Chemical Composition, Antioxidant, and Antitumor Activity of Fucoidan from the Brown Alga Dictyota dichotoma
Abstract
:1. Introduction
2. Results
2.1. Structure and Chemical Composition of Isolated Fucoidan
2.2. Physical Characteristics of Fucoidan
2.2.1. Antioxidant Activity of Fucoidan
2.2.2. In Vitro Antitumor Activity
3. Discussion
4. Materials and Methods
4.1. Collection of Algae
4.2. Extraction and Purification of Fucoidan
4.3. Fourier Transforms Infrared (FTIR) Spectroscopy
4.4. Hydrolysis of Fucoidan
4.5. Nuclear Magnetic Resonance (NMR)
4.6. Molecular Weight Analysis
4.7. Physical Characteristics of Fucoidan
4.7.1. pH of Fucoidan
4.7.2. Solubility of Fucoidan
4.7.3. Estimation of Sulfate Content
4.7.4. Estimation of Uronic Acid Content
4.7.5. Estimation of Protein Content
4.7.6. Analysis of Monosaccharides
4.7.7. Evaluation of the Antioxidant Activity of Fucoidan In Vitro
Total Antioxidant Capacity (TAC)
DPPH Radical Scavenging Activity
Hydrogen Peroxide Scavenging Activity
ABTS Scavenging Activity
Nitric Oxide Radical Scavenging Assay
Ferrous Ion Chelating Activity
In Vitro Antitumor Activity of Fucoidan
4.8. Source of Tumor Cells
4.9. Tumor Cells Viability
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Gheda, S.; El-Sheekh, M.; Abou-Zeid, A. In vitro anticancer activity of polysaccharide extracted from the red alga Jania rubens against breast and colon cancer cell lines. Asian Pac. J. Trop. Med. 2018, 11, 583–589. [Google Scholar]
- El Zawawy, N.; El Shafay, S.; Abomohra, A.E.-F. Macroalgal activity against fungal urinary tract infections: In vitro screening and evaluation study. Rend. Lincei. Sci. Fis. E Nat. 2020, 31, 165–175. [Google Scholar] [CrossRef]
- Beach, K.; Walters, L.; Borgeas, H.; Smith, C.; Coyer, J.; Vroom, P. The impact of dictyota spp. On halimeda populations of conch reef, florida keys. J. Exp. Mar. Biol. Ecol. 2013, 297, 141–159. [Google Scholar] [CrossRef]
- Obluchinskaya, E.D.; Pozharitskaya, O.N.; Shikov, A.N. In vitro anti-inflammatory activities of fucoidans from five species of brown seaweeds. Mar. Drugs 2022, 20, 606. [Google Scholar] [CrossRef] [PubMed]
- Usoltseva, R.V.; Anastyuk, S.D.; Ishina, I.A.; Isakov, V.V.; Zvyagintseva, T.N.; Thinh, P.D.; Zadorozhny, P.A.; Dmitrenok, P.S.; Ermakova, S.P. Structural characteristics and anticancer activity in vitro of fucoidan from brown alga Padina boryana. Carbohydr. Polym. 2018, 184, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Sinurat, E.; Peranginangin, R.; Saepudin, E. Purification and characterization of fucoidan from the brown seaweed sargassum binderi sonder. Squalen Bull. Mar. Fish. Postharvest Biotechnol. 2016, 10, 79–87. [Google Scholar] [CrossRef]
- Vishchuk, O.S.; Tarbeeva, D.V.; Ermakova, S.P.; Zvyagintseva, T.N. Structural characteristics and biological activity of fucoidans from the brown algae Alaria sp. And Saccharina japonica of different reproductive status. Chem. Biodivers. 2012, 9, 817–828. [Google Scholar] [CrossRef]
- Obluchinsksya, E.D.; Makarova, M.N.; Pozharitskaya, O.N.; Shikov, A.N. Effects of ultrasound treatment on the chemical composition and anticoagulant properties of dry Fucus extract. Pharm. Chem. J. 2015, 49, 183–186. [Google Scholar] [CrossRef]
- Zayed, A.; El-Aasr, M.; Ibrahim, A.S.; Ulber, R. Fucoidan characterization: Determination of purity and physicochemical and chemical properties. Mar. Drugs 2020, 18, 571. [Google Scholar] [CrossRef]
- Zayed, A.; Ulber, R. Fucoidans: Downstream processes and recent applications. Mar. Drugs 2020, 18, 170. [Google Scholar] [CrossRef]
- Rabanal, M.; Ponce, N.M.A.; Navarro, D.A.; Gómez, R.M.; Stortz, C.A. The system of fucoidans from the brown seaweed Dictyota dichotoma: Chemical analysis and antiviral activity. Carbohydr. Polym. 2014, 101, 804–811. [Google Scholar] [CrossRef] [PubMed]
- Krylova, N.V.; Ermakova, S.P.; Lavrov, V.F.; Leneva, I.A.; Kompanets, G.G.; Iunikhina, O.V.; Nosik, M.N.; Ebralidze, L.K.; Falynskova, I.N.; Silchenko, A.S.; et al. The comparative analysis of antiviral activity of native and modified fucoidans from brown algae Fucus evanescens in vitro and in vivo. Mar. Drugs 2020, 18, 224. [Google Scholar] [CrossRef] [PubMed]
- Pozharitskaya, O.N.; Obluchinskaya, E.D.; Shikov, A.N. Mechanisms of bioactivities of fucoidan from the brown seaweed fucus vesiculosus l. Of the barents sea. Mar. Drugs 2020, 18, 275. [Google Scholar] [CrossRef] [PubMed]
- Apostolova, E.; Lukova, P.; Baldzhieva, A.; Delattre, C.; Molinié, R.; Petit, E.; Elboutachfaiti, R.; Nikolova, M.; Iliev, I.; Murdjeva, M.; et al. Structural characterization and in vivo anti-inflammatory activity of fucoidan from Cystoseira crinita (desf.) borry. Mar. Drugs 2022, 20, 714. [Google Scholar] [CrossRef] [PubMed]
- Obluchinskaya, E.D.; Pozharitskaya, O.N.; Zakharov, D.V.; Flisyuk, E.V.; Terninko, I.I.; Generalova, Y.E.; Smekhova, I.E.; Shikov, A.N. The biochemical composition and antioxidant properties of Fucus vesiculosus from the arctic region. Mar. Drugs 2022, 20, 193. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; McGowan, E.; Chen, S.; Santos, J.; Yin, H.; Lin, Y. Immunopotentiating activity of fucoidans and relevance to cancer immunotherapy. Mar. Drugs 2023, 21, 128. [Google Scholar] [CrossRef]
- Venardou, B.; O’Doherty, J.V.; Garcia-Vaquero, M.; Kiely, C.; Rajauria, G.; McDonnell, M.J.; Ryan, M.T.; Sweeney, T. Evaluation of the antibacterial and prebiotic potential of ascophyllum nodosum and its extracts using selected bacterial members of the pig gastrointestinal microbiota. Mar. Drugs 2021, 20, 41. [Google Scholar] [CrossRef]
- Obluchinskaya, E.D.; Pozharitskaya, O.N.; Gorshenina, E.V.; Zakharov, D.V.; Flisyuk, E.V.; Terninko, I.I.; Generalova, Y.E.; Shikov, A.N. Arctic edible brown alga Fucus distichus L.: Biochemical composition, antiradical potential and human health risk. Plants 2023, 12, 2380. [Google Scholar] [CrossRef]
- Dörschmann, P.; Apitz, S.; Hellige, I.; Neupane, S.; Alban, S.; Kopplin, G.; Ptak, S.; Fretté, X.; Roider, J.; Zille, M.; et al. Evaluation of the effects of fucoidans from Fucus species and Laminaria hyperborea against oxidative stress and iron-dependent cell death. Mar. Drugs 2021, 19, 557. [Google Scholar] [CrossRef]
- Tariq, A.; Athar, M.; Ara, J.; Sultana, V.; Ehteshamul-Haque, S.; Ahmad, M. Biochemical evaluation of antioxidant activity in extracts and polysaccharide fractions of seaweeds. Glob. J. Environ. Sci. Manag. 2015, 1, 47–62. [Google Scholar]
- El-Sayed, A.A.M.; Abouzeid, F.M.; Ismail, M.M.; ElZokm, G.M. Characterization and utilization of sargassum linifolium and stypopodium schimperi polysaccharides as blue inhibitors for steel electo-polishing. Water Sci. Technol. 2020, 83, 409–424. [Google Scholar] [CrossRef] [PubMed]
- Youssif, K.A.; Haggag, E.G.; Elshamy, A.M.; Rabeh, M.A.; Gabr, N.M.; Seleem, A.; Salem, M.A.; Hussein, A.S.; Krischke, M.; Mueller, M.J.; et al. Anti-alzheimer potential, metabolomic profiling and molecular docking of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea aqueous extracts. PLoS ONE 2019, 14, e0223781. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, V.; Chauhan, A. Oxidative stress in alzheimer’s disease. Pathophysiology 2006, 13, 195–208. [Google Scholar] [CrossRef]
- Ragonese, C.; Tedone, L.; Beccaria, M.; Torre, G.; Cichello, F.; Cacciola, F.; Dugo, P.; Mondello, L. Characterisation of lipid fraction of marine macroalgae by means of chromatography techniques coupled to mass spectrometry. Food Chem. 2014, 145C, 932–940. [Google Scholar] [CrossRef]
- El-Shafay, S.; El-Sheekh, M.; Bases, E.; El-shenody, R. Antioxidant, antidiabetic, anti-inflammatory and anticancer potential of some seaweed extracts. Food Sci. Technol. 2021, 42, e20521. [Google Scholar] [CrossRef]
- El-Sheekh, M.M.; El-Shenody, R.A.E.K.; Bases, E.A.; El Shafay, S.M. Comparative assessment of antioxidant activity and biochemical composition of four seaweeds, rocky bay of abu qir in alexandria, egypt. Food Sci. Technol. 2021, 41, 29–40. [Google Scholar] [CrossRef]
- Kim, E.J.; Park, S.Y.; Lee, J.-Y.; Park, J.H.Y. Fucoidan present in brown algae induces apoptosis of human colon cancer cells. BMC Gastroenterol. 2010, 10, 1–11. [Google Scholar] [CrossRef]
- Wang, Q.; Song, Y.; He, Y.; Ren, D.; Kow, F.; Qiao, Z.; Liu, S.; Yu, X. Structural characterisation of algae Costaria costata fucoidan and its effects on ccl4-induced liver injury. Carbohydr. Polym. 2014, 107, 247–254. [Google Scholar] [CrossRef]
- Na, Y.; Kim, W.; Kim, S.-M.; Park, J.K.; Lee, S.; Kim, S.; Synytsya, A.; Park, Y. Purification, characterization and immunostimulating activity of water-soluble polysaccharide isolated from capsosiphon fulvescens. Int. Immunopharmacol. 2010, 10, 364–370. [Google Scholar] [CrossRef]
- Pielesz, A.; Binias, W. Cellulose acetate membrane electrophoresis and ftir spectroscopy as methods of identifying a fucoidan in Fucusvesiculosus linnaeus. Carbohydr. Res. 2010, 345, 2676–2682. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Mikkelsen, M.D.; Tran, V.H.N.; Trang, V.T.D.; Rhein-Knudsen, N.; Holck, J.; Rasin, A.B.; Cao, H.T.T.; Van, T.T.T.; Meyer, A.S. Enzyme-assisted fucoidan extraction from brown macroalgae Fucus distichus subsp. Evanescens and saccharina latissima. Mar. Drugs 2020, 18, 296. [Google Scholar] [CrossRef] [PubMed]
- Filote, C.; Lanez, E.; Popa, V.I.; Lanez, T.; Volf, I. Characterization and bioactivity of polysaccharides separated through a (sequential) biorefinery process from Fucus spiralis brown macroalgae. Polymers 2022, 14, 4106. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Chung, D.; Shin, I.S.; Lee, H.; Kim, J.; Lee, Y.; You, S. Effects of molecular weight and hydrolysis conditions on anticancer activity of fucoidans from sporophyll of Undaria pinnatifida. Int. J. Biol. Macromol. 2008, 43, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Isnansetyo, A.; Fikriyah, A.; Kasanah, N.; Murwantoko. Non-specific immune potentiating activity of fucoidan from a tropical brown algae (phaeophyceae), Sargassum cristaefolium in tilapia (Oreochromis niloticus). Aquac. Int. 2015, 24, 465–477. [Google Scholar] [CrossRef]
- Isnansetyo, A.; Lutfia, F.; Nursid, M.; Trijoko, T.; Susidarti, R. Cytotoxicity of fucoidan from three tropical brown algae against breast and colon cancer cell lines. Pharmacogn. J. 2016, 9, 14–20. [Google Scholar] [CrossRef]
- Singh, S.K.; Castellani, R.; Perry, G. Oxidative stress and alzheimer’s disease. In Inflammation, Aging, and Oxidative Stress; Springer: Berlin/Heidelberg, Germany, 2016; pp. 189–198. [Google Scholar]
- Kiseleva, M.I.; Imbs, T.I.; Avilov, S.A.; Bakunina, I.Y. The effects of polyphenolic impurities in fucoidan samples from the brown alga Fucus distichus subsp. Evanescens (c. Agardh) h.T. Powell, 1957 on the embryogenesis in the sea urchin Strongylocentrotus intermedius (a. Agassiz, 1864) and on the embryotoxic action of cucumarioside. Russ. J. Mar. Biol. 2021, 47, 290–299. [Google Scholar]
- Ammar, H.H.; Lajili, S.; Ben Said, R.; Le Cerf, D.; Bouraoui, A.; Majdoub, H. Physico-chemical characterization and pharmacological evaluation of sulfated polysaccharides from three species of mediterranean brown algae of the genus Cystoseira. Daru 2015, 23, 1. [Google Scholar] [CrossRef]
- Hahn, T.; Lang, S.; Ulber, R.; Muffler, K. Novel procedures for the extraction of fucoidan from brown algae. Process Biochem. 2012, 47, 1691–1698. [Google Scholar] [CrossRef]
- Kawamoto, H.; Miki, Y.; Kimura, T.; Tanaka, K.; Nakagawa, T.; Kawamukai, M.; Matsuda, H. Effects of fucoidan from mozuku on human stomach cell lines. Food Sci. Technol. Res. 2006, 12, 218–222. [Google Scholar] [CrossRef]
- Van Weelden, G.; Bobiński, M.; Okła, K.; Van Weelden, W.J.; Romano, A.; Pijnenborg, J.M.A. Fucoidan structure and activity in relation to anti-cancer mechanisms. Mar. Drugs 2019, 17, 32. [Google Scholar] [CrossRef]
- Rioux, L.E.; Turgeon, S.L.; Beaulieu, M. Characterization of polysaccharides extracted from brown seaweeds. Carbohydr. Polym. 2007, 69, 530–537. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.; Zhang, Z.; Zhang, H.; Niu, X. Structural studies on a novel fucogalactan sulfate extracted from the brown seaweed Laminaria japonica. Int. J. Biol. Macromol. 2010, 47, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Wang, L.; You, Y.; Sun, X.; Wen, C.; Fu, Y.; Song, S. Preparation of low-molecular-weight fucoidan with anticoagulant activity by photocatalytic degradation method. Foods 2022, 11, 822. [Google Scholar] [CrossRef] [PubMed]
- Obluchinskaya, E.D.; Pozharitskaya, O.N.; Flisyuk, E.V.; Shikov, A.N. Formulation, optimization and in vivo evaluation of fucoidan-based cream with anti-inflammatory properties. Mar. Drugs 2021, 19, 643. [Google Scholar] [CrossRef] [PubMed]
- Holtkamp, A.D.; Kelly, S.; Ulber, R.; Lang, S. Fucoidans and fucoidanases—Focus on techniques for molecular structure elucidation and modification of marine polysaccharides. Appl. Microbiol. Biotechnol. 2009, 82, 1–11. [Google Scholar] [CrossRef]
- de Souza, R.M.C.; Marques, C.T.; Guerra Dore, C.M.; Ferreira da Silva, F.R.; Oliveira Rocha, H.A.; Leite, E.L. Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. J. Appl. Phycol. 2007, 19, 153–160. [Google Scholar] [CrossRef]
- Cumashi, A.; Ushakova, N.A.; Preobrazhenskaya, M.E.; D’Incecco, A.; Piccoli, A.; Totani, L.; Tinari, N.; Morozevich, G.E.; Berman, A.E.; Bilan, M.I.; et al. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 2007, 17, 541–552. [Google Scholar] [CrossRef]
- Dias, P.F.; Siqueira, J.M.; Maraschin, M.; Ferreira, A.G.; Gagliardi, A.R.; Ribeiro-do-Valle, R.M. A polysaccharide isolated from the brown seaweed sargassum stenophyllum exerts antivasculogenic effects evidenced by modified morphogenesis. Microvasc. Res. 2008, 75, 34–44. [Google Scholar] [CrossRef]
- Vijayabaskar, P.; Vaseela, N.; Thirumaran, G. Potential antibacterial and antioxidant properties of a sulfated polysaccharide from the brown marine algae Sargassum swartzii. Chin. J. Nat. Med. 2012, 10, 421–428. [Google Scholar] [CrossRef]
- Mukherjee, S.; Pawar, N.; Kulkarni, O.; Nagarkar, B.; Thopte, S.; Bhujbal, A.; Pawar, P. Evaluation of free-radical quenching properties of standard ayurvedic formulation Vayasthapana rasayana. BMC Complement. Altern. Med. 2011, 11, 38. [Google Scholar] [CrossRef]
- Cui, Y.-Q.; Zhang, L.-J.; Zhang, T.; Luo, D.-Z.; Jia, Y.-J.; Guo, Z.-X.; Zhang, Q.-B.; Wang, X.; Wang, X.-M. Inhibitory effect of fucoidan on nitric oxide production in lipopolysaccharide-activated primary microglia. Clin. Exp. Pharmacol. Physiol. 2010, 37, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Cadar, E.; Negreanu-Pirjol, T.; Sirbu, R.; Dragan, A.-M.; Negreanu-Pirjol, B.-S.; Axente, E.; Ionescu, A.-M. Biocompounds from green algae of romanian black sea coast as potential nutraceuticals. Processes 2023, 11, 1750. [Google Scholar] [CrossRef]
- Paiva, L.; Lima, E.; Neto, A.I.; Baptista, J. Seasonal variability of the biochemical composition and antioxidant properties of fucus spiralis at two azorean islands. Mar. Drugs 2018, 16, 248. [Google Scholar] [CrossRef] [PubMed]
- Farghl, A.; Al-Hasawi, Z.; El-Sheekh, M. Assessment of antioxidant capacity and phytochemical composition of brown and red seaweeds sampled off red sea coast. Appl. Sci. 2021, 11, 11079. [Google Scholar] [CrossRef]
- Rodriguez-Jasso, R.M.; Mussatto, S.I.; Pastrana, L.; Aguilar, C.N.; Teixeira, J.A. Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed. Carbohydr. Polym. 2011, 86, 1137–1144. [Google Scholar] [CrossRef]
- Wang, L.; Jayawardena, T.U.; Yang, H.W.; Lee, H.G.; Kang, M.C.; Sanjeewa, K.K.A.; Oh, J.Y.; Jeon, Y.J. Isolation, characterization, and antioxidant activity evaluation of a fucoidan from an enzymatic digest of the edible seaweed, Hizikia fusiforme. Antioxidants 2020, 9, 363. [Google Scholar] [CrossRef]
- Noda, H.; Amano, H.; Arashima, K.; Hashimoto, S.; Nishizawa, K. Antitumor activity of polysaccharides and lipids from marine algae. Nipon Suisan Gakkaishi 1989, 55, 1265–1271. [Google Scholar] [CrossRef]
- Zhen, X.-H.; Quan, Y.-C.; Jiang, H.-Y.; Wen, Z.-S.; Qu, Y.-L.; Guan, L.-P. Fucosterol, a sterol extracted from sargassum fusiforme, shows antidepressant and anticonvulsant effects. Eur. J. Pharmacol. 2015, 768, 131–138. [Google Scholar] [CrossRef]
- Assef, A.N.B.; da Costa, B.B.; Moreira, T.A.; do Carmo, L.D.; de Souza, T.d.F.G.; Alencar, N.M.N.; Alves, A.P.N.N.; Cinelli, L.P.; Wilke, D.V. Antitumor and immunostimulating sulfated polysaccharides from brown algae Dictyota caribaea. Carbohydr. Polym. Technol. Appl. 2021, 2, 100142. [Google Scholar] [CrossRef]
- Arumugam, P.; Arunkumar, K.; Sivakumar, L.; Murugan, M.; Murugan, K. Anticancer effect of fucoidan on cell proliferation, cell cycle progression, genetic damage and apoptotic cell death in hepg2 cancer cells. Toxicol. Rep. 2019, 6, 556–563. [Google Scholar]
- Yang, C.; Chung, D.; You, S. Determination of physicochemical properties of sulphated fucans from sporophyll of undaria pinnatifida using light scattering technique. Food Chem. 2008, 111, 503–507. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.-Y.; Lin, T.-Y.; Hu, C.-H.; Shu, D.; Lu, M.-K. Fucoidan upregulates tlr4/chop-mediated caspase-3 and parp activation to enhance cisplatin-induced cytotoxicity in human lung cancer cells. Cancer Lett. 2018, 432, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Castiblanco, T.; Santa Maria de la Parra, L.; Peña-Cañón, R.; Mejía-Giraldo, J.C.; León, I.E.; Puertas-Mejía, M. Anticancer and antioxidant activity of water-soluble polysaccharides from Ganoderma aff. Australe against human osteosarcoma cells. Int. J. Mol. Sci. 2022, 23, 14807. [Google Scholar] [CrossRef] [PubMed]
- Ahn, C.-B.; Jeon, Y.-J.; Kang, D.-S.; Shin, T.-S.; Jung, B.-M. Free radical scavenging activity of enzymatic extracts from a brown seaweed Scytosiphon lomentaria by electron spin resonance spectrometry. Food Res. Int. 2004, 37, 253–258. [Google Scholar] [CrossRef]
- Kemp, W. Organic Spectroscopy, 3rd ed.; Red Globe Press: London, UK, 1991; p. 393. [Google Scholar] [CrossRef]
- Nagaoka, M.; Shibata, H.; Kimura-Takagi, I.; Hashimoto, S.; Kimura, K.; Makino, T.; Aiyama, R.; Ueyama, S.; Yokokura, T. Structural study of fucoidan from cladosiphon okamuranus tokida. Glycoconj. J. 1999, 16, 19–26. [Google Scholar] [CrossRef]
- Dodgson, K.S.; Price, R.G. A note on the determination of the ester sulphate content of sulphated polysaccharides. Biochem. J. 1962, 84, 106–110. [Google Scholar] [CrossRef]
- Bitter, T.; Muir, H.M. A modified uronic acid carbazole reaction. Anal. Biochem. 1962, 4, 330–334. [Google Scholar] [CrossRef]
- Rajauria, G.; Ravindran, R.; García-Vaquero, M.; Rai, D.; Sweeney, T.; O’Doherty, J. Molecular characteristics and antioxidant activity of laminarin extracted from the seaweed species laminaria hyperborea, using hydrothermal-assisted extraction and a multi-step purification procedure. Food Hydrocoll. 2020, 112, 106332. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Wang, G.Y.; Liang, Z.Y.; Zhang, L.P.; Miao, C.Y.; Zhang, Y.S.; Fei, R. Studies on the structure of js1—The water soluble polysaccharide isolated by alkaline from Hippophae rhamnoides L. Chem. J. Chin. Univ. Chin. Ed. 2001, 22, 1688–1690. [Google Scholar]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Mensor, L.; Boylan, F.; Leitao, G.; Reis, A.; Santos, T.; Coube, C.; Leitão, S. Screening of brazilian plant extracts for antioxidant activity by the use of dpph free radical method. Phytother. Res. PTR 2001, 15, 127–130. [Google Scholar] [CrossRef] [PubMed]
- Ruch, R.J.; Cheng, S.J.; Klauning, J.E. Prevention of cytotoxicity and inhibition of intracellular communication by antioxidant catechins isolated from chinese green tea. Carcinogen 1989, 10, 1003–1008. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved abts radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Gulcin, I. Antioxidant and antiradical activities of l-carnitine. Life Sci. 2006, 78, 803–811. [Google Scholar] [CrossRef]
- Decker, E.A.; Welch, B. Role of ferritin as a lipid oxidation catalyst in muscle food. J. Agric. Food Chem. 1990, 38, 674–677. [Google Scholar] [CrossRef]
- Runyang, M.; Yang, J.; Wu, E.X.; Lin, S. Instant magnetic labeling of tumor cells by ultrasound in vitro. J. Magn. Magn. Mater. 2011, 323, 2287–2294. [Google Scholar]
Components | mg/g Fucoidan | % Fucoidan |
---|---|---|
Sulfate | 83.3 ± 5.20 | 8.33 ± 0.52 |
Uronic acid | 22.5 ± 0.80 | 2.25 ± 0.08 |
Protein | 26.1 ± 1.70 | 2.61 ± 0.17 |
Fucose | 213.0 ± 13.0 | 21.3 ± 1.30 |
Glucose | 119.0 ± 7.40 | 11.9 ± 0.74 |
Galactose | 51.4 ± 6.50 | 5.14 ± 0.65 |
Mannose | 27.2 ± 0.40 | 2.72 ± 0.04 |
Xylose | 25.4 ± 1.90 | 2.54 ± 0.19 |
Glucuronic acid | 20.9 ± 1.20 | 2.09 ± 0.12 |
Concentrations (mg/mL) | Ascorbic Acid | Fucoidan | Fucoidan IC50 (mg/mL) |
---|---|---|---|
Total antioxidant capacity (TAC) | |||
0.1 | 9.16 ± 0.27 | 16.27 ± 0.73 | 1.41 |
0.5 | 16.03 ± 0.48 | 28.63 ± 1.29 | |
1 | 27.30 ± 1.02 | 45.17 ± 2.03 | |
2 | 34.06 ± 0.97 | 60.83 ± 2.78 | |
5 | 40.19 ± 1.21 | 71.76 ± 3.23 | |
DPPH radical scavenging activity | |||
0.1 | 8.44 ± 0.25 | 15.07 ± 0.88 | 4.59 |
0.5 | 16.82 ± 0.27 | 28.25 ± 1.27 | |
1 | 17.34 ± 0.44 | 30.43 ± 1.37 | |
2 | 22.96 ± 0.68 | 39.21 ± 1.79 | |
5 | 30.63 ± 0.97 | 51.13 ± 2.31 | |
Hydrogen peroxide scavenging activity | |||
0.1 | 5.46 ± 0.16 | 7.58 ± 0.34 | 4.84 |
0.5 | 11.07 ± 0.33 | 15.38 ± 0.69 | |
1 | 16.71 ± 0.50 | 23.29 ± 1.05 | |
2 | 22.52 ± 0.68 | 31.28 ± 1.42 | |
5 | 29.12 ± 0.87 | 40.45 ± 187 | |
ABTS scavenging activity | |||
0.1 | 7.48 ± 0.22 | 12.27 ± 0.55 | 8.55 |
0.5 | 11.75 ± 0.35 | 19.27 ± 0.87 | |
1 | 16.56 ± 0.52 | 27.15 ± 1.22 | |
2 | 23.26 ± 0.70 | 38.13 ± 1.72 | |
5 | 30.81 ± 1.12 | 50.51 ± 2.27 | |
Nitric oxide radical scavenging assay | |||
0.1 | 4.59 ± 0.14 | 9.76 ± 0.45 | 9.30 |
0.5 | 6.85 ± 0.21 | 14.57 ± 0.67 | |
1 | 9.54 ± 0.29 | 20.29 ± 0.91 | |
2 | 12.32 ± 0.37 | 26.21 ± 1.18 | |
5 | 17.92 ± 0.54 | 38.13 ± 1.72 | |
Ferrous ion chelating activity | |||
0.1 | 1.49 ± 0.05 | 4.26 ± 0.19 | 61.9 |
0.5 | 2.57 ± 0.08 | 7.35 ±0.28 | |
1 | 4.10 ± 0.13 | 11.70 ± 0.51 | |
2 | 5.44 ± 0.13 | 15.53 ± 0.70 | |
5 | 6.53 ± 0.22 | 18.66 ± 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Sheekh, M.M.; Ward, F.; Deyab, M.A.; Al-Zahrani, M.; Touliabah, H.E. Chemical Composition, Antioxidant, and Antitumor Activity of Fucoidan from the Brown Alga Dictyota dichotoma. Molecules 2023, 28, 7175. https://doi.org/10.3390/molecules28207175
El-Sheekh MM, Ward F, Deyab MA, Al-Zahrani M, Touliabah HE. Chemical Composition, Antioxidant, and Antitumor Activity of Fucoidan from the Brown Alga Dictyota dichotoma. Molecules. 2023; 28(20):7175. https://doi.org/10.3390/molecules28207175
Chicago/Turabian StyleEl-Sheekh, Mostafa M., Fatma Ward, Mohamed A. Deyab, Majid Al-Zahrani, and Hussein E. Touliabah. 2023. "Chemical Composition, Antioxidant, and Antitumor Activity of Fucoidan from the Brown Alga Dictyota dichotoma" Molecules 28, no. 20: 7175. https://doi.org/10.3390/molecules28207175