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Abstract: Cyanobacteria outbreaks are serious water pollution events, causing water crises around
the world. Photocatalytic disinfection, as an effective approach, has been widely used to inhibit blue
algae growth. In this study, a tiny reaction room containing a TiO2 film was designed to fulfill in
situ optical observation of the destruction process of a one-dimensional multicellular microorganism,
Anabaena sp. PCC 7120, which is also a typical bacterial strain causing water blooms. It was found
that the fragment number increased exponentially with the activation time. The fracture mechanics
of the algae chains were hypothesized to be the combining functions of increased local tensile stress
originated from the cell contracting as well as the oxidative attacks coming from reactive oxygen
species (ROSs). It was assumed that the oxidative species were the root cause of cellular structure
changes in and chain fractures of Anabaena sp. PCC 7120 in the photocatalytic inactivation activity.

Keywords: in situ optical observation; chain fracture mechanism; photocatalytic inactivation

1. Introduction

Cyanobacteria (blue algae) blooms have caused huge health threats and economic
losses in aspects including aquatic food production, drinking water supplies, recreation,
and tourism worldwide [1,2]. Meanwhile, the other threat brought by cyanobacteria blooms
is cyanotoxins, which are released when cyanobacteria die or their cells break. Therefore,
researchers focused on developing methods that could remove the cyanobacterial cells and
degrade the cyanotoxins simultaneously to ensure water safety [3]. Based on traditional
oxidative methods including chlorination [4] and ozone [5], advanced oxidation processes
have been attempted for the removal of cyanobacteria and the degradation of cyanotoxins
in a more effective, inexpensive, and eco-friendly way. For instance, ozone micro-bombs [1]
and CaO2-functionalized alginate beads [6] were designed to eliminate the pollution caused
by cyanobacteria blooms.

Photocatalytic disinfection was proven to be another potential route to solving blue
algae blooms, thanks to the fundamental work of Matsunaga et al. in 1985 [7]. They found
that photocatalytic disinfection could effectively disinfect the whole spectrum of microor-
ganisms, including bacteria [8], viruses [9], and fungi [10]. For the treatment of blue algae
and its related environmental problems, TiO2-based materials have been demonstrated
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to possess high photocatalytic inhibition activity for blue algae growth, and could photo-
catalytically degrade toxic cyanotoxins [11–14]. Immobilizing TiO2-based photocatalysts
on appropriate substrates, such as fibers [15], foams [16], and membranes [17], makes
photocatalysis a more promising approach to the treatment of cyanobacteria-contaminated
water bodies. To better understand the photocatalytic disinfection of blue algae, the in situ
observation of changes in blue algae during the photocatalytic treatment process is essen-
tial, which could reveal its disinfection mechanism and may provide interesting findings
in biophysics.

However, no such report is available in the literature, which may be attributed to
the experimental difficulty of the in situ observation of living creatures on such a small
scale. In this work, we report, for the first time, the in situ observation of cellular/chain
structure changes during the photocatalytic treatment of Anabaena sp. PCC 7120, which is a
filamentous, heterocyst-forming cyanobacterium, one of the main bacterial strains causing
water blooms and excreting cyanotoxins [18]. And we tried to analyze the photocatalytic
fragmentation mechanism of blue algae chains through in situ observation.

2. Results and Discussion

To realize real-time, in situ observation, a micro-reaction chamber (see Figure 1a) was
constructed from a UV-activated photocatalytic TiO2 thin film spun-coated on a glass slide
from a sol–gel precursor solution (the XRD pattern and SEM image of the TiO2 thin film
can be seen in Figure S1) [19]. After the Anabaena sp. PCC 7120 solution was dropped
onto the TiO2 thin film, a quartz cover slip was put on the blue algae solution drop, and
the Anabaena sp. PCC 7120 solution was sealed by applying a polymer adhesive along
the cover slip and the TiO2 thin film to avoid solution loss and evaporation during the
experiment. As demonstrated in Figure 1b, the micro-reaction chamber was placed on the
object stage of a biological fluorescence microscope (Nikon 80i-PH-FL). The optical circuits
not only provided the UV light source to activate the semiconductor TiO2 thin film, but
also carried the optical signal from the specimen for imaging. Therefore, this technique
allowed the photocatalytic reaction and the in situ microscopy observation to be made
at the same time. With the help of a DAPI filter block, UVA light illumination with 340
to 380 nm was obtained to realize TiO2 excitation (see Figure S2). It was not necessary
to add oxygen to the reaction room due to the fact that cyanobacterium is an oxygenic
photosynthesis bacterium.
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Figure 2 presents a series of images of an Anabaena sp. PCC 7120 chain exposed
to the photocatalytic stimulus for various time intervals. Prior to the application of the
photocatalytic stimulus, the Anabaena sp. PCC 7120 chain consisted of a large number
of individual cells connected end-to-end. Most of the chains were long, continuous, and
floating in the liquid medium with little movement. Within each chain, the distance between
the adjacent cells was relatively constant. After the photocatalytic stimulus was applied
for an extended period of time, the chain appeared permanently deformed and ruptured
into multiple fragments. Figure 2a shows the emergence of a gap between two individual
cells at the location indicated by the arrow. As the photocatalysis time continued, the gap
became larger, as seen in Figure 2b–d, and eventually, the chain broke into separate pieces
(Figure 2e,f). The chain rupture apparently occurred along the septum of the cyanobacteria.
After the chain rupture, the cells in the broken pieces were still active, continuing to vibrate
at a fast speed, as the photocatalytic stimulus remained in place. The dynamic process
of the chain rupture was captured by the video camera mounted on the microscope and
shown in Video S1.
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Figure 2. The video screenshots of chain rupture process at different photocatalysis times (The arrows
indicated where the chain rupture occurred.

For the long Anabaena sp. PCC 7120 chains, the rupture occurred at multiple lo-
cations, though not necessarily at the same time, resulting in multiple fragments. As
shown in Figure 3a, the field of view initially enclosed two long continuous cyanobacterial
chains. At the beginning of the photocatalytic activation, the chains were deformed to
assume different configurations (Figure 3b). After extended periods of photocatalytic
treatment, the long, continuous chains broke into short fragments (Figure 3c,d). The longer
the photocatalysis time was, the shorter the fragments were. Figure 3e demonstrates
the chain/fragment numbers observed at different photocatalysis time intervals in one
representative observation out of eight observations. It clearly demonstrates that the
chain/fragment numbers increased generally with the increase in photocatalysis time, and
the relationship between the fragment number, N, and the photocatalysis time, t, could be
fit into an exponential function:

N = αe
t
β + γ (1)
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where fitting constants α = 37.62, β = 60.37, and γ = 39.37. Data of the other seven observa-
tions can be found in Figure S3 in the Supplemental Materials, all of which followed similar
exponential functions.
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(b) 20 min, (c) 40 min, (d) and 60 min at a magnification of 400 times. (e) The relationship between
chain/fragment numbers and the photocatalysis time, t.

To relate the chain rupture with individual cell behavior, the morphology of individual
cells was examined as a function of the photocatalysis time. Figure 4a–f demonstrates the
morphology changes in one Anabaena sp. PCC 7120 chain during 1 h of photocatalytic
treatment. Five connected cells (cells numbered 9 to 13 from the left end of this chain)
were used to examine the average cell/protoplasm area changes. Green circles were used
to mark the cells, while red circles were used to mark the protoplasm in the cells. When
there was no photocatalytic stimulus (Figure 4a), the cells in this chain were plump, and
their protoplasm was uniformly distributed in the cells. After 10 min of photocatalytic
treatment (Figure 4b), however, the cells began to shrink, and their protoplasm also shrank
and became partly detached from the cell wall. With the increase in photocatalysis time
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(Figure 4b–f), both shrinkage in the cell/protoplasm area and the cell wall/protoplasm
detachment were largely enhanced.
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Figure 4. Optical observations of morphology changes in Anabaena sp. PCC 7120 treated with UVA on
TiO2 film at (a) 0 min, (b) 10 min, (c) 20 min, (d) 30 min, (e) 40 min, (f) and 60 min at a magnification
of 1000 times (The green circles indicated the cells chosen for the average apparent cellular area
decreasing calculation, and the red circles indicated the protoplasm chosen for the average apparent
protoplasm area decreasing calculation).

For a chain link made of a series of individual rings, the entire chain simply goes
through a translational movement if each ring shrinks freely. However, if the chain is
constrained to two fixed points, the segment in between will be placed under tension.
Real-time observations of the chain motion showed that as the long cellular chains took
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convoluted configurations in the solution (Figure 3a), points of the chain entanglement or
locations with a very small radius (3–5 cell dimensions) acted as “fixed hinges” around
which the chains rotated or twisted and between which individual cells vibrated. Between
the hinges, the cellular chain may be viewed as a segment in the chain link analogy. At
the same shrinkage strain, the greater the number of rings in the segment, the higher the
tensile stress will be in the chain. When the tensile stress reaches the strength of the chain
link, the chain will rupture. Based on this analogy of chain link fracture, the deformation
in each cell was analyzed, and a model for the chain rupture is illustrated in Figure 5.
Figure 5a demonstrates the average apparent cellular area changes in both the cells and
their protoplasm calculated from cells numbered 9 to 13 during 1 h of photocatalytic
treatment. The average apparent cellular area decreased from ~13.8 µm2 to ~9.5 µm2 after
1 h of photocatalytic treatment, representing a 31% decrease, while the average apparent
protoplasm area had an even larger percentage decrease, from ~10.8 µm2 to ~1.95 µm2,
after 1 h of photocatalytic treatment, representing an 82% decrease. The change in the
apparent cellular area can be converted into a radial strain, ε:

ε = ln(1 +
∆r
r0

) (2)

where r0 is the initial radius, and ∆r is the change in the radius of the individual cell calcu-
lated from the apparent cell area by assuming a circular geometry. Using the protoplasm
data, the cellular strain, ε, showed a linear relationship with the photocatalysis time, t, as
shown in Figure 5b, which could be fitted into the following equation:

ε = −λt (3)

where the fitting constant λ = 0.015. The contraction of the cell induces tensile stress, whose
magnitude depends on the stress strain or constitutive relationship of the cell membrane.
Fung showed that the constitutive equation of the biological materials may be expressed
by the following mathematical expression [20,21]:

σ = (C + B)eA(ε−ε∗) − B (4)

where A, B, and C are material constants, ε is the stretch strain, and ε* is a characteristic
strain. Converting the shrinkage strain to the stretch strain and substituting Equation (3)
into Equation (4), we arrived at the following expression for the stress in each cell:

σ = (C + B)eA(λt−ε∗) − B (5)

For a fixed chain segment made of m cells, the total stress buildup, T, would be:

T = mσ (6)

As with the fracture of other materials, supposing that when the total stress, T, reaches
a critical value, Tc, the rupture strength of the septum material, the chain ruptures, we then
reach the following rupture condition:

m[(C + B)eA(λt−ε∗) − B] = Tc (7)

Since the number of cells in a chain fragment is directly proportional to the inverse
of the number of fragments, m = k/N, with k being the proportional constant, Equation (7)
may be written into the following expression:

N = Γeηt + H (8)

where Γ = k(C+B)
Tc

e−Aε∗, η = Aλ, H = − kB
Tc

.
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It can be easily seen that Equation (8) has the same form as Equation (1), which demon-
strates that our theoretical analysis was in accordance with the observed experimental result.

From the real-time, in situ microscopic observations and the chain fracture mechanical
analysis, a chain fracture mechanism was proposed for the Anabaena sp. PCC 7120 chain
under photocatalytic treatment. Figure 5c shows the schematic illustration of a simplified
Anabaena sp. PCC 7120 chain structure, and the inside cell components are omitted. The
cells in a Anabaena sp. PCC 7120 chain are surrounded by a plasma membrane and a
peptidoglycan layer, while the whole chain structure is covered by an outer membrane [22].
In the center of the intercellular septa, the microplasmodesmata exist as the cell–cell
connections, serving as the transport structure for metabolites and regulators between
cells of a cyanobacterial filament [23]. The outer membrane continuously surrounds the
entire chain structure and does not enter the septum between two vegetative cells [22].
To connect the two adjacent cells and maintain the chain structure, the outer membrane
maintains cohesive stress (σc) on the cells. Figure 5d shows how the chain ruptured from
photocatalytic treatment. Former studies have provided strong proof of the efficient reactive
oxygen species (ROSs) generation of anatase TiO2 film [24–26]. Under the attack of ROSs,
the outer membrane was damaged. ROSs could go through the damaged outer membrane
and cause the observed shrinkage of protoplasm. When protoplasms in two adjacent
cells shrank towards the opposite directions, local tensile stress (σt) developed in their
connecting parts. With the increase in the photocatalytic treatment time, the local tensile
stress could increase with their shrinkage increase, while the outer membrane around the
connecting parts was continuously weakened from damage by the attack of the ROSs.
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When the local tensile stress finally could not be balanced by the cohesive stress from the
weakened outer membrane, the algae chain ruptured at these weakened connection parts.

Moreover, control experiments were involved to eliminate the effects of UVA illumina-
tion, temperature increase, and fluid loss. When there was no TiO2 thin film, however, no
visible difference could be observed on the Anabaena sp. PCC 7120 chain structure before
and after UVA irradiation for 60 min, as demonstrated in Figure S4c,d, respectively. Thus,
this observation demonstrated that UVA irradiation itself could not cause huge damage
to Anabaena sp. PCC 7120. The huge structure change demonstrated in Figures 2 and 3
could only be attributed to the photocatalytic treatment with a TiO2 thin film in the micro-
reaction chamber. Although UV irradiation had been demonstrated as a treatment option
for cyanotoxins [27], cyanobacterium has evolved various strategies of UV tolerance during
their long-time evolution as the oldest oxygenic inhabitants on the planet [28]. A similar
observation was reported on Anabaena sp. [29]; no significant effect on lipid peroxidation,
chlorophyll bleaching, or its survival was observed under UVA irradiation, and only UVB
irradiation (the wavelength range of 280 nm to 315 nm) could cause huge damage on the
algae ultrastructure and related metabolic functions.

3. Conclusions

Our real-time, in situ microscopy observations of the destruction process of a one-
dimensional multicellular microorganism showed that multicellular organism destruction
could occur at both the individual cell and the system levels when the multicellular system
is attacked by ROSs generated from photocatalysis. In the case of Anabaena sp. PCC 7120,
the cells contracted at the individual cell level. However, at the system level, the entire
cellular chain suffered from increasing levels of tension as the oxidative attack continued
until the chain ruptured into shorter and shorter fragments. Analysis of the mechanics of
the chain rupture process provided a theoretical explanation for the experimental finding
that the fragment number increased exponentially with the activation time.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/molecules28207200/s1, where media and conditions for
cell cultivation, preparation, and the characterization of TiO2 film can be found. Figure S1: (a) XRD
pattern and (b) SEM image of anatase TiO2 thin film; Figure S2: (a) Schematic illustration of the
filter block DAPI (Ex 340–380 nm/DM 400 nm/BA 435–485 nm) and (b) the DAPI tag along with the
light source; Figure S3: The relationship between chain/fragment numbers and the photocatalysis
time, t, in other 7 observations; Figure S4: OM observations of Anabaena sp. PCC 7120 (a) treated
with UVA on TiO2 film for 0 min, (b) treated with UVA on TiO2 film for 60 min, (c) treated with
UVA for 0 min, and (d) treated with UVA for 60 min at a magnification of 200 times; Video S1: The
video of chain rupture process at different photocatalysis times. References [19,30,31] are cited in the
Supplementary Materials.
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