.72 ± 1.01 d 83.86 ± 4.91 d 0.00 ± 0.00 0.00 ± 0.00

10 65.40 ± 4.57 d 56.63 ± 0.97 d 89.26 ± 3.54 d 45.37 ± 1.33 d 11.30 ± 1.07 d

E. lehmannii
10 51.39 ± 4.55 d 33.34 ± 2.91 d 63.36 ± 3.91 d 84.05 ± 1.67 d 59.57 ± 3.67 d

20 54.35 ± 3.85 d 21.74 ± 1.76 d 64.73 ± 3.91 d 67.77 ± 3.92 d 68.66 ± 2.64 d

E. leptophylla 10 54.92 ± 3.14 d 15.41 ± 1.05 d 83.12 ± 1.18 d 58.05 ± 1.66 d 51.23 ± 3.01 d

20 60.86 ± 3.94 d 60.47 ± 3.08 d 93.17 ± 1.13 d 79.12 ± 2.97 d 81.04 ± 2.76 d

E. patellaris 10 26.47 ± 2.01 d 19.48 ± 0.78 d 0.00 ± 0.00 16.44 ± 1.02 d 29.89 ± 1.79 d

20 58.75 ± 3.02 d 36.12 ± 2.41 d 22.11 ± 2.55 d 37.25 ± 3.07 d 32.21 ± 1.98 d

E. woolsiana
10 75.08 ± 4.22 d 32.55 ± 2.26 d 0.00 ± 0.00 0.00 ± 0.00 48.04 ± 5.01 d

20 93.27 ± 1.01 d 39.58 ± 4.12 d 7.02 ± 1.22 d 10.76 ± 1.01 d 55.59 ± 3.72 d

The results are the average of three independent experiments ± SD. d: p < 0.0001 compared with the positive
control (inhibition = 0) according to two-way ANOVA followed by Dunnet’s multiple comparison test at the
significance level of p < 0.05.

Each EO exhibited distinct inhibitory effects on biofilm, with efficacy varying based on
bacterial species and concentrations. Apart from A. baumannii, mature biofilms displayed
sensitivity to the impact of EOs, thus highlighting their receptiveness. Notably, A. bau-
mannii demonstrated resistance when encountering E. brevifolia and E. extensa. However,
noteworthy inhibition of cellular metabolism was observed at the highest concentration,
resulting in percentages of inhibition of 28.83 ± 1.87 and 65.40 ± 4.57%, respectively. This
underscores the distinct effectiveness of these oils in affecting microbial activity.

The efficacy of the EO from E. leptophylla was evident in reducing biofilm forma-
tion across all tested bacterial strains. Inhibition values ranged from 60.47 ± 4.54% (for
L. monocytogenes) to 93.17± 1.02% (for P. aeruginosa) at 20 mg/mL. Furthermore, this impact
extended to hindering the cellular metabolism of these pathogens, with inhibition values
varying from 60.47 ± 3.08 (for E. coli) to 93.17 ± 1.13% (for L. monocytogenes) at the same
concentration of 20 mg/mL.

Interestingly, the inhibition caused by the EOs did not consistently correspond to a
comparable influence on the metabolic activity of bacterial cells within the biofilm. For
instance, the E. woollsiana EO exhibited a notably higher effect on A. baumannii cellu-
lar metabolism, reaching 93.27 ± 1.01%, compared with its impact on mature biofilm
(37.59 ± 2.47%) at the identical concentration (20 mg/mL).
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Similarly, the E. extensa EO demonstrated a substantial (73.73 ± 3.37%) inhibition
of S. aureus biofilm. However, the inhibition of cellular metabolism resulted in only
11.30 ± 1.07% at 20 mg/mL.

2.3. Anti-Enzymatic Activity

Table 4 shows the anti-enzymatic activity of the EOs. The E. brevifolia, E. extensa, E.
leptophylla, E. patellaris, and E. woollsiana EOs showed similar activity against AChE with
IC50 values ranging from 0.25 to 0.60 mg/mL; the least active EO was E. lehmanii.

Table 4. Inhibitory effects of the EOs on AChE, BChE, α-amylase, and α-glucosidase.

EOs
IC50 (mg/mL)

AChE BChE α-Amylase α-Glucosidase

E. brevifolia 0.3 ± 0.04 a 11.86 ± 3.54 c 0.88 ± 0.14 a 27.31 ± 2.11 a

E. extensa 0.25 ± 0.01 a 7.37 ± 0.06 b n.a n.a
E. lehmanii 1.2 ± 0.40 b 3.48± 0.37 a 16.94 ± 2.14 b n.a
E. leptophylla 0.57 ± 0.03 a 4.54 ± 0.11 ab 0.88 ± 0.05 a 29.0 ± 1.32 a

E. patellaris 0.60 ± 0.04 a 3.50 ± 0.10 a 0.91 ± 0.01 a n.a
E. woollsiana 0.38 ± 0.01 a 4.49 ± 0.01 ab 11.9 ± 1.3 b n.a
Galantamine 0.008 ± 0.003 0.05 ± 0.01 - -
Acarbose - - 0.004 ± 0.002 0.6 ± 0.3

AChE: Acetylcholinesterase; BChE: butyrylcholinesterase. The results are the mean ± SD of three experiments.
Different letters indicate mean values significantly different at p < 0.05 according to a one-way ANOVA followed
by Tukey’s post hoc test. n.a = not active (IC50 > 30 mg/mL).

Regarding the EO activity against BChE, the E. lehmanii and E. patellaris EOs showed
similar activity with IC50 values of 3.48 and 3.50 mg/mL, respectively. The activity of the
other EOs was in the following order: E. woollsiana > E. leptophylla > E. extensa > E. brevifolia.

The E. leptophylla, E. brevifolia, and E. patellaris EOs were the most active against α-
amylase followed by the E. woollsiana and E. lehmanii EOs. Moreover, the E. brevifolia and
E. leptophylla EOs were active against α-glucosidase but the other EOs showed no activity
against this enzyme with IC50 > 30 mg/mL.

3. Discussion

This investigation has elucidated discernible variations in both the yield and chemical
composition of EOs, a phenomenon influenced by a multitude of factors encompassing
both external and internal variables. Among the external factors, environmental conditions
such as precipitation, temperature, light exposure, soil composition, and altitude exert
significant influence over the growth of aromatic plants and the subsequent biosynthesis of
their EOs. Furthermore, the environment can impart modifications to the plant’s genetic
makeup, thereby introducing variations in its genotype [17].

These pronounced disparities in EO yields are conspicuously evident across all Euca-
lyptus species. To provide a specific illustration, E. brevifolia emerges as the frontrunner in
EO yield, boasting an impressive 2.42%, while E. patellaris lags behind with a considerably
lower yield of only 0.25%.

Upon undertaking a comparative analysis with previous research, it becomes increas-
ingly apparent that a substantial paucity of available data pertains to the EO yields of
E. extensa, E. leptophylla, and E. woollsiana. In contrast, the EO yields of E. patellaris in our
study (0.25%) align closely with the findings documented by Elaissi et al. [18], which exhibit
a range from 0.1% (January) to 0.5% (June).

Meanwhile, our research reveals a higher yield for E. brevifolia at 2.42%, in contradis-
tinction to the yield reported by Ben Hassine et al. [18], which amounted to 1.5%. A parallel
observation in the case of E. lehmannii, as our study attests to a yield of 1.91%, surpassed
the yield of 1.25% as reported by Ben Slimane et al. [19] and closely approached the value
recorded (2.21 ± 0.24) by Jemâa et al. [20].
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Recently, in a study conducted by Ben Hassine and colleagues [21], the petroleum ether
extract of E. brevifolia was analyzed using GC-MS. Their research revealed a composition
primarily characterized by high levels of eucalyptol and spathulenol, followed by globulol
and epiglobulol. However, it is important to note that specific percentages were not
provided in their report. These findings align with the composition of our sample only for
the presence of eucalyptol as the dominant component. In fact, while globulol, spathulenol,
and epiglobulol were also detected in the E. brevifolia EO studied in our work, they were
present in very small quantities of 0.4%, 0.1%, and 0.1%, respectively.

In contrast, another study by Ben Hassine and collaborators [22] examined the E.
brevifolia EO characterized by a markedly different composition. This EO was notably rich
in germacrene D-4-ol (23.5%), eucalyptol (14.0%), 2-butoxyethyl acetate (9.4%), trans-2,8-
menthdienol (7.6%), α-santalene (8.0%), tricyclene (6.5%), ipsdienone (5.0%), trans-nerolidol
(2.4%), trans-isolimonene (2.0%), cedrol (1.8%), elemol (1.6%), 3,5-acoradien-11-ol (1.6%),
hinesol (1.5%), o-cymene (1.4%), α-guaiene (1.3%), longifolene (1.2%), and β-chamigrene
(1.0%). This composition differed significantly from the one observed in our study. Only
eucalyptol and longifolene were present in the EO examined in our study, although in
different proportions. Eucalyptol was the primary component in our sample (57.0%), but
it was present in a yield of only 14.0% in the EOs studied by Ben Hassine and coworkers.
Conversely, longifolene was present in higher amounts (1.2%) than in our E. brevifolia EO
(0.1%). It is worth noting that the other major compounds identified in Ben Hassine’s
research differed both in terms of their chemical composition and quantity when compared
with our study.

In the EO of E. extensa, oxygenated monoterpenes are the main compounds (58.8%)
with eucalyptol (50.0%) as the principal compound; the other constituents are oxygenated
sesquiterpenes (16.5%), hydrocarbon monoterpenes (14.1%), and hydrocarbon sesquiter-
penes (8.0%). No previous studies have reported the chemical composition of E. extensa EO.

Conversely, the literature concerning E. lehmannii has been enriched with noteworthy
contributions, particularly in the context of Tunisian species. A previous study delved
into the composition of E. lehmannii EOs during various seasons, revealing camphene
(21.1%), 1,8 cineole (18.4%), α-terpineol (15.1%), α-pinene (7.2%), and trans-pinocarveol
(5.1%) as the predominant components [20]. However, the E. lehmannii EO examined in the
current study displayed eucalyptol as the predominant component (70.5%), followed by
α-pinene (21.4%), while camphene represents a mere 0.9% and α-terpineol only 0.1% of the
composition. Our results corroborate with previous studies that reported eucalyptol and
α-pinene as major constituents [19,23], even if the EOs analyzed in these studies presented
a more intricate composition compared with the EO under examination. In contrast, in
the EO of E. lehmannii reported by Yangui et al. [24], the main constituent, eucalyptol, was
present in notably comparable proportions, with a content of 67.2% in comparison with
70.5% of the present study. However, the remaining components diverge significantly
between the two studies. Yangui’s exploration revealed a more extensive array of chemical
constituents within the E. lehmannii EO, with α-gurjunene (6.5%) and β-panasinsene (4.2%)
being notable among them, which were absent in the EO examined in the current study.
Furthermore, α-pinene, the second most abundant component in the EO analyzed in this
study (21.4%) also exists in Yangui’s EO but at a lesser relative abundance, constituting
merely 2.1% of the composition.

Only one previous study reported the composition of the E. leptophylla EO [25]. This
analysis revealed a complex composition featuring abundant eucalyptol (66.4%), α-pinene
(5.8%), trans-pinocarveol (4.9%), aromadendrene (4.7%), globulol (2.3%), β-eudesmol (1.9%),
pinocarvone (1.5%), allo-aromadendrene (1.2%), trans-p-mentha-1(7),8-dien-2-ol, and cis-p-
mentha-1(7),8-dien-2-ol (1.0%). Striking similarities in major components emerge between
this EO and our current study, although quantities frequently differ. Eucalyptol constitutes
the main component in both, albeit in different percentages (66.4% vs. 32.2%), while
α-pinene, trans-pinocarveol, and aromadendrene were detected in comparable percentages.
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Insight into the composition of E. patellaris EO is limited. Bignell and Dunlop [26]
reported aromadendrene (32.8%) as the major component followed by eucalyptol (22.3%),
verbenone (10.4%), allo-aromadendrene (6.8%), globulol (3.1%), β-pinene (2.1%), α-terpineol
(1.9%), α-pinene, spathulenol (1.2%), and β-selinene (1.0%). Even if some compounds align
with our study, such as eucalyptol and α-pinene, substantial quantitative discrepancies
exist. In a recent study by Elaissi and colleagues [18], the compositions of two distinct
E. patellaris EOs derived from plants harvested during different periods were reported.
The EO extracted from the July 2004 harvest predominantly consists of eucalyptol (11.1%),
viridiflorol (7.3%), p-cymen-8-ol (5.6%), α-pinene (4.5%), cis-p-mentha-1,8-dien-6-ol (3.6%),
pinocarvone (3.2%), β-gurjunene (2.7%), geraniol (2.1%), calachorene (1.9%), β-elemene
(1.7%), palustrol (1.6%), cis-p-mentha-(7)-8-dien-2-ol (1.3%), linalool (1.1%), α-eudesmol
(1.1%), and camphor (1.0%). In contrast, the EO extracted from the January 2005 harvest
primarily contains eucalyptol (32.5%), viridiflorol (11.2%), limonene (8.9%), guaiol (7.0%),
α-terpinene (6.1%), α-phellandrene (3.0%), α-pinene (2.8%), isobutyl isovalerate (2.1%), β-
gurjunene (1.9%), α-eudesmol (1.6%), pinocarvone (1.5%), γ-terpinene (1.4%), and palustrol
(1.0%). It is worth noting that these compositions exhibit only minimal similarities with
the EO studied in this research. Of the two, the composition of the January EO bears the
closest resemblance to the EO studied in this work. Both EOs share some major components
(present in quantities exceeding 1%), including eucalyptol, which is the main component in
the study by Elaissi (32.5%) and the second most prominent in this work (26.3%), α-pinene
with varying amounts (2.8% in Elaissi’s study and 1.3% in this work), α-phellandrene
(3.0% and 1.5%), and γ-terpinene in similar quantities (1.2% and 1.0%). Notably, the EO
obtained from the July 2004 harvest has only two major components in common among
those exceeding 1%, namely, eucalyptol (11.1% vs. 26.3%) and α-pinene (4.5% vs. 1.3%),
with the former being the primary component in Elaissi’s EO but not in the EO researched
in this study.

As for the chemical composition of the EOs of E. extensa and E. woollsiana, pertinent
data remain conspicuously absent in the existing literature.

In summary, the variations in the percentage compositions imply a potential link
between chemotypes (variations in chemical profiles) and genotypes (genetic characteris-
tics) [27,28]. Indeed, these differences in composition are influenced by a combination of
external environmental factors and internal genetic and physiological traits.

Undeniably, biofilms of pathogenic bacteria present a significant contemporary chal-
lenge across various sectors due to their inherent resistance to antibiotics, resulting in the
persistence of chronic infections [29]. Consequently, the exploration of alternative treat-
ments for biofilms has garnered considerable interest. Eucalyptus, known for its antibacterial
properties, has recently been under scrutiny for its potential antibiofilm effects [30].

The potential of the tested EOs to combat biofilm formation appears to be relatively
constrained. However, it is noteworthy to mention that Limam et al. [31] have previously
documented moderate yet discernible antimicrobial properties associated with E. lehmannii,
illustrating its effectiveness against pathogenic bacteria such as Pseudomonas aeruginosa,
Escherichia coli, and Staphylococcus aureus, findings that align with our observations. Further-
more, the EO derived from E. brevifolia exhibited competence in combating Gram-negative
bacterial strains [22]. It is worth highlighting that several Eucalyptus EOs have demonstrated
promising attributes in inhibiting the formation of bacterial biofilms.

Mechanistic insights into the antibacterial efficacy of EOs encompass interactions with
bacterial DNA, membrane permeability modulation, and alterations in membrane fluidity
due to their hydrophobic nature. These actions can disrupt cellular integrity, releasing
intracellular constituents and rendering them susceptible to biofilm-inhibiting agents [32].
Moreover, terpenes, particularly, can induce bacterial cell leakage, leading to the efflux of
critical molecules and ions, ultimately resulting in cell death [33].

Considering the composition of the six EOs, it becomes plausible to establish a connec-
tion between their efficacies in restricting the virulence of pathogenic strains. This could be
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attributed to the interplay of various compounds acting concurrently on multiple targets
through diverse mechanisms, either in synergy or antagonism [34].

In our study, eucalyptol represents a trait component for the tested Eucalyptus EOs.
This molecule is a compound renowned for its antimicrobial activity against a broad spec-
trum of both Gram-positive and Gram-negative pathogens, including those featured in
our experimental studies. According to LaSarre and Federle [35], the impact of eucalyptol
on quorum-sensing mechanisms is notable, but it does not impede the vital functions of
A. baumannii. In the case of E. coli, this compound could have initiated a robust condensa-
tion process within the nuclear chromatin of its bacterial nucleosome, while concerning
S. aureus, the presence of eucalyptol might have triggered unintended apoptosis [36,37].
It is probable that differences between EO antimicrobial activities could be due to the
different ratios of oxygenated monoterpenes and sesquiterpenes as reported by Martins
and coworkers [38].

In light of these results among the tested EOs, the E. extensa EO could be considered for
the development of a possible antimicrobial agent. In fact, E. extensa presented the lowest
MIC value and was capable of inhibiting biofilm at lower concentrations with respect to the
other tested essential oils, in particular, it was active against the mature biofilms of E. coli
and L. monocytogenes.

Previous studies have explored the anti-AChE, anti-BChE, anti-α-amylase, and anti-α-
glucosidase potential of other Eucalyptus EOs [7,16,39–42], but no previous studies on the
species examined here are present in the available literature. The presence of 1,8-cineole
in our samples likely contributed to EO activity against acetylcholinesterase; in fact, in
a previous work, an IC50 of 13.5 µg/mL was reported for 1,8 cineole [42]. Moreover, 1,8
cineole displayed more robust inhibition against α-amylase, reducing enzyme activity by
43% at 75 µg/mL in comparison with α-glucosidase (IC50 1 mg/mL) [16]. These findings
might elucidate the disparity in anti-α-glucosidase activity relative to α-amylase activity in
the studied EOs.

Significant AChE inhibitory activity has been reported for the EOs of other species like
E. camaldulensis Dehnh., E. intertexta R.T. Baker, and E. diversifolia Bonpl. [24,25]. Moreover,
E. globulus Labill. EO has demonstrated AChE and BChE inhibition [16]. The EOs from
E. globulus, E. citriodora Hook., and E. camaldulensis displayed potent antidiabetic activity
by curtailing postprandial hyperglycemia in type 2 diabetic rat models and inhibiting
α-amylase and α-glucosidase activity [7,14].

Among the studied EOs, E. lehmanii showed the best inhibitory activities against
cholinesterases. Furthermore, E. brevifolia and E. leptophylla could be taken into considera-
tion as possible coadjutants in the treatment of diabetes in further studies.

4. Materials and Methods
4.1. Plant Materials

The plant material was collected during the spring season from arboretums affiliated
with the National Institute of Research on Rural Engineering, Water, and Forests (Table 5).
The species investigated included Eucalyptus brevifolia F. Muell., E. extensa L.A.S. Johnson
and K.D. Hill., E. lehmannii (Schauer) Benth., E. leptophylla F. Muell. ex Miq., E. patellaris F.
Muell., and E. woolsiana F. Muell. ex R.T. Baker.

To ensure representative samples, at least five different trees were sampled for each
species, and their respective samples were combined and homogenized. The resulting
homogenous samples were then placed in a greenhouse and dried in the shade for a period
of 3–5 days, or until a constant weight was achieved.

The samples were authenticated by the herbarium division of the institute.
The extraction yields were determined by applying this formula:

Yields =
MEO ∗ 100

DM

where DM represents dry material and MEO stands for the mass of EO.
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Table 5. Species, origin, bioclimatic stage, and yields of studied species.

Species Arboretum (Governorate) Harvest Period Bioclimatic Condition Yields
%

E. brevifolia Hajeb Layoun (Kairouan) April 2023 Semi-arid upper with moderate winters 2.42

E. extensa Souiniet (Ain Draham) June 2021 Upper humid 1.43

E. lehmannii Korbous (Nabeul) May 2022 Sub-humid 1.91

E. leptophylla Hajeb Layoun (Kairouan) April 2023 Semi-arid upper with moderate winters 2.03

E. patellaris Hajeb Layoun (Kairouan) April 2023 Semi-arid upper with moderate winters 0.25

E. woolsiana Djebel Mansour (Zaghouan) Mars 2021 Semi-arid 1.66

4.2. Isolation and Analysis of the Essential Oils

The EOs were obtained via hydro-distillation of dried leaf samples. The distillation
process was carried out using a Clevenger apparatus and the EOs were collected and
dried using anhydrous sodium sulfate, and then stored in sealed glass brown vials in a
refrigerator at 4 ◦C until further studies.

A Perkin-Elmer Sigma-115 gas chromatograph (Perkin Elmer, Waltham, MA, USA)
equipped with a flame ionization detector (FID) and a data handling processor was used for
analytical gas chromatography (GC). The separation was achieved using an HP-5 MS fused
silica capillary column (30 m, 0.25 mm i.d., 0.25 µm film thickness, Agilent, Roma, Italy). A
column temperature of 40 ◦C was used, with a 5 min initial hold, followed by temperatures
of 270 ◦C at 2 ◦C/min and 270 ◦C (20 min). The injection mode was splitless (1 µL of a
1:1000 n-hexane solution) with injector and detector temperatures of 250 ◦C and 290 ◦C,
respectively. The analysis was also run using a fused silica HP Innowax polyethylene glycol
capillary column (50 m, 0.20 mmi.d., 0.25 0.25 µm film thickness, Agilent, Roma, Italy). In
both cases, helium was used as the carrier gas (1.0 mL/min).

The GC/MS analyses were performed on an Agilent 6850 Ser. II apparatus (Agilent,
Roma, Italy) fitted with a fused silica DB-5 capillary column (30 m, 0.25 mm i.d., 0.33 µm
film thickness, Agilent, Roma, Italy) and coupled to an Agilent Mass Selective Detector
MSD 5973 with an ionization energy voltage of 70 eV and an electron multiplier voltage
energy of 2000 V. Mass spectra (MS) were scanned in the range 40–500 amu with a scan
time of 5 scans/s.

The majority of constituents were identified using GC by comparing their Kovats retention
indices (Ri), which were determined relative to the retention times (tR) of n-alkanes (C10-C35),
to either those in the literature [43,44] and mass spectra on both columns or those of authentic
compounds available in our laboratories via the NIST 02 and Wiley 275 libraries. Peak area
normalization was used to obtain the component relative concentrations. There were no
response factors calculated.

4.3. Antimicrobial Activity
4.3.1. Microorganisms and Culture Conditions

The following bacterial strains were utilized: Acinetobacter baumannii ATCC 19606,
Pseudomonas aeruginosa DSM50,071, and Escherichia coli DSM 8579 (Gram-negative); Staphy-
lococcus aureus subsp. aureus Rosebach ATCC 25923 and Listeria monocytogenes ATCC 7644
(Gram-positive). Prior to analysis, the bacteria were cultivated in Luria broth at 37 ◦C for
18 h. A. baumannii was cultured under the same conditions at 35 ◦C.

4.3.2. Minimal Inhibitory Concentration (MIC)

To ensure sterility, the EOs and the DMSO underwent ultrafiltration before their use
in the study. The MIC (Minimum Inhibitory Concentration) of the EOs was determined
using a modified version of the resazurin method developed by Sarker and Nahar [45]. A
resazurin solution was prepared by dissolving 270 mg of resazurin in 40 mL of sterilized
deionized water. In 96-well microtiter plates, the first row received 100 µL of samples in
DMSO (1:10 v/v), while all other wells received 50 µL of Luria–Bertani broth or normal
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sterile solution. Serial dilutions of the EOs were performed in descending concentrations.
To each well, 10 µL of the resazurin indicator solution was added. Furthermore, 30 µL
of 3.3 × sensitized broth and 10 µL of bacterial suspension (5 × 106 cfu/mL) were added
to each well. The plates were sealed with parafilm to prevent dehydration. A column
of the plate contained the broad-spectrum antibiotic tetracycline, which was previously
suspended in DMSO and served as a positive control [14]. A negative control consisted of
Luria–Bertani broth containing resazurin and bacteria without any samples. The plates were
incubated at 37 ◦C (35 ◦C for A. baumannii) for 24 h. Visual observation was used to assess
any color changes. If the solution changed from dark purple to pink or colorless, it was
recorded as a positive result. The MIC value was determined as the lowest concentration
that could prevent the color change from dark purple to pink.

4.3.3. Biofilm Inhibitory Activity

To evaluate the inhibitory activity on mature biofilm, flat-bottomed 96-well microtiter
plates were employed [46]. Bacterial cultures were adjusted to a 0.5 McFarland standard
with fresh culture broth. Each well received 10 µL of the bacterial cultures and then they
were incubated for 24 h at 37 ◦C (35 ◦C for A. baumannii). After removing the planktonic
cells, in each well 10 or 20 µL/mL of the EOs were added. The final volume in each well was
adjusted to 250 µL with varying amounts of Luria–Bertani broth. The plates were covered
with parafilm tape to prevent evaporation and incubated at 37 ◦C (35 ◦C for A. baumannii)
for another 24 h. After removing the planktonic cells, sessile cells were washed twice with
sterile PBS. Subsequently, the plates were left under a laminar flow hood for 10 min to fix
the sessile cells and then removed after 15 min. The plates were allowed to dry and the
sessile cells were stained with 200 µL of a 2% w/v crystal violet solution per well for 20 min.
Then, the staining solution was discarded and the plates were gently washed with sterile
PBS. The bound dye was released by adding 200 µL of 20% w/v glacial acetic acid. The
absorbance was measured at λ = 540 nm using a spectrophotometer (Cary Varian, Palo Alto,
CA, USA). The biofilm inhibitory activity was calculated as a percentage relative to the
control (cells grown without the samples were considered to have 0% inhibition). Triplicate
tests were performed and average results were calculated for reproducibility.

4.3.4. Effects of EOs on Cell Metabolic Activity within Biofilm

To evaluate the effect of the EOs on the metabolic activity of bacterial cells within the
biofilm, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimet-
ric method was employed [46]. Two concentrations of the EOs (10 and 20 µL/mL) were
added after 24 h of bacterial incubation, performed as described above, after removing the
planktonic cells. After another 24 h of incubation, the planktonic cells were removed and
150 µL of PBS and 30 µL of 0.3% MTT were added. The microplates were then incubated
for 2 h at 37 ◦C (35 ◦C for A. baumannii). The MTT solution was removed, followed by two
washing steps with 200 µL of sterile physiological solution. Finally, 200 µL of dimethyl
sulfoxide (DMSO) was added to suspend the formazan crystals and the absorbance was
measured at λ = 570 nm (Cary Varian, Palo Alto, CA, USA).

4.4. Anti-Enzymatic Activity
4.4.1. Cholinesterases Inhibition

The cholinesterase inhibition was evaluated using Ellman’s colorimetric method [47]
with some modifications. Briefly, in a total volume of 1 mL, 415 µL of Tris-HCl buffer 0.1 M
(pH 8), 10 µL of a buffer solution of the EOs (in methanol) at different concentrations (100,
10, 1, and 0.1 mg/mL), and 25 µL of a solution containing 0.28 U/mL of AChE (or BChE)
were incubated for 15 min at 37 ◦C. Then, a solution of AChI (or BChI) 1.83 mM (75 µL) and
475 µL of DTNB was added, and the final mixture was incubated for 30 min at 37 ◦C. The
absorbance was measured at 405 nm in a spectrophotometer (Thermo Scientific Multiskan
GO, Monza, Italy). Galantamine was the positive control. All experiments were carried out
in triplicate and the results are expressed as the mean ± SD.



Molecules 2023, 28, 7211 16 of 19

4.4.2. α-Amylase Inhibition Assay

Amylase activity was determined using the method of Bernfeld [48] with slight modi-
fication. An amount of 100 hundred µL of different concentrations of the EOs was added
to 200 µL of 20 mM sodium phosphate buffer (pH = 6.9) and 100 µL of amylase solution
(10 U/mL). The mixture was incubated at 37 ◦C for 10 min. Then, 180 µL of 1% soluble
starch solution was added and incubated at 37 ◦C for 20 min. An amount of 180 µL of
3,5 dinitrosalycyclic acid (DNSA) water solution (96 mM) was added to the mixture and
boiled in a block heater at 100 ◦C for 10 min. Then, the solution was cooled by adding
600 µL of distilled water. The absorbance of the solution was read at 540 nm in a UV
Spectrophotometer (Thermo Fischer Scientific, Vantaa, Finland). All experiments were
carried out in triplicate and the results are expressed as the mean ± SD.

4.4.3. α-Glucosidase Inhibition Assay

α-Glucosidase inhibitory activity was evaluated as previously reported [49] with
some modifications. Briefly, the assay was carried out in 96-multiwell plates and 0.1 M of
phosphate buffer at pH 7.0 (150 µL) was added to each well; successively, 10 µL of the EOs
dissolved in methanol to obtain different concentrations was added to each well. Then, the
reaction was initiated by the addition of 15 µL of the α-glucosidase enzyme water solution
(1 U/mL) in each well, and the plate was incubated at 37 ◦C; after 5 min, 75 µL of the
substrate (2.0 mM) 4-nitrophenyl α-D-glucopyranoside was added and, successively, the
plate was incubated for 10 min at 37 ◦C. The absorbance was measured at 405 nm in a
UV Spectrophotometer (Thermo Fischer Scientific, Vantaa, Finland). The positive control
was acarbose. The negative control absorbance (phosphate buffer in place of the sample)
was also recorded. Inhibition of the enzyme was calculated and the results are expressed
as IC50.

The percent of inhibition of the enzyme activity for cholinesterases, α-amylase, and
α-glucosidase was calculated by comparison with the absorbance of the control without
sample, following the formula:

% = [(A0 − A1)/A0] * 100

where A0 is the absorbance of the control without the sample and A1 is the absorbance
of the sample. The IC50 value was obtained by plotting the inhibition percentage against
sample concentrations.

All experiments were carried out in triplicate and the results are expressed as the
mean ± SD.

4.5. Statistical Analysis

The experiments were replicated three times and the resulting data were subjected to
statistical analysis using SPSS statistical software version 26.

5. Conclusions

This study contributes to the existing knowledge regarding the composition and
bioactivity of various Eucalyptus EOs. The EO compositions, coupled with their enzymatic
potential and antimicrobial activities, offer insight into the multifaceted attributes of these
natural compounds. In particular, the E. extensa EO could be taken into consideration
for the development of possible antimicrobial agents against E. coli and L. monocytogenes
human infections. Moreover, further investigations can shed more light on the diverse
applications of Eucalyptus EOs, enhancing our understanding of their potential benefits and
expanding their potential applications in various sectors. In fact, beyond their potential
use as antimicrobial agents, Eucalyptus EOs (especially E. brevifolia and E. leptophylla EOs)
could be used as coadjutants in preventing and treating Alzheimer’s disease and/or
diabetes mellitus.
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