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Abstract: Phytochemicals are plant secondary metabolites that show health benefits for humans due
to their bioactivity. There is a huge variety of phytochemicals that have already been identified, and
these compounds can act as antimicrobial and neuroprotection agents. Due to their anti-microbial
activity and neuroprotection, several phytochemicals might have the potency to be used as natural
therapeutic agents, especially for Helicobacter pylori infection and neurodegenerative disease, which
have become a global health concern nowadays. According to previous research, there are some
connections between H. pylori infection and neurodegenerative diseases, especially Alzheimer’s
disease. Hence, this comprehensive review examines different kinds of phytochemicals from natural
sources as potential therapeutic agents to reduce H. pylori infection and improve neurodegenerative
disease. An additional large-scale study is needed to establish the connection between H. pylori
infection and neurodegenerative disease and how phytochemicals could improve this condition.

Keywords: phytochemical; neurodegenerative disease; Helicobacter pylori; anti-microbial properties;
neuroprotection

1. Introduction

Helicobacter pylori infection is one of the global health problems. More than 50% of the
population in the world is affected, mostly in developing countries [1]. H. pylori attaches
to the human stomach; induces a change in gastric physiology; and is highly associated
with gastric ulcers, which further progress into gastric cancer [2]. H. pylori can colonize and
infect gastric tissue because of virulent factors such as urease, lipopolysaccharide (LPS),
vacuolating cytotoxin A (VacA), cytotoxin-associated gene A (CagA), and some others [3].
Until now, the main treatment for H. pylori infection is to use the combination of two
antibiotics together with a bismuth compound and/or antacid agent such proton pump
inhibitor (PPI), which is called quadruple therapy and provides an eradication rate of more
than 80% [4]. The usage of antibiotics in H. pylori offers another concern of some side effects
as well as antibiotic resistance problems [5]. Recent studies show that H. pylori infection
contributes to the progression of neurodegenerative diseases.

Neurodegenerative diseases (NDs) are disorders that affect the central nervous system
and that are mostly caused by neuronal cell death, which causes impairment of the cognitive
and motoric system [6]. There are many risk factors associated with ND progression, but
its pathogenesis has still been unclear until now. Several diseases are classified as NDs
such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease
(HD) [7]. These diseases have different characteristics, but most of them share the same
hallmarks, which are neuronal cell death and neuroinflammation [8,9]. Until now, ND
has been classified as an incurable disease, and medication might have a small impact on
improving a patient’s condition [10]. Evidence of nutraceuticals on NDs is still deficient, in
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terms of whether together with normal medication, they could provide better effects on
subjects with NDs.

There are several hypotheses about the possible connection between H. pylori infection
and NDs. H. pylori affect the absorption of folate and vitamin B-12, which causes the
elevation of homocysteine level and induces neurotoxicity. Furthermore, H. pylori cross the
blood–brain barrier and induce amyloid deposition in the brain [11]. Another study showed
that the outer membrane vesicles of H. pylori that were injected into mice altered astrocyte
function and induced neuronal damage in the mouse brain [12]. In PD, it showed that H.
pylori infection is related to the progression of the disease and increases the requirement of
medication for PD [13]. This evidence might provide a clue about the connection between
neurodegenerative disease and H. pylori infection.

Phytochemicals are secondary metabolites of plants, which are non-nutritive bio-
active compounds synthesized for natural defenses of the plant against pests [14–17].
Phytochemicals found in fruits, vegetables, nuts, and grains provide health benefits. Many
studies showed that phytochemicals from different natural sources act as antibacterial
agents or neuroprotective agents [17,18]. Önem et al. showed that stalk extracts from two
different cultivars of Prunus avium L. inhibited Gram-positive bacteria and reduced the
biofilm formation of bacteria by up to 75% [19]. Li et al. showed that supplementation of
proanthocyanidins (PAC)-rich cranberry juice (44 mg of PAC per portion) twice a day for
8 weeks significantly reduced H. pylori infection [20]. Desideri et al. reported that high
intake (990 mg/day) of dietary flavonols from cocoa for 8 weeks significantly improved
cognitive function in mild cognitive impairment subjects compared to those of low intake
(45 mg/day) of cocoa flavonols [21]. Kent et al. pointed out that the intervention of
anthocyanin-rich cherry juice for 12 weeks significantly improved verbal fluency and short-
term and long-term memory in subjects with dementia [22]. Past studies showed that
phytochemicals can be used as drug alternatives to treat H. pylori and neurodegenerative
disease and reduce the risk of antibiotic resistance and complications due to the medication.
Hence, this review discusses the potential of phytochemicals from various sources for H.
pylori infection and also neuroprotection in in vitro and in vivo studies.

2. H. pylori

H. pylori is a Gram-negative spiral bacterium that is found in the human stomach and
is associated with gastric ulcer and advanced gastric cancer [2,23,24]. The infection of H.
pylori shows no symptoms in most cases, but it depends on the immune response of the
individual and the severity of the syndrome. Most symptoms of H. pylori infection are
correlated with the gastric ulcer and inflammation in the gastric tissue [25]. H. pylori is
considered a special bacterium due to the virulence factors (Figure 1) that help to colonize
in the human stomach, such as VacA, CagA, urease, LPS, and different kinds of adhesins [3].

2.1. VacA

VacA is one of the virulence factors possessed by H. pylori. VacA is the major toxic
88 kDa protein that is secreted from H. pylori through type V auto transport secretion
system (T5SS), which binds to the host cell and causes vacuolation of the cell [26].

VacA plays an important role in the colonization of H. pylori in the gastric mucosa,
stimulating the autophagy pathway in cells and disrupting lysosomal trafficking that
causes the accumulation of dysfunctional autophagosomes and the formation of large
intracellular vacuoles to promote the intracellular survival of H. pylori [27]. Furthermore,
it induces different responses in infected cells such as vacuole formation, cytochrome c
release, and forming channels in the mitochondria [28]. It also induces cell apoptosis
because of increasing cytochrome c release from mitochondria. Cytochrome c combines
with Apaf-1 and caspase-9 to stimulate the production of caspase-3 and caspase-7, resulting
in cell apoptosis [29,30]. VacA can disrupt the tight junction to alter the tissue structure and
increase the adhesion of H. pylori to epithelial cells [26,31,32].
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2.2. CagA

CagA is a 120 to 145 kDa protein that can be injected into the host cell by using a type
IV secretion system (T4SS) after the adhesion of H. pylori to the host cell [33]. H. pylori
is divided into two different strains based on the presence of CagA: CagA-positive and
CagA-negative strains. The cagA-positive strain is more virulent than the CagA-negative
strain and is associated with higher gastric inflammation [34].

The effects of CagA on the host cell are independent of the phosphorylation process.
The most noticeable is to disrupt the cell’s tight junction and induce cell morphology
changes [35]. Non-phosphorylated CagA also can activate serum response elements further
affect the cell cycle and induce inflammatory response [36].

2.3. Urease

Urease is a 550 kDa molecule consisting of UreA and UreB subunits. Urease plays a
crucial role in the survival of H. pylori in the human stomach. H. pylori produces urease in
acidic conditions, which breaks down urea and releases ammonia to neutralize the acidic
condition in the human stomach [37]. pH increases in the stomach alter the protective
mucous layer and also dysregulate the gastric epithelial cell tight junction [38].

2.4. Pathophysiology of H. pylori Infection

H. pylori infection is associated with chronic gastritis, gastric ulcers, and gastric can-
cer [1]. Development of gastric problems due to H. pylori infection is mostly caused by
alteration of the gastric physiology and microenvironment, which induces an immune
response from the human body [39]. This immune response is due to the activity of the
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H. pylori virulence factors such as CagA, VacA, and urease, and the response might be
different depending on the age [40,41]. Immune response due to H. pylori infection is
mediated by Toll-like receptors (TLRs) and microRNA, which can promote or suppress the
immune response [42]. After reaching the stomach, H. pylori move to the mucous layer to
evade the acid condition with the help of urease and attach to epithelial cells with the help
of different kinds of adhesins such as BabA, SabA, AlpA/B, HopZ, and OipA [43]. After
binding to the host cell, H. pylori inject different kinds of toxins such as CagA and VacA,
depending on the strain, being able to induce inflammatory responses and upregulation of
pro-inflammatory cytokines secretion [1].

2.5. Diagnosis and Treatment

There are various methods to identify and diagnose H. pylori. The invasive tests are
based on gastric biopsy and peripheral samples to check the infection of H. pylori. On the
other hand, the non-invasive method is to use the Urea Breath Test (UBT) C13 or C14 [1].

UBT is one of the most popular methods to diagnose H. pylori infection due to its high
sensitivity and is considered the gold standard of the non-invasive method [1]. UBT is
based on the reaction of C13-labeled urea and bacterial urease secreted from H. pylori, which
produce ammonia (NH3) and C13-labeled carbon dioxide in the breath. The concentration
of the C13 isotope is determined by using gas chromatography and considered positive if
the Delta Over Baseline (DOB) value is ≥4‰ [44–46].

Treatment of H. pylori infection is usually conducted by using antibiotics and combina-
tion with PPI and/or with bismuth. Monotherapy (single antibiotic) was used in the past,
but the efficacy was poor. The addition of PPI is used as dual therapy in some countries.
Overuse of antibiotics induces the mutation and resistance of H. pylori and produces some
side effects such as dizziness, vomiting, and allergy [47,48].

3. NDs

NDs are diseases that occurs in the central nervous system (CNS), being characterized
by the progressive reduction of neuronal cells in the brain due to cell death [49]. Until now,
there have been no medications that can cure these diseases due to the characteristic of
neuronal cells, being unable to regenerate themselves after cell damage and death [50].
The diseases mostly affect elderly people aged >60 years. Recently, it become a public
health concern due to them also affecting the younger generation worldwide [51–53]. In
general, neurodegenerative diseases share a similar major hallmark, which is neuronal cell
death, with the major pathways being apoptosis and necrosis with difference and chronic
neuroinflammation [8,9]. These conditions could occur due to stress accumulation and
misfolded protein deposits, which can induce cytotoxicity events such as impairment of
cell signaling, DNA damage, mitochondrial dysfunction, and increased ROS production,
which leads to neuronal cell death [8,49,54]. There are various manifestations of NDs, such
as AD, PD, HD, and amyotrophic lateral sclerosis [10,50].

4. AD

AD is a neurodegenerative disease that causes a decline in cognitive functions and
interferes with daily living activities. It is the most common form of dementia, especially
for peoples aged over 65 [55]. In the United States, 1 out of 10 peoples at age over 65 years
is estimated to suffer from AD, and the prevalence increases with age [56]. The major
characteristics of the early stages of this disease are short-term memory loss, including
impairment of problem-solving ability, multitasking, and abstract thinking problems. The
later stage includes subsequent changes in cognitive ability and behavior [57]. Different
stages are classified according to the cognitive impairment degree, including preclinical,
mild, and dementia stages [55].

AD is a complicated disease. Its initiation and progression into dementia are associated
with Aβ and NFT formation [58]. Aβ is a peptide, consisting of 42 amino acids derived from
APP [59]. In a normal pathway (Figure 2), APP is cleaved by α-secretase activity producing



Molecules 2023, 28, 7150 5 of 30

a large soluble fraction called sAPPα and αCTF, which further cleaved by the activity of γ-
secretase, producing AICD and a protein fragment called p83, which rapidly degraded [60].
Aβ is cleaved from APP by β-secretase, and γ-secretase by the amyloidogenic pathway
(Figure 2), releasing C terminal peptides that tend to aggregate into oligomers and fibrils
to form the senile plaque in the brain [61]. Aggregates of Aβ can cause loss of synaptic
plasticity and induce neuronal cell death [62]. The ratio of Aβ 42/40 is a critical point of
AD pathogenesis due to its more hydrophobic properties, causing it to be more prone to
form oligomers and plaques [60].
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Another hallmark in AD is NFT, which is caused by hyperphosphorylation of mic-
rotubule-associated protein tau (Mapt) inside the brain, which causes synaptic dysfunction
and neuronal loss and leads to dementia [58,63]. Tau is a protein in human neurons that
together with tubulin forms microtubules to stabilize the structure of the neuronal cell [64].
Its hyperphosphorylation forms a paired helix filament (PHF) in the brain [65]. On the
other hand, hyperphosphorylated tau can bind to normal tau, MAP1, and MAP2 to induce
deformation of micro-tubules, causing synaptic and axonal transport dysfunction [66]. Fur-
thermore, insoluble NFT can alter the cytoplasmic function as well as axonal transport in the
central nervous system, which leads to neuronal cell death and dementia progression [67].

Until now, AD was categorized as an incurable disease, but some treatments and med-
ication can help to delay the progression [55]. The current treatment is to use cholinesterase
inhibitors (ChEI) and partial N-methyl D-aspartate (NMDA) antagonist memantine, which
are accepted by the Food and Drugs Administration (FDA) [68]. ChEI was first introduced
in 1997 as a medication for mild and moderate AD. There are three types of drugs that
are commonly used, namely, donepezil, galantamine, and rivastigmine [69]. ChEI inhibits
cholinesterase, which cleaves the neurotransmitter acetylcholine (Ach) and terminates the
function [70]. Memantine is an NMDA receptor antagonist that reduces the accumulation
of calcium induced by NMDA receptor overstimulation in the neuronal cells [71]. Meman-
tine is often used as a monotherapy or together with a low dose of acetylcholinesterase
inhibitor (ACheI) in moderate and severe AD subjects [72]. A combination of memantine
and donepezil significantly provides better outcomes on cognition and behavior improve-
ment [73].
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5. PD

PD is one of the known NDs, with its main features including loss of dopamine-
producing neuronal cells in the substantia nigra and some others such as aggregation of
α-synuclein protein in neurons and the presence of Lewy bodies in the brain [74,75]. It
is characterized by motoric and non-motoric symptoms. The motoric symptoms include
bradykinesia, resting tremor, rigidity, and postural instability as well as non-motoric
symptoms such as hyposmia, sleep disturbances depression, orthostatic hypotension,
constipation, and other dysautonomic symptoms [74,76]. Several risk factors such as age,
gender, and ethnicity are associated with PD, but of all these risk factors, age is the greatest
risk factor, wherein the prevalence and incidence of PD significantly increases with age [77].
The initiation factor is still unknown, but the progression of this disease is due to the loss of
dopaminergic neuronal cells and some factors such as genetic, immune, and environmental
factors [76,77]. Dopamine is one of the neurotransmitters that regulates several functions in
the brain such as coordinated movement, emotion, and neuroendocrine secretion [78,79].

PD is mostly diagnosed by the presence of bradykinesia with resting tremor and/or
rigidity [80]. Bradykinesia is a condition where the speed of spontaneous and repeti-
tive movement is progressively reduced, and this condition usually happens in the early
stage [81]. Before bradykinesia occurs in the patient, there is a condition called the pro-
dromal stage, where nonmotor symptoms occur, such as constipation, loss of smell, sleep
disorder, and several minor symptoms [82].

Medical therapies are the main treatment for PD, including pharmacotherapy and
non-pharmacotherapy [83]. Dopamine receptor or intracerebral dopamine enhancer drugs
are the main pharmacotherapies, such as levodopa, dopamine agonist, and monoamine
oxidase-B inhibitor [75,83].

6. HD

HD is one type of ND that is inherited from parents to their offspring due to the
increase of the CAG repeats huntingtin gene on chromosome 4 [84]. The risk of inheritance
is equal for men and women, and the carrier’s gene develops the symptoms of this disease
in normal life around the age of 40, but the onset of the disease might develop in childhood
or teenage years [85,86]. There are several pathogenic mechanisms associated with HD
due to the mutation of the Huntingtin protein and causing different brain damage [87].
HD is characterized by striatal degeneration in the brain, loss of medium spiny neurons,
and atrophy in different regions of the brain, leading to distinct abnormal movements,
psychiatric symptoms, and cognitive deficits that can be fatal 15–20 years after the disease
onset [87–89].

Up to now, no medication can cure HD, but still, some drug and non-drug treatments
can alleviate the symptoms of HD. Drug treatment is used to treat chorea, which is a
movement disorder that causes unintended movement in HD patients [90]. Dopamine-
reducing drugs such as tetrabenazine and/or antipsychotic agents such as risperidone and
aripiprazole are usually used to treat chorea due to HD [84,90]. Non-drug treatment such
as physiotherapy might be used to maintain the gait and balance of the subject for a longer
period, and psychologists may also help to maintain the mental health of HD patients,
which can help to reduce anxiety and depression [86,87].

7. Connection between H. pylori Infection and Neurodegenerative Diseases

There are several risk factors correlated with NDs, especially AD, such as age, trau-
matic head injury, depression, cardiovascular and cerebrovascular disease, and smoking.
Recent studies showed that AD is also associated with H. pylori infection [91,92]. H. pylori is
known to infect and cause several health problems in the human gastrointestinal (GI) tract
such as gastric ulcers, gastritis, and gastric cancer [93]. In rare cases, a manifestation of
extra gastric disease due to H. pylori infection might occur with several possible mechanism
(Figure 3) and need to be taken into consideration. The extra gastric manifestation due
to H. pylori infection, especially neurological problems, might occur through alteration of
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the gut–brain axis (GBA) [94]. The GBA is a bidirectional communication between the
central nervous system (CNS) and enteric nervous system that integrates and links the gut
and intestinal function with the central nervous system [95–97]. GBA modulates the GI
function by regulating the GI immune system, mucosal change, and intestinal microbiome
in response to stress and emotional and environmental influences [94,98].
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H. pylori infection is associated with changes in gut microbiome composition [99]. Yang
et al. demonstrated that children with gastritis showed an alteration of the gut microbiome,
and this condition is worsened by the infection of H. pylori [100]. Zheng et al. also showed
similar results, wherein in the H. pylori-positive subject, the abundance of Proteobacteria
was increased while the abundances of other phyla such as Actinobacteria, Bacteroidetes,
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Firmicutes, Fusobacteria, Gemmatimonadetes, and Verrucomicrobia were significantly decreased
compared to H. pylori-negative subject [101].

Alteration of the gut microbiome composition or so-called gut dysbiosis could lead to
increased bacterial amyloid accumulation and intestinal innate immunity response, which
induces systemic neuroinflammation, one of the hallmarks of AD [102]. The imbalance of
the gut microbiome is related to increased gut permeability and gut barrier dysfunction,
which causes toxic metabolites, bile acids, and pro-inflammatory cytokines to enter the
circulatory system. The circulating toxic metabolites can reach the CNS and further cause
leakage of the blood–brain barrier (BBB) and induce neuroinflammation due to microglia
and astrocyte activation [103]. Doulberis et al. propose a hypothesis on how H. pylori might
directly affect the CNS in three different ways: through the oral–nasal olfactory pathway,
blood circulation by infecting monocytes and passing through the disrupted BBB, and the
retrograde GI tract neural pathway [104].

Homocysteine (hcy) is one of the sulfur-containing amino acids that is derived from
the demethylation process of methionine [105]. Hcy can be further processed into cysteine
with the activity of cystathione-β-synthase enzyme and vitamin B6 as a cofactor. This
reaction can occur when excess methionine is present in the body. In contrast, when the
methionine level is low, hcy can be converted back to methionine by the remethylation
process with the help of cofactor vitamin B6 and folic acid [106]. Hcy level in the human
body usually ranges around 12–15 µmol/L, and elevation of hcy level is harmful to human
bodies. This condition is known as hyperhomocysteinemia [105,107,108], elevated serum
hcy is associated with neurological disorders such as cognitive decline, stroke, PD, and
AD [109]. This condition can occur due to many factors such as lifestyle, administration
of drugs and medication, or diseases such as chronic gastritis [110]. H. pylori infection is
correlated with gastritis, and this condition can result in deficiency of vitamin B6 and folic
acid. Deficiency of these vitamin cause the elevation of serum hcy level [111]. Elevated
hcy levels can cause endothelial damage and result in atherothrombotic disorders and
progression of AD [112].

Al-baret et al. showed that H. pylori infection in C57BL6 WT mice induced neuroin-
flammation by secretion of pro-inflammatory cytokines in the bloodstream without the
deposition of amyloid plaques [113]. AD patients have a higher prevalence of H. pylori
infection, and H. pylori antibodies are found in the cerebrospinal fluid (CSF) of AD pa-
tients [92,114]. Roubaud-Baudron et al. showed that H. pylori-infected AD subjects were
more cognitively impaired and had higher neurodegenerative markers [115]. Wang et al.
showed that H. pylori filtrate cultured with mouse neuroblastoma N2a cell and injected
intraperitoneally into Sprague-Dawley rats induced AD-related tau hyper-phosphorylation
in several sites such as Thr205, Thr231, and Ser404, together with the activation of glycogen
synthase kinase-3β (GSK-3β) [116]. From the previous study, it might be concluded that H.
pylori infection and AD might connected due to systemic inflammatory response and also
through the gut–brain axis (GBA) interaction.

Apart from AD, PD and H. pylori might also correlate with each other through the GBA
interaction. Changes in the gut microbiome might affect the metabolite production. As
discussed, earlier H. pylori infection can induce the growth of Proteobacteria, which consists
of mostly known pathogens [117]. Increased growth of pathogens will cause decreased
production of short-chain fatty acids and increase the production of bacterial LPS [118].
LPS is the major constituent of the bacterial membrane in Gram-negative bacteria, which is
an activator of inflammatory response [119]. LPS is predominantly recognized by Toll-like
receptor (TLR) 4, which induces immune response and the release of pro-inflammatory
cytokines [120]. H. pylori is known to express LPS, and it induces the production of
cytokines, which may play a role in the pathogenesis of PD [1,118]. Altered gut microbiome
composition also facilitates α-synuclein aggregate migration from the enteric nervous
system (ENS) to the brain, causing progression of PD [121]. H. pylori infection also affects
the absorption of drugs, especially levodopa, due to the change of intragastric pH [122,123].
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8. Phytochemicals

Phytochemicals are non-nutritive bioactive compounds found in plants [14]. These
bioactive compounds are the plant secondary metabolites that show health benefits for
humans. Fruits, vegetables, grains, and nuts are the sources of natural phytochemicals.
To understand the health benefits of these natural materials, these compounds need to be
isolated and identified [124]. Different bioactive compounds show different mechanisms.
The combined use of phytochemicals from different sources is needed to achieve greater
health benefits. Phytochemicals are divided into several categories as phenolics, alka-
loids, saponins, glucosinolates, terpenes, phytoestrogens, nitrogen-containing compounds,
organosulfur compounds, carotenoids, and phytosterols [125,126].

8.1. Phenolics

Phenolics are one group of plant secondary metabolites consisting of at least one
benzene ring and one hydroxyl group, playing important roles in benefitting health [127].
Phenolics can be divided into several subgroups up to the structures [125].

Fruits and vegetables are good sources of phenolics. Dark-colored fruits such as
berries contain rich anthocyanins and flavonoids [128]. Cranberry contains 48 different
polyphenols consisting of flavan-3-ols, flavonols, anthocyanins, phenolic acid, etc. [129].
Cranberry is rich in A-type proanthocyanidins, which provide health benefits [130]. Black
raspberry contains high amounts of phenolics, mostly consisting of anthocyanins and
ellagitannins [131]. The anthocyanin contents of black raspberries are the highest when
compared with the other rubus species such as red raspberries and blackberry [132].

8.2. Carotenoids

There are hundreds of known carotenoids present in nature, but only a few of
these carotenoids are good for humans [133]. Past studies showed that consumption
of carotenoids was associated with a lower risk of eye problems, cancer, and cardiovascular
diseases [134–136]. Carotenoids mostly consist of eight isoprenoid units with a total of
40 carbons as the backbone [137]. Carotenoids are divided into two major groups, carotenes
(hydrocarbon carotenoids) and xanthophylls (oxygen-containing carotenoids) [138].

Past studies showed that high consumption of carotenoids, especially lycopene, can
reduce the risk of cardiovascular diseases by decreasing low-density lipoprotein cholesterol
and improving HDL function [139–141]. Another study also shows that the consumption of
carotenoid-rich products could reduce visceral adiposity and ubiquinol (CoQ10) to prevent
metabolic syndrome [142].

8.3. Alkaloids

Alkaloids are considered as all-nitrogen-containing compounds aside from peptides
and their derivates, amines, cyanogenic glycosides, glucosinolates, cofactors, phytohor-
mones, or primary metabolites [143]. Alkaloids can be classified according to different
aspects such as biosynthesis pathways, chemical structure, and taxonomical groups [144].

According to previous studies, alkaloids exhibit different pharmacological activities,
such as anti-microbial, anti-cancer, immunomodulatory, and antidiabetic effects [145–150].

8.4. Saponins

Saponins are bioactive compounds found in a wide variety of plants that are character-
ized by one or more sugar chains attached to steroid or triterpenoid aglycon backbone [151].
Saponins form foam when agitated in water due to their surface-active properties [152].
Saponins are synthesized from mevalonate primarily in the cytosol via farnesyl diphos-
phate and squalene [153]. Saponins have a low bioavailability due to their high molecular
mass, hydrogen bonding capacity, and molecular flexibility [152].

Past studies have assessed different bioactivity of saponins. They can act as anti-
bacterial and anti-fungal agents and act synergistically with antibiotics [154]. Marrelli et al.
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stated that saponins also exhibit antidiabetic activity by restoring insulin response and
increasing insulin secretion from the pancreas [155].

9. Effect of Different Phytochemicals on H. pylori Infection

Natural phytochemicals in plants have been already assessed for their potency as
anti-H. pylori substances (Figure 4). All the natural sources are discussed and summarized
in vitro (Table 1) and in vivo (Table 2).
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Table 1. Assessment of anti-H. pylori activity from natural sources in in vitro studies.

Test Material Activity Findings Source

Ginger (Gingerol) Inhibit H. pylori growth Inhibit growth of CagA+ H. pylori strains (MIC: 6.25–50 µg/mL) [156]

Curcuma longa L. (Curcumin) Anti-inflammatory properties
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tory properties 

H. pylori induced COX-2 enhancement (treatment vs. control group, p < 0.05) 

IκBα degradation and nuclear translocation of NF-κB p50 subunit (treatment vs. con-
trol group, p < 0.05) 

iNOS and IL-8 mRNA expression (treatment vs. control group, p < 0.05) 

decreased NO and IL-8 production (treatment vs. control group, p < 0.05) 

[159] 

Dittrichia viscosa subsp. Revoluta 
(Essential oil (3-methoxy cuminyl isobutyrate, α-
cadinol and α-eudesmol) 

Inhibit H. pylori 
growth 

Essential oil derived from Dittrichia viscosa especially fraction 5 and 7 show highest anti-
H. pylori activity  

[160] 

Green tea (Catechin and pure sialic acid) Antioxidant 
properties 

Reduce O2−, H2O2 count, NO production (treatment vs control group, p < 0.05) [161] 

iNOS expression

Anti-apoptosis
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Table 1. Assessment of anti-H. pylori activity from natural sources in in vitro studies. 

Test Material Activity Findings Source 

Ginger (Gingerol) Inhibit H. pylori 
growth 

Inhibit growth of CagA+ H. pylori strains (MIC: 6.25–50 µg/mL) [156] 

Curcuma longa L. (Curcumin) Anti-inflamma-
tory properties 

IκBα degradation (up to 80 µM) 

IKKα and β activity (up to 80 µM) 

NF-κB DNA-binding (up to 80 µM) 

[157] 

Chilli pepper (Capsaicin) 
Anti-inflamma-
tory properties 

H. pylori-induced IL-8 production in MKN45 and AGS cell (100 µM capsaicin, 43.2% 
and 70%, respectively, compared to control) 

IL-8 mRNA expression (100 µM capsaicin) 

Reduce H. pylori NF-κB activation (100 µM capsaicin) 

[158] 

San-Huang-Xie-Xin-Tang (Coptis chinesis Franch, 
Scutellaria baicalensis Georgi, and Rheum officinale 
Baill) (Baicalin) 

Anti-inflamma-
tory properties 

H. pylori induced COX-2 enhancement (treatment vs. control group, p < 0.05) 

IκBα degradation and nuclear translocation of NF-κB p50 subunit (treatment vs. con-
trol group, p < 0.05) 

iNOS and IL-8 mRNA expression (treatment vs. control group, p < 0.05) 

decreased NO and IL-8 production (treatment vs. control group, p < 0.05) 

[159] 

Dittrichia viscosa subsp. Revoluta 
(Essential oil (3-methoxy cuminyl isobutyrate, α-
cadinol and α-eudesmol) 

Inhibit H. pylori 
growth 

Essential oil derived from Dittrichia viscosa especially fraction 5 and 7 show highest anti-
H. pylori activity  

[160] 

Green tea (Catechin and pure sialic acid) Antioxidant 
properties 

Reduce O2−, H2O2 count, NO production (treatment vs control group, p < 0.05) [161] 

Inhibited apoptosis and reduced apoptosis related protein expression (treatment vs.
control group, p < 0.05)
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Table 1. Cont.

Test Material Activity Findings Source

Ginger (Gingerol) Anti-inflammatory properties
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Table 1. Assessment of anti-H. pylori activity from natural sources in in vitro studies. 

Test Material Activity Findings Source 

Ginger (Gingerol) Inhibit H. pylori 
growth 

Inhibit growth of CagA+ H. pylori strains (MIC: 6.25–50 µg/mL) [156] 

Curcuma longa L. (Curcumin) Anti-inflamma-
tory properties 

IκBα degradation (up to 80 µM) 

IKKα and β activity (up to 80 µM) 

NF-κB DNA-binding (up to 80 µM) 

[157] 

Chilli pepper (Capsaicin) 
Anti-inflamma-
tory properties 

H. pylori-induced IL-8 production in MKN45 and AGS cell (100 µM capsaicin, 43.2% 
and 70%, respectively, compared to control) 

IL-8 mRNA expression (100 µM capsaicin) 

Reduce H. pylori NF-κB activation (100 µM capsaicin) 

[158] 

San-Huang-Xie-Xin-Tang (Coptis chinesis Franch, 
Scutellaria baicalensis Georgi, and Rheum officinale 
Baill) (Baicalin) 

Anti-inflamma-
tory properties 

H. pylori induced COX-2 enhancement (treatment vs. control group, p < 0.05) 

IκBα degradation and nuclear translocation of NF-κB p50 subunit (treatment vs. con-
trol group, p < 0.05) 

iNOS and IL-8 mRNA expression (treatment vs. control group, p < 0.05) 

decreased NO and IL-8 production (treatment vs. control group, p < 0.05) 

[159] 

Dittrichia viscosa subsp. Revoluta 
(Essential oil (3-methoxy cuminyl isobutyrate, α-
cadinol and α-eudesmol) 

Inhibit H. pylori 
growth 

Essential oil derived from Dittrichia viscosa especially fraction 5 and 7 show highest anti-
H. pylori activity  

[160] 

Green tea (Catechin and pure sialic acid) Antioxidant 
properties 

Reduce O2−, H2O2 count, NO production (treatment vs control group, p < 0.05) [161] 

COX-2 (IC50: 8.5 µg/mL)
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Table 1. Assessment of anti-H. pylori activity from natural sources in in vitro studies. 

Test Material Activity Findings Source 

Ginger (Gingerol) Inhibit H. pylori 
growth 

Inhibit growth of CagA+ H. pylori strains (MIC: 6.25–50 µg/mL) [156] 

Curcuma longa L. (Curcumin) Anti-inflamma-
tory properties 

IκBα degradation (up to 80 µM) 

IKKα and β activity (up to 80 µM) 

NF-κB DNA-binding (up to 80 µM) 

[157] 

Chilli pepper (Capsaicin) 
Anti-inflamma-
tory properties 

H. pylori-induced IL-8 production in MKN45 and AGS cell (100 µM capsaicin, 43.2% 
and 70%, respectively, compared to control) 

IL-8 mRNA expression (100 µM capsaicin) 

Reduce H. pylori NF-κB activation (100 µM capsaicin) 

[158] 

San-Huang-Xie-Xin-Tang (Coptis chinesis Franch, 
Scutellaria baicalensis Georgi, and Rheum officinale 
Baill) (Baicalin) 

Anti-inflamma-
tory properties 

H. pylori induced COX-2 enhancement (treatment vs. control group, p < 0.05) 

IκBα degradation and nuclear translocation of NF-κB p50 subunit (treatment vs. con-
trol group, p < 0.05) 

iNOS and IL-8 mRNA expression (treatment vs. control group, p < 0.05) 

decreased NO and IL-8 production (treatment vs. control group, p < 0.05) 

[159] 

Dittrichia viscosa subsp. Revoluta 
(Essential oil (3-methoxy cuminyl isobutyrate, α-
cadinol and α-eudesmol) 

Inhibit H. pylori 
growth 

Essential oil derived from Dittrichia viscosa especially fraction 5 and 7 show highest anti-
H. pylori activity  

[160] 

Green tea (Catechin and pure sialic acid) Antioxidant 
properties 

Reduce O2−, H2O2 count, NO production (treatment vs control group, p < 0.05) [161] 

NF-κB transcription (IC50: 24.6 µg/mL)
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Table 1. Assessment of anti-H. pylori activity from natural sources in in vitro studies. 

Test Material Activity Findings Source 

Ginger (Gingerol) Inhibit H. pylori 
growth 

Inhibit growth of CagA+ H. pylori strains (MIC: 6.25–50 µg/mL) [156] 

Curcuma longa L. (Curcumin) Anti-inflamma-
tory properties 

IκBα degradation (up to 80 µM) 

IKKα and β activity (up to 80 µM) 

NF-κB DNA-binding (up to 80 µM) 

[157] 

Chilli pepper (Capsaicin) 
Anti-inflamma-
tory properties 

H. pylori-induced IL-8 production in MKN45 and AGS cell (100 µM capsaicin, 43.2% 
and 70%, respectively, compared to control) 

IL-8 mRNA expression (100 µM capsaicin) 

Reduce H. pylori NF-κB activation (100 µM capsaicin) 

[158] 

San-Huang-Xie-Xin-Tang (Coptis chinesis Franch, 
Scutellaria baicalensis Georgi, and Rheum officinale 
Baill) (Baicalin) 

Anti-inflamma-
tory properties 

H. pylori induced COX-2 enhancement (treatment vs. control group, p < 0.05) 

IκBα degradation and nuclear translocation of NF-κB p50 subunit (treatment vs. con-
trol group, p < 0.05) 

iNOS and IL-8 mRNA expression (treatment vs. control group, p < 0.05) 

decreased NO and IL-8 production (treatment vs. control group, p < 0.05) 

[159] 

Dittrichia viscosa subsp. Revoluta 
(Essential oil (3-methoxy cuminyl isobutyrate, α-
cadinol and α-eudesmol) 

Inhibit H. pylori 
growth 

Essential oil derived from Dittrichia viscosa especially fraction 5 and 7 show highest anti-
H. pylori activity  

[160] 

Green tea (Catechin and pure sialic acid) Antioxidant 
properties 

Reduce O2−, H2O2 count, NO production (treatment vs control group, p < 0.05) [161] 

Inflammatory cytokine production (IL-1β, IL-6, IL-8, TNF-α (IC50: 3.89, 7.7, 8.5, and
8.37 µg/mL respectively))

[162]

Apple peel polyphenol
Anti-apoptosis
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Table 1. Assessment of anti-H. pylori activity from natural sources in in vitro studies. 

Test Material Activity Findings Source 

Ginger (Gingerol) Inhibit H. pylori 
growth 

Inhibit growth of CagA+ H. pylori strains (MIC: 6.25–50 µg/mL) [156] 

Curcuma longa L. (Curcumin) Anti-inflamma-
tory properties 

IκBα degradation (up to 80 µM) 

IKKα and β activity (up to 80 µM) 

NF-κB DNA-binding (up to 80 µM) 

[157] 

Chilli pepper (Capsaicin) 
Anti-inflamma-
tory properties 

H. pylori-induced IL-8 production in MKN45 and AGS cell (100 µM capsaicin, 43.2% 
and 70%, respectively, compared to control) 

IL-8 mRNA expression (100 µM capsaicin) 

Reduce H. pylori NF-κB activation (100 µM capsaicin) 

[158] 

San-Huang-Xie-Xin-Tang (Coptis chinesis Franch, 
Scutellaria baicalensis Georgi, and Rheum officinale 
Baill) (Baicalin) 

Anti-inflamma-
tory properties 

H. pylori induced COX-2 enhancement (treatment vs. control group, p < 0.05) 

IκBα degradation and nuclear translocation of NF-κB p50 subunit (treatment vs. con-
trol group, p < 0.05) 

iNOS and IL-8 mRNA expression (treatment vs. control group, p < 0.05) 

decreased NO and IL-8 production (treatment vs. control group, p < 0.05) 

[159] 

Dittrichia viscosa subsp. Revoluta 
(Essential oil (3-methoxy cuminyl isobutyrate, α-
cadinol and α-eudesmol) 

Inhibit H. pylori 
growth 

Essential oil derived from Dittrichia viscosa especially fraction 5 and 7 show highest anti-
H. pylori activity  

[160] 

Green tea (Catechin and pure sialic acid) Antioxidant 
properties 

Reduce O2−, H2O2 count, NO production (treatment vs control group, p < 0.05) [161] 

H. pylori stimulated vacuolation in HeLa cell (IC50: 390 µg GAE/mL)
[163]

Anti-adhesion properties
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Table 1. Assessment of anti-H. pylori activity from natural sources in in vitro studies. 

Test Material Activity Findings Source 

Ginger (Gingerol) Inhibit H. pylori 
growth 

Inhibit growth of CagA+ H. pylori strains (MIC: 6.25–50 µg/mL) [156] 

Curcuma longa L. (Curcumin) Anti-inflamma-
tory properties 

IκBα degradation (up to 80 µM) 

IKKα and β activity (up to 80 µM) 

NF-κB DNA-binding (up to 80 µM) 

[157] 

Chilli pepper (Capsaicin) 
Anti-inflamma-
tory properties 

H. pylori-induced IL-8 production in MKN45 and AGS cell (100 µM capsaicin, 43.2% 
and 70%, respectively, compared to control) 

IL-8 mRNA expression (100 µM capsaicin) 

Reduce H. pylori NF-κB activation (100 µM capsaicin) 

[158] 

San-Huang-Xie-Xin-Tang (Coptis chinesis Franch, 
Scutellaria baicalensis Georgi, and Rheum officinale 
Baill) (Baicalin) 

Anti-inflamma-
tory properties 

H. pylori induced COX-2 enhancement (treatment vs. control group, p < 0.05) 

IκBα degradation and nuclear translocation of NF-κB p50 subunit (treatment vs. con-
trol group, p < 0.05) 

iNOS and IL-8 mRNA expression (treatment vs. control group, p < 0.05) 

decreased NO and IL-8 production (treatment vs. control group, p < 0.05) 

[159] 

Dittrichia viscosa subsp. Revoluta 
(Essential oil (3-methoxy cuminyl isobutyrate, α-
cadinol and α-eudesmol) 

Inhibit H. pylori 
growth 

Essential oil derived from Dittrichia viscosa especially fraction 5 and 7 show highest anti-
H. pylori activity  

[160] 

Green tea (Catechin and pure sialic acid) Antioxidant 
properties 

Reduce O2−, H2O2 count, NO production (treatment vs control group, p < 0.05) [161] 

60% adhesion at concentration 5 mg GAE/mL

Noni fruit

Anti-adhesion properties
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Table 1. Assessment of anti-H. pylori activity from natural sources in in vitro studies. 

Test Material Activity Findings Source 

Ginger (Gingerol) Inhibit H. pylori 
growth 

Inhibit growth of CagA+ H. pylori strains (MIC: 6.25–50 µg/mL) [156] 

Curcuma longa L. (Curcumin) Anti-inflamma-
tory properties 

IκBα degradation (up to 80 µM) 

IKKα and β activity (up to 80 µM) 

NF-κB DNA-binding (up to 80 µM) 

[157] 

Chilli pepper (Capsaicin) 
Anti-inflamma-
tory properties 

H. pylori-induced IL-8 production in MKN45 and AGS cell (100 µM capsaicin, 43.2% 
and 70%, respectively, compared to control) 

IL-8 mRNA expression (100 µM capsaicin) 

Reduce H. pylori NF-κB activation (100 µM capsaicin) 

[158] 

San-Huang-Xie-Xin-Tang (Coptis chinesis Franch, 
Scutellaria baicalensis Georgi, and Rheum officinale 
Baill) (Baicalin) 

Anti-inflamma-
tory properties 

H. pylori induced COX-2 enhancement (treatment vs. control group, p < 0.05) 

IκBα degradation and nuclear translocation of NF-κB p50 subunit (treatment vs. con-
trol group, p < 0.05) 

iNOS and IL-8 mRNA expression (treatment vs. control group, p < 0.05) 

decreased NO and IL-8 production (treatment vs. control group, p < 0.05) 

[159] 

Dittrichia viscosa subsp. Revoluta 
(Essential oil (3-methoxy cuminyl isobutyrate, α-
cadinol and α-eudesmol) 

Inhibit H. pylori 
growth 

Essential oil derived from Dittrichia viscosa especially fraction 5 and 7 show highest anti-
H. pylori activity  

[160] 

Green tea (Catechin and pure sialic acid) Antioxidant 
properties 

Reduce O2−, H2O2 count, NO production (treatment vs control group, p < 0.05) [161] 

Adhesion of H. pylori to AGS cell (treatment vs infected group, p < 0.05)
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Table 1. Assessment of anti-H. pylori activity from natural sources in in vitro studies. 

Test Material Activity Findings Source 

Ginger (Gingerol) Inhibit H. pylori 
growth 

Inhibit growth of CagA+ H. pylori strains (MIC: 6.25–50 µg/mL) [156] 

Curcuma longa L. (Curcumin) Anti-inflamma-
tory properties 

IκBα degradation (up to 80 µM) 

IKKα and β activity (up to 80 µM) 

NF-κB DNA-binding (up to 80 µM) 

[157] 

Chilli pepper (Capsaicin) 
Anti-inflamma-
tory properties 

H. pylori-induced IL-8 production in MKN45 and AGS cell (100 µM capsaicin, 43.2% 
and 70%, respectively, compared to control) 

IL-8 mRNA expression (100 µM capsaicin) 

Reduce H. pylori NF-κB activation (100 µM capsaicin) 

[158] 

San-Huang-Xie-Xin-Tang (Coptis chinesis Franch, 
Scutellaria baicalensis Georgi, and Rheum officinale 
Baill) (Baicalin) 

Anti-inflamma-
tory properties 

H. pylori induced COX-2 enhancement (treatment vs. control group, p < 0.05) 

IκBα degradation and nuclear translocation of NF-κB p50 subunit (treatment vs. con-
trol group, p < 0.05) 

iNOS and IL-8 mRNA expression (treatment vs. control group, p < 0.05) 

decreased NO and IL-8 production (treatment vs. control group, p < 0.05) 

[159] 

Dittrichia viscosa subsp. Revoluta 
(Essential oil (3-methoxy cuminyl isobutyrate, α-
cadinol and α-eudesmol) 

Inhibit H. pylori 
growth 

Essential oil derived from Dittrichia viscosa especially fraction 5 and 7 show highest anti-
H. pylori activity  

[160] 

Green tea (Catechin and pure sialic acid) Antioxidant 
properties 

Reduce O2−, H2O2 count, NO production (treatment vs control group, p < 0.05) [161] 

Intracellular CagA level (treatment vs infected group, p < 0.05) [164]

Anti-inflammatory properties
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Table 1. Assessment of anti-H. pylori activity from natural sources in in vitro studies. 

Test Material Activity Findings Source 

Ginger (Gingerol) Inhibit H. pylori 
growth 

Inhibit growth of CagA+ H. pylori strains (MIC: 6.25–50 µg/mL) [156] 

Curcuma longa L. (Curcumin) Anti-inflamma-
tory properties 

IκBα degradation (up to 80 µM) 

IKKα and β activity (up to 80 µM) 

NF-κB DNA-binding (up to 80 µM) 

[157] 

Chilli pepper (Capsaicin) 
Anti-inflamma-
tory properties 

H. pylori-induced IL-8 production in MKN45 and AGS cell (100 µM capsaicin, 43.2% 
and 70%, respectively, compared to control) 

IL-8 mRNA expression (100 µM capsaicin) 

Reduce H. pylori NF-κB activation (100 µM capsaicin) 

[158] 

San-Huang-Xie-Xin-Tang (Coptis chinesis Franch, 
Scutellaria baicalensis Georgi, and Rheum officinale 
Baill) (Baicalin) 

Anti-inflamma-
tory properties 

H. pylori induced COX-2 enhancement (treatment vs. control group, p < 0.05) 

IκBα degradation and nuclear translocation of NF-κB p50 subunit (treatment vs. con-
trol group, p < 0.05) 

iNOS and IL-8 mRNA expression (treatment vs. control group, p < 0.05) 

decreased NO and IL-8 production (treatment vs. control group, p < 0.05) 

[159] 

Dittrichia viscosa subsp. Revoluta 
(Essential oil (3-methoxy cuminyl isobutyrate, α-
cadinol and α-eudesmol) 

Inhibit H. pylori 
growth 

Essential oil derived from Dittrichia viscosa especially fraction 5 and 7 show highest anti-
H. pylori activity  

[160] 

Green tea (Catechin and pure sialic acid) Antioxidant 
properties 

Reduce O2−, H2O2 count, NO production (treatment vs control group, p < 0.05) [161] 

Inflammatory markers (IL-8, iNOS, COX-2) and neutrophil chemotaxis (treatment vs.
infected group, p < 0.05)

Peumus boldus Mol. (Catechin)
Inhibit urease activity
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Table 1. Assessment of anti-H. pylori activity from natural sources in in vitro studies. 

Test Material Activity Findings Source 

Ginger (Gingerol) Inhibit H. pylori 
growth 

Inhibit growth of CagA+ H. pylori strains (MIC: 6.25–50 µg/mL) [156] 

Curcuma longa L. (Curcumin) Anti-inflamma-
tory properties 

IκBα degradation (up to 80 µM) 

IKKα and β activity (up to 80 µM) 

NF-κB DNA-binding (up to 80 µM) 

[157] 

Chilli pepper (Capsaicin) 
Anti-inflamma-
tory properties 

H. pylori-induced IL-8 production in MKN45 and AGS cell (100 µM capsaicin, 43.2% 
and 70%, respectively, compared to control) 

IL-8 mRNA expression (100 µM capsaicin) 

Reduce H. pylori NF-κB activation (100 µM capsaicin) 

[158] 

San-Huang-Xie-Xin-Tang (Coptis chinesis Franch, 
Scutellaria baicalensis Georgi, and Rheum officinale 
Baill) (Baicalin) 

Anti-inflamma-
tory properties 

H. pylori induced COX-2 enhancement (treatment vs. control group, p < 0.05) 

IκBα degradation and nuclear translocation of NF-κB p50 subunit (treatment vs. con-
trol group, p < 0.05) 

iNOS and IL-8 mRNA expression (treatment vs. control group, p < 0.05) 

decreased NO and IL-8 production (treatment vs. control group, p < 0.05) 

[159] 

Dittrichia viscosa subsp. Revoluta 
(Essential oil (3-methoxy cuminyl isobutyrate, α-
cadinol and α-eudesmol) 

Inhibit H. pylori 
growth 

Essential oil derived from Dittrichia viscosa especially fraction 5 and 7 show highest anti-
H. pylori activity  

[160] 

Green tea (Catechin and pure sialic acid) Antioxidant 
properties 

Reduce O2−, H2O2 count, NO production (treatment vs control group, p < 0.05) [161] 

Urease activity from H. pylori
[165]

Anti-adhesion properties
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Table 1. Assessment of anti-H. pylori activity from natural sources in in vitro studies. 

Test Material Activity Findings Source 

Ginger (Gingerol) Inhibit H. pylori 
growth 

Inhibit growth of CagA+ H. pylori strains (MIC: 6.25–50 µg/mL) [156] 

Curcuma longa L. (Curcumin) Anti-inflamma-
tory properties 

IκBα degradation (up to 80 µM) 

IKKα and β activity (up to 80 µM) 

NF-κB DNA-binding (up to 80 µM) 

[157] 

Chilli pepper (Capsaicin) 
Anti-inflamma-
tory properties 

H. pylori-induced IL-8 production in MKN45 and AGS cell (100 µM capsaicin, 43.2% 
and 70%, respectively, compared to control) 

IL-8 mRNA expression (100 µM capsaicin) 

Reduce H. pylori NF-κB activation (100 µM capsaicin) 

[158] 

San-Huang-Xie-Xin-Tang (Coptis chinesis Franch, 
Scutellaria baicalensis Georgi, and Rheum officinale 
Baill) (Baicalin) 

Anti-inflamma-
tory properties 

H. pylori induced COX-2 enhancement (treatment vs. control group, p < 0.05) 

IκBα degradation and nuclear translocation of NF-κB p50 subunit (treatment vs. con-
trol group, p < 0.05) 

iNOS and IL-8 mRNA expression (treatment vs. control group, p < 0.05) 

decreased NO and IL-8 production (treatment vs. control group, p < 0.05) 

[159] 

Dittrichia viscosa subsp. Revoluta 
(Essential oil (3-methoxy cuminyl isobutyrate, α-
cadinol and α-eudesmol) 

Inhibit H. pylori 
growth 

Essential oil derived from Dittrichia viscosa especially fraction 5 and 7 show highest anti-
H. pylori activity  

[160] 

Green tea (Catechin and pure sialic acid) Antioxidant 
properties 

Reduce O2−, H2O2 count, NO production (treatment vs control group, p < 0.05) [161] 

Adhesion ratio of H. pylori to AGS cell (treatment vs. infected group, p < 0.05)

Geranium wilfordii (Corilagin and
1,2,3,6-tetra-O-galloyl-b-D-glucose) Inhibit H. pylori growth Ethanol and ethyl acetate extract inhibited H. pylori growth (MIC: 40 and 30 µg/mL,

respectively) [166]

Plantago ovata Anti-inflammatory properties
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Table 1. Assessment of anti-H. pylori activity from natural sources in in vitro studies. 

Test Material Activity Findings Source 

Ginger (Gingerol) Inhibit H. pylori 
growth 

Inhibit growth of CagA+ H. pylori strains (MIC: 6.25–50 µg/mL) [156] 

Curcuma longa L. (Curcumin) Anti-inflamma-
tory properties 

IκBα degradation (up to 80 µM) 

IKKα and β activity (up to 80 µM) 

NF-κB DNA-binding (up to 80 µM) 

[157] 

Chilli pepper (Capsaicin) 
Anti-inflamma-
tory properties 

H. pylori-induced IL-8 production in MKN45 and AGS cell (100 µM capsaicin, 43.2% 
and 70%, respectively, compared to control) 

IL-8 mRNA expression (100 µM capsaicin) 

Reduce H. pylori NF-κB activation (100 µM capsaicin) 

[158] 

San-Huang-Xie-Xin-Tang (Coptis chinesis Franch, 
Scutellaria baicalensis Georgi, and Rheum officinale 
Baill) (Baicalin) 

Anti-inflamma-
tory properties 

H. pylori induced COX-2 enhancement (treatment vs. control group, p < 0.05) 

IκBα degradation and nuclear translocation of NF-κB p50 subunit (treatment vs. con-
trol group, p < 0.05) 

iNOS and IL-8 mRNA expression (treatment vs. control group, p < 0.05) 

decreased NO and IL-8 production (treatment vs. control group, p < 0.05) 

[159] 

Dittrichia viscosa subsp. Revoluta 
(Essential oil (3-methoxy cuminyl isobutyrate, α-
cadinol and α-eudesmol) 

Inhibit H. pylori 
growth 

Essential oil derived from Dittrichia viscosa especially fraction 5 and 7 show highest anti-
H. pylori activity  

[160] 

Green tea (Catechin and pure sialic acid) Antioxidant 
properties 

Reduce O2−, H2O2 count, NO production (treatment vs control group, p < 0.05) [161] 

Basal and H. pylori-stimulated IL-8 secretion up to 74.51% and 66.67%, respectively (p
< 0.001)
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Table 1. Assessment of anti-H. pylori activity from natural sources in in vitro studies. 

Test Material Activity Findings Source 

Ginger (Gingerol) Inhibit H. pylori 
growth 

Inhibit growth of CagA+ H. pylori strains (MIC: 6.25–50 µg/mL) [156] 

Curcuma longa L. (Curcumin) Anti-inflamma-
tory properties 

IκBα degradation (up to 80 µM) 

IKKα and β activity (up to 80 µM) 

NF-κB DNA-binding (up to 80 µM) 

[157] 

Chilli pepper (Capsaicin) 
Anti-inflamma-
tory properties 

H. pylori-induced IL-8 production in MKN45 and AGS cell (100 µM capsaicin, 43.2% 
and 70%, respectively, compared to control) 

IL-8 mRNA expression (100 µM capsaicin) 

Reduce H. pylori NF-κB activation (100 µM capsaicin) 

[158] 

San-Huang-Xie-Xin-Tang (Coptis chinesis Franch, 
Scutellaria baicalensis Georgi, and Rheum officinale 
Baill) (Baicalin) 

Anti-inflamma-
tory properties 
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Reduce O2−, H2O2 count, NO production (treatment vs control group, p < 0.05) [161] 
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Table 1. Cont.

Test Material Activity Findings Source

Mangiferin indica (Mangiferin)

Inhibit H. pylori growth
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Burdock complex
(Arctium lappa, Angelica sinensis, Lithospermum

erythrorhizon, and Sesamum indicum oil)

Anti-adhesion properties
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Astaxanthin Antioxidant properties
Prevent the SOD2 level decrease and increase SOD activity, and mitochondrial ROS

production in AGS cell [172]

Blueberry (Cyanindin-3-O-Glucoside) Anti-inflammatory properties
C3G from blueberry suppressed abnormal DNA synthesis, inflammation, and TLR2 and
TLR4 expression; induced apoptosis; and deactivated TLR-mediated NF-κB signaling in

LPS-treated cell
[173]

Black raspberry (Anthocyanin) Inhibit H. pylori growth Inhibited growth of H. pylori without having side effects on AGS cell (MIC: 5 µg/mL) [174]

Celastrus orbiculatus Anti-inflammatory properties
Reduces inflammatory response by regulating epithelial–mesenchymal transition;

suppressed methylation of PDCD4 promoter and inhibited microRNA-21, thus
enhancing the PDCD4 expression

[175]

Chrysanthemum indicum and Chrysanthemum
morifolium (Essential oil (major constituent

camphor))

Inhibit H. pylori growth Both essential oil of C. indicum and C. morifolium showed potent anti-H. pylori activity
with IC50 3.63 and 3.78 µg/mL, respectively [176]

Pimenta racemosa (leaves and stem essential oil
(eugenol) and methanolic extract)

Inhibit H. pylori growth
Pimenta racemosa stem essential oil showed the highest anti-H. pylori activity compared to
others with MIC: 3.9 µg/mL and it inhibited H. pylori urease activity simulated with in

silico molecular modelling
[177]
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Table 2. Assessment of anti-H. pylori activity from natural sources in in vivo studies.

Test Material Subject Activity Findings Source

Green tea (Catechin and sialic acid) Male BALB/c mice
Anti-inflammatory

properties

Pre-treatment and post-treatment with catechin and/or sialic acid significantly
reduced H. pylori infection, mucosal damage, and gastritits score (treatment vs.

control group, p < 0.05)
[161]

Ginger (Gingerol) Mongolian gerbils
Anti-inflammatory

properties

Significantly reduces mucosal and submucosal inflammation, cryptitis,
epithelial degeneration, and erosion due to H. pylori infection compared

to control
[178]

Polyphenol rich apple peel extract C57BL6/J mice
Anti-adhesion properties Administration of apple peel polyphenol could reduce adhesion of H. pylori;

reduced inflammation, lowering malonaldehyde levels and gastritis score
in mice

[163]Anti-inflammatory
properties

Bryophyllum pinnatum Swiss mice Inhibit H. pylori growth
Bryophyllum pinnatum significantly reduced bacterial colonization in gastric

tissue and bacterial load in Swiss mice [168]

Berberine Male C57Bl/6 mice
Anti-inflammatory

properties
Berberine treatment suppressed pro inflammatory cytokines and upregulated

anti-inflammatory cytokines expression
[179]

Corydalis yanhusuo
(Benzylisoquinoline alkaloids) Male mice Inhibit H. pylori growth

Two different extracts of Corydalis yanhusuo (ethanol and chloroform) inhibited
the growth of H. pylori, with MIC ranging from 50 to 100 µg/mL and MBC
ranging from 100 to 200 µg/mL; chloroform extract of Corydalis yanhusuo
reduces survival ability of H. pylori in gastric mucosa and repairs gastric

damage together with reduction of H. pylori IgG in infected mice

[180]

Cranberry (A-type
proanthocyanidin)

H. pylori-positive adults Anti-adhesion properties Consumption of cranberry juice could significantly reduce H. pylori infection
compared to placebo group

[181]

Cranberry (A-type
proanthocyanidin) H. pylori-positive adults Anti-adhesion properties

Cranberry juice addition to standard triple therapy (Omeprazole, Amoxicillin,
and Clarithromycin) could significantly improve H. pylori eradication rates in

female subjects
[182]

Cranberry (A-type
proanthocyanidin) and Lactobacillus

johnsonii La1

Asymptomatic H.
pylori-positive children

Anti-adhesion properties
Combination of cranberry juice and L. johnsonii La1 reduced H. pylori infection

compared to each test material alone and control group, but no synergistic
inhibitory effect observed

[24]

Blueberry and grape seed extract
(Proanthocyanidin) H. pylori-positive patient Antioxidant properties Combination of blueberry and grape seed extract did not produce a significant

change in eradication rate of H. pylori compared to placebo group
[183]
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Table 2. Cont.

Test Material Subject Activity Findings Source

Berberine H. pylori-positive patient Antioxidant properties
No significant difference between berberine containing quadruple therapy

eradication rate and adverse effect compared to bismuth containing quadruple
therapy

[184]

Burdock complex
(Arctium lappa, Angelica sinensis,
Lithospermum erythrorhizon, and

Sesamum indicum oil)

Asymptomatic H.
pylori-positive subject

Anti-adhesion properties Significantly reduced UBT value (compared to placebo, p < 0.05)

[171]
Anti-inflammatory

properties Significantly reduced inflammatory marker and (compared to placebo, p < 0.05)

Antioxidant properties Improved antioxidant status and plasma phenolic level (compared to placebo,
p < 0.05) and heal the ulcer in the stomach

Cranberry (A-type
proanthocyanidin) H. pylori positive adults Anti-adhesion properties

Consumption of high-proanthocyanidin cranberry juice twice a day
(44 mg/serving) for 8 weeks could significantly decrease H. pylori infection
compared to placebo; consumption of encapsulated cranberry powder not

significantly effective to reduce H. pylori infection

[20]
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In vitro studies show that most of the phytochemicals reduce the inflammatory re-
sponse by inhibiting the NF-κB activation and downregulating other pro-inflammatory
cytokines [157–159]. Gingerol from ginger methanolic extract also inhibits the growth
of 19 different strains of H. pylori, especially 5 CagA+ strains [156]. Furthermore, ginger
shows anti-inflammatory effects and suppresses AP-1 activation [185]. Gaus et al. demon-
strated that gingerol from ginger inhibited COX-2, transcription of NF-κB, and release of
inflammatory cytokine release in a cell model and animal model [162].

Some other compounds also possess an anti-H. pylori effect to reduce the adhesion
of H. pylori to epithelial cells in both in vitro and in vivo models. Polyphenols, especially
flavonoids in monomer and oligomer, show a potential to reduce adhesion of H. pylori to
epithelial cells [163–165,171]. Huang et al. demonstrated the removal of phenolics from
noni fruit ethanolic and ethyl acetate extracts causing both extracts to lose antiadhesion
activity of H. pylori to epithelial cells [143]. Polyphenols from apple peel extract also show
the same effect in vitro and in vivo [142].

Cranberry showed anti-H. pylori activity due to its A-type proanthocyanidins con-
tent [186–188]. Gottenland et al. showed that cranberry extract together with Lactobacil-
lus johnsonii La1 could reduce H. pylori infection. In vivo and in vitro studies show that
cranberry can reduce the adhesion of H. pylori to epithelial cells and that A-type proantho-
cyanidin might play a critical role [24].

Essential oil derived from several herbs also can be used as an anti-H. pylori agent.
Essential oil from Dittrichia viscosa shows potent anti-H. pylori activity with the major con-
stituents being 3-methoxy cuminyl isobutyrate, α-cadinol, and α-eudesmol [160]. Another
study by Ayoub et al., using Pimenta racemose essential oil that contains eugenol, was found
to inhibit the growth of H. pylori together with inhibition of urease activity [177].

10. Effect of Different Phytochemicals on ND Development

NDs were associated with progressive neuronal cell death in the CNS [49]. Until now,
there has been no medication to cure ND. Thus, only some medication can improve and
delay the symptoms. Recent studies show that some phytochemicals would improve the
condition of ND patients. Phytochemicals from natural sources have been assessed to show
their potency as neuroprotective agents to improve ND (Figure 5). The neuroprotective
activities of natural compounds are presented in Tables 3 and 4.
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Table 3. Assessment of neuroprotective activity of phytochemical from natural sources in in vitro studies.

Test Material Cell line Activity Findings Source

Curcuma longa L. (Curcumin,
demethoxycurcumin, and
bisdemethoxycurcumin)

PC12 cells and human
umbilical vein endothelial cells

(HUVEC)
Anti-apoptosis activity Three curcuminoids from Curcuma longa L. found to protect PC12 cells

and HUVEC from Aβ insult [162]

Curcuma longa L. (9 different
isolated compounds) PC12 cells Anti-apoptosis activity Five isolated compounds from Curcuma longa L. effectively protected

PC12 cells from Aβ cytotoxicity [163]

Capsicum annuum var. grossum
(Polyphenol rich extract) In vitro study Reduce Aβ aggregation Phenolic extract from bell pepper could counteract initial aggregation of

Aβ and prevent further aggregation (fibril formation) [164]

Bacopa monnieri (Bacoside-A) SH-SY5Y cells Anti-apoptosis activity Reduced cell cytotoxicity and inhibited fibril formation both in buffer
solution only and in the presence of membrane vesicles [189]

Ginseng (Ginsenoside Rg1) Primary hippocampal neurons
Anti-inflammatory properties Ginsenoside Rg1 reduced ROS production, NOX2, and NLRP1

inflammasome due to H2O2 treatment.
[190]

Anti-apoptosis activity Ginsenoside Rg1 also reduced apoptosis, activation of β-galactosidase,
and neuronal damage after H2O2 treatment.

Ficus deltoidea Jack (Vitexin and
isovitexin) Mouse microglial (BV-2) cells Anti-inflammatory properties

Treatment with Ficus deltoidea Jack extract significantly reduced ROS, NO,
TNF-α, IL-1β, and IL-6 production from microglial cell after treatment

with LPS
[191]

Quercetin MN9D dopaminergic neuronal
cells

Improve mitochondria
function

Increased mitochondrial biogenesis and bioenergetics capacity of MN9D
cell and reduced 6-hydroxydopmaine induced toxicity [192]

Semen ziziphi spinosae (Jujuboside A) BV-2 cells Anti-apoptosis activity
JuA treatment upregulated expression of HSP90β, preserved PPARγ

levels, promoted interaction between HSP90β and PPARγ, and promoted
the clearance of Aβ42

[193]

Schisandra chinensis (Essential oil) BV-2 cells Anti-inflammatory properties
Schisandra chinensis essential oil treatment decreased NO production and

blocked MAPK activation in LPS-stimulated BV-2 microglial cell [194]

Dioscoreae nipponicae
(Dioscin) SH-SY5Y cell

Anti-apoptosis activity Dioscin improved cell viability
[195]

Antioxidant activity Reduce ROS production due to H2O2 injury in SH-SY5Y cell line
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Table 4. Assessment of neuroprotective activity of phytochemical from natural sources in in vivo studies.

Test Material Compound Subject Findings Source

Ginseng Ginsenoside Rg3 Male Wistar rats
Ginsenoside Rg3 significantly reduced neuronal apoptosis and apoptosis related protein
after treatment of D-galactose; ginsenoside Rg3 also improved antioxidant status and

mitochondrial function in D-galactose-induced AD rats
[196]

Green tea extract (−) Epigallocatechin-3-gallate Male C57/BL mice Green tea extract treatment reduced N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
toxicity and prevented dopaminergic neuronal loss [197]

Citrus Tangeretin Male Sprague-Dawley rats Tangeretin can cross the blood–brain barrier and protect neuronal cells against
6-OHDA toxicity [198]

Epigallocatechin gallate
Transgenic mice carrying

human G93A mutated SOD1
gene

EGCG treatment prolonged lifespan and the symptoms onset and increased the survival
rate of experimental mice [199]

Genistein Male Sprague-Dawley rats High dose genistein treatment showed neuroprotective effect against 6-OHDA toxicity [200]

Hesperidin and naringin Wistar rats
Pre-treatment with hesperidin and naringin reduced behavioral alteration, oxidative

stress, and mitochondrial enzyme dysfunction; this effect was further enhanced when
combined with NOS inhibitor (L-NAME)

[201]

Oryza sativa (Rice
berry, purple) Anthocyanin Wistar rats Prevented memory impairment and hippocampal neurodegeneration; decreased AChE

activity and lipid peroxidation
[202]

Zingiber officinale
(Red and White

Ginger)
Wistar strain albino rats Both extracts inhibited AChE individually and combined together, and both extracts

significantly decreased the SNP and QA elevated brain MDA contents [203]

Naringin Male Wistar rats
Improvement of glutathione/oxidized glutathione ratio and reduced free radical level

due to 3-nitropropionic acid treatment through Nrf2 activation [204]

Quercetin Female Wistar rats
Quercetin treatment improved mitochondrial function and antioxidant enzymes, as well

as reducing astrogliosis and neurobehavioral deficits in experimental rats [205]

Genistein Female Wistar rats
Improvement in Morris water maze result and neuroprotective effect on dopaminergic

neuronal cells [206]

Quercetin Albino rats
Significant reduction of behavioral impairment due to rotenone; reduced endoplasmic

reticulum stress-induced apoptosis and oxidative stress [207]

Quercetin MitoPark transgenic mice
Improved behavioral change, and reduced dopamine depletion and neuronal loss in

MitoPark transgenic mice [192]
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Table 4. Cont.

Test Material Compound Subject Findings Source

Momordica charantia C57BL/6J and 3 × Tg-AD
mice

Prevent memory deficits; reduced neuronal loss, gliosis, Aβ level, and tau
hyperphosporylation; and increased synaptic-related protein and pS9-GSK3β expression

[208]

Chlorogenic acid Swiss albino male mice
Chlorogenic acid significantly improve motor coordination and antioxidant status.

Chlorogenic acid also reduce neuroinflammation and inhibit release of
proinflammatory cytokines

[209]

(−) Epigallocatechin-3-gallate C57BL/6J mice
Improvement in movement behavior and protection of tyrosine hydroxylase (+) cells

against MPTP toxicity, increased CD3+/CD4+ and CD3+/CD8+ T lymphocyte ratio, and
reduced pro-inflammatory cytokine production

[210]

Uncaria rhynchophylla Isorhynchophylline (IRN) Male Sprague-Dawley rats
IRN treatment alleviated cognitive decline due to Aβ25-35, reduced neuronal apoptosis,

and suppressed tau hyperphosphorylation; additionally, IRN also inhibited GSK-3β
activity and activated PI3K phosphorylation, which play a role in neuroprotection

[211]

Semen ziziphi spinosae Jujuboside A APP/PS1 transgenic mice JuA significantly reduced cognitive deficiency in APP/PS1 transgenic mice, and
significantly reduced soluble Aβ42 levels and plaque numbers in the brain [193]

Schisandra chinensis Essential oil Male KM mice Schisandra chinensis essential oil can improve cognitive decline in mice, suppressed
pro-inflammatory cytokines, and inhibited p38 activation in the mice model [194]

Astragalus radix Cycloastragenol C57BL/6N mice
Cycloastragenol upregulated the expression of Nrf2, HO-1, p-TrKB, BDNF, and NeuN
and downregulated the expression of p-JNK, p-P-38, and p-Erk; cycloastragenol reduced
the activated microglia, inflammatory cytokines, apoptosis, and memory dysfunction

[212]

Dioscoreae nipponicae Dioscin C57BL/6 mice

Result from in vivo study showed dioscin improved spatial learning and memory;
restored MDA, Aβ42, AChE, ACh, and SOD levels; and restored brain histopathological

change; dioscin downregulated the expression of RAGE and NOX4 and upregulated
Nrf2 and HO-1; dioscin also downregulated the levels of p-NF-κB(p-p65)/NF-κB(p65),

AP-1, and inflammatory factors

[195]

Citrus Men and women aged ≥65,
living in Ohsaki City, Japan Frequent consumption of citrus associated with lower risk of getting dementia [213]

Korean Red Ginseng
(KRG)

High KRG dose (9 g/day), low
KRG dose (4.5 g/day), control

for 12 weeks intervention
61 patients with AD

High dose KRG significantly improved Alzheimer’s Diseases Assessment Scale (ADAS)
and Clinical Dementia Rating (CDR) compared to control; KRG group showed

improvement on Mini Mental Status Examination (MMSE) but no significant difference
with the control group

[214]
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Table 4. Cont.

Test Material Compound Subject Findings Source

Panax Ginseng
Panax Ginseng powder

(4.5 g/day) and control for
12 weeks

97 patients with probable AD
by NINDS-ADRDA criteria

Baseline MMSE and ADAS showed no difference between 2 groups; after intervention
for 12 weeks, the group treated with panax ginseng showed MMSE and ADAS score
improvement and after discontinuation of panax ginseng, MMSE and ADAS score

declined to the level of the control group

[215]

Cherry juice Anthocyanin (200 mL of
cherry juice/day for 12 weeks)

Elder adult (age 70+) with
mild to moderate dementia

Significantly improved verbal fluency, short-term and long-term memory, and reduction
of systolic and diastolic blood pressure, but no alteration of inflammation markers [22]

Curcumin Healthy adults

Curcumin administration significantly improved sustained attention and working
memory tasks compared to placebo; working memory and mood were significantly

better after chronic treatment compared to placebo; curcumin treatment also
significantly reduced total and LDL cholesterol

[216]

Cocoa

Flavonol (1 dose daily for
8 weeks)

• ≈990 mg/day (high),
• ≈520 mg/day

(intermediate)
• ≈45 mg/day (low)

Elder people with mild
cognitive impairment

Time required to complete cognitive and verbal tests was significantly lower in the high
and intermediate flavonol groups, compared to the low flavonol group [21]

Orange Juice

• High flavanone (305 mg)
and low flavanone
(37 mg) daily for 8 weeks

Healthy older adults
High flavanone orange juice gives better improvement on global cognition score
compared to the low flavanone group; no significant effect observed of flavanone

consumption on mood changes
[217]

Resveratrol (500 mg/day of
Resveratrol (with dose
escalation by 500 mg

increments every 13 weeks))

People aged > 45 with:

• Diagnosed with probable
AD

• Mini-Mental State
Examination (MMSE)
score 14–26

• Modified Hachinski
Score < 5

stable use of cholinesterase
inhibitors or memantine

Resveratrol was safe and well tolerated and some alteration of AD biomarkers were
observed but a further and bigger study is needed to find evidence [218]

Orange juice
Flavonoid-rich orange juice

(272 mg/240 mL) or
calorie-matched placebo

Males aged 30–65 years old Flavonoid-rich orange juice improved cognitive function, psychomotor speed, and
subjective alertness compared to placebo [219]
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Kim et al. and Park et al. showed that different types of curcuminoids, espe-
cially calebin-A, curcumin, demethoxycurcumin, bisdemethoxycurcumin, and 1,7-bis(4-
hydroxyphenyl)-1-heptene-3,5-dione, can help to protect the PC12 cell line from Aβ insult
in vitro, with the effective dose (ED50) ranging from 0.5 to 10.0 µg/mL [178,220]. Yang
et al. demonstrated that curcumin can reduce the aggregation of Aβ and also disaggregate
fibrillar Aβ40 fragments [221]. Ogunruku et al. found that polyphenol extracts from bell
peppers can inhibit the activity of β-secretase (BACE 1) in a dose-dependent manner and
also inhibit the aggregation of Aβ40 and reduce fibril formation in vitro [222]. Inflamma-
tion is the earliest sign of AD, which is induced by Aβ oligomer through many different
receptors such as the Toll-like receptor (TLR) and formyl peptide receptor [223].

Animal studies also showed some phytochemical protection against AD. Purple
berry rice contains rich anthocyanins and shows some improvement in AD by preventing
memory impairment and hippocampal neurodegeneration in the Wistar rat model [202].
Anthocyanins from purpleberry rice reduces the activity of AChE, which can cleave the
neurotransmitter acetylcholine and also reduce lipid peroxidation [70,202]. Another study
using aqueous extract of white and red ginger also showed protection against AD in an
animal model [203]. Both extracts can inhibit AChE activity and show a synergistic effect
on inhibiting AChE activity. Furthermore, it also decreased sodium nitroprusside (SNP)
and quinolinic acid (QA) elevated brain malondialdehyde (MDA) content, but there was no
significant difference in SNP and QA lipid peroxidation in the brain. Ginsenosides found in
ginseng could improve AD subject condition [214,215]. Both studies showed similar results
on the improvement of the Alzheimer’s Diseases Assessment Scale (ADAS), Mini-Mental
State Examination (MMSE), and Clinical Dementia Rating (CDR) scores in AD subjects.
More importantly, results from Lee et al. also showed that after the discontinuation of
ginseng powder from the treated group, scores of MMSE and ADAS were declining to the
same as the control groups [182]. A high dose (990 mg/day) of cocoa flavonol for 8 weeks
could improve the cognitive ability of elderly people with mild cognitive impairment [21].

Phytochemical treatment also provides improvement against other types of ND. Datla
et al. demonstrated that treatment of tangeretin, a flavonoid derived from citrus fruit, can
protect the neuronal cell from 6-hydroxydopamine (6-OHDA) toxicity in a rat model for
PD [198]. Tangeretin can pass through the BBB and protect the dopaminergic neuronal cell,
maintain TH+ cells, and significantly increase dopamine levels. Levites et al. demonstrated
a positive result of green tea (−)-epigallocatechin-3-gallate (EGCG) treatment on N-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease [197]. EGCG
treatment protects the neuronal cell against MPTP toxicity, improves antioxidant enzyme
activity, and significantly improves tyrosine hydroxylase (TH) activity. TH is an enzyme
that plays a role in converting tyrosine into dopamine, and reduced TH activity can cause a
reduction of dopamine synthesis and contribute to the progression of PD [224,225].

A previous study also shows improvement in HD by treatment of natural phytochem-
icals. Sandhir and Mehrotra demonstrated quercetin’s benefit for Huntington’s disease
using an animal model, and their result showed that quercetin helps to reverse mitochon-
drial dysfunction due to 3-nitropropionic acid (3-NP) and reduces mitochondrial oxidative
stress [205]. Mitochondrial function is considered to play an important role in the pathogen-
esis of neurodegenerative disease [226]. Dysfunction of mitochondria can cause alteration
in the respiratory chain system, depletion of energy, and increased ROS production, which
may lead to the progression of ND [227,228]. Kumar and Kumar also showed that two
flavanones derived from citrus fruit, hesperidin and naringin, could protect the neuronal
cell and improve mitochondrial function after treatment with 3-NP, and this effect further
enhanced the protective effect of hesperidin and naringin when combined with L-NAME,
which belong to NOS inhibitor [201].

11. H. pylori Eradication Improved Cognitive Function in an ND Subject

Until now, the association between H. pylori infection and ND is still controversial.
Past studies showed that H. pylori infection has some common link with ND, especially
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after the eradication of H. pylori. Kountouras et al. showed that H. pylori eradication from
AD patients showed some improvement in MMSE and Cambridge cognitive test scores
compared to subjects who refused the H. pylori eradication therapy and H. pylori-negative
subjects [229]. Furthermore, Chang et al. also showed that H. pylori eradication had a
linkage with decreased progression of dementia in AD subjects [230]. H. pylori infection
also interfere with the absorption of antiparkinsonian drugs, which could lead to worsened
condition of PD [231]. The evidence obtained from previous studies might provide some
research opportunities, especially for phytochemicals to eradicate H. pylori infection as well
as improve cognitive function.

12. Conclusions

Studies showed that phytochemicals from natural sources would be used as anti-H.
pylori and neuroprotective agents. These compounds can reduce the number of H. pylori
and alleviate the inflammatory response due to H. pylori infection. Natural phytochemicals
could be used as a therapeutical agent for H. pylori and neurodegenerative disease treatment
due to their biological activity and safety concerns. Future studies are needed to find the
potential and specific mechanism of each phytochemical in reducing H. pylori infection as
well as the improvement of ND.
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94. Budzyński, J.; Kłopocka, M. Brain-gut axis in the pathogenesis of Helicobacter pylori infection. World J. Gastroenterol. 2014, 20, 5212.
[CrossRef]

95. Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The gut-brain axis: Interactions between enteric microbiota, central and
enteric nervous systems. Ann. Gastroenterol. 2015, 28, 203–209.

96. Zhou, L.; Foster, J.A. Psychobiotics and the gut–brain axis: In the pursuit of happiness. Neuropsychiatr. Dis. Treat. 2015, 11, 715.
[CrossRef]

97. Morais, L.H.; Schreiber, H.L.; Mazmanian, S.K. The gut microbiota–brain axis in behaviour and brain disorders. Nat. Rev.
Microbiol. 2020, 19, 241–255. [CrossRef]
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