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Abstract: The solubility and solution thermodynamics of isotretinoin (ITN) (3) in numerous {dimethyl
sulfoxide (DMSO) (1) + water (H2O) (2)} combinations were studied at 298.2–318.2 K under fixed
atmospheric pressure of 101.1 kPa. A shake flask methodology was used to determine ITN solubility,
and correlations were made using the “van’t Hoff, Apelblat, Buchowski-Ksiazczak λh, Yalkowsky-
Roseman, Jouyban-Acree, and Jouyban-Acree-van’t Hoff models”. In mixtures of {(DMSO (1) +
H2O (2)}, the solubility of ITN in mole fractions was enhanced with the temperature and DMSO
mass fraction. The mole fraction solubility of ITN was highest in neat DMSO (1.02 × 10−1 at 318.2 K)
and lowest in pure H2O (3.14 × 10−7 at 298.2 K). The output of computational models revealed
good relationships between the solubility data from the experiments. The dissolution of ITN was
“endothermic and entropy-driven” in all of the {(DMSO (1) + H2O (2)} mixtures examined, according
to the positive values of measured thermodynamic parameters. Enthalpy was discovered to be the
driving force behind ITN solvation in {(DMSO (1) + H2O (2)} combinations. ITN-DMSO displayed
the highest molecular interactions when compared to ITN-H2O. The outcomes of this study suggest
that DMSO has a great potential for solubilizing ITN in H2O.

Keywords: computational models; isotretinoin; molecular interactions; {DMSO (1) + water (2)}
mixtures; solubility; thermodynamic analysis

1. Introduction

The drug isotretinoin (ITN) is an isomer of retinoic acid, also referred to as 13-cis-
retenoic acid, that has a cis structure [1,2]. Its molecular structure/formula is shown in
Figure 1A [3]. ITN was shown to be suitable for the treatment of several malignancies
because it plays a significant part in regulating gene expression [4,5]. Additionally, it was
discovered to be effective in the treatment of several skin conditions, including psoriasis,
skin cancer, and acne [6–10]. It is touted as the most effective treatment for acne [10,11]. A
practical approach for the oral administration of ITN in pediatric neuroblastoma patients
was recently reported [12] because the patients were unable to swallow marketed tablets or
capsules. Due to its poor solubility in water and high lipophilicity, ITN presents challenges
in the development of formulations and drug delivery systems especially in terms of liquid
dosage forms [13,14]. These challenges in formulation development and drug delivery
systems are a poor dissolution rate, poor oral absorption, and poor bioavailability after oral
administration [14].

Over many years, the pharmaceutical industry has recognized the value of solubility
expertise [15,16]. By enabling chemists/scientists to make useful decisions, the solubil-
ity data of drugs, particularly in the area of drug development and research, provides
useful information to enhance the quality of drug candidates and enhance the success

Molecules 2023, 28, 7110. https://doi.org/10.3390/molecules28207110 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28207110
https://doi.org/10.3390/molecules28207110
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-6109-0885
https://orcid.org/0000-0003-0666-808X
https://orcid.org/0000-0002-0922-9819
https://orcid.org/0000-0001-8519-3363
https://orcid.org/0000-0001-5288-5953
https://doi.org/10.3390/molecules28207110
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28207110?type=check_update&version=1


Molecules 2023, 28, 7110 2 of 16

rate clinically [17]. Additionally, the estimation of in vivo pharmacokinetics using solu-
bility data enhances dose prediction [18,19]. The cosolvency technique, one of many that
have been researched to enhance the solubility of medications [20–23], has been widely
used in pharmaceutical science and practice [19]. In order to increase the solubility of
ITN in this work, the cosolvency technique was applied with dimethyl sulfoxide (DMSO)
[Figure 1B], as a cosolvent. The enhancement in ITN solubility using DMSO could resolve
several issues of ITN, such as poor aqueous solubility, a poor dissolution rate, poor oral
absorption, and poor bioavailability problems. Pharmaceutical drug solubility data are
an important physicochemical attribute for a number of industrial processes, including
manufacturing, formulation development, and other uses [24–26]. The solubilization of
ITN in solutions of water (H2O) and a cosolvent has not been well reported. To change
the physicochemical and basic properties of ITN, a variety of lipid-based formulations,
including microemulsions, microemulsion gels, and self-nanoemulsifying formulations,
was investigated [27–32]. The solubility of ITN in a few environmentally friendly solvents,
such as propylene glycol (PG), polyethylene glycol-400 (PEG-400), and carbitol, has been
documented at room temperature [28,31]. At temperatures ranging from 298.2 to 318.2 K
and an atmospheric pressure of 101.1 kPa, we previously reported the solubility and ther-
modynamic data of ITN in 11 distinct green solvents, namely H2O, methanol, ethanol,
1-butanol, 2-butanol, ethylene glycol, PG, PEG-400, ethyl acetate, carbitol, and DMSO [33].

The stock solution of DMSO has been utilized as a de facto standard for the storage of
numerous substances and the distribution of various assays, including solubility assess-
ment [34]. In addition, DMSO is one of the most commonly used cosolvents for solubility
enhancement due to its complete miscibility with H2O and low chemical reactivity [34,35].
The main limitation of using DMSO is that it affects enzyme activity and cell growth [36].
DMSO is known to influence the protein–ligand binding via solvent viscosity effects and
hence it could influence the drug kinetics of the in vivo’s drug disposition [35,37]. It has
been reported to reduce ligand–protein binding, which could result in an improved kinetics
profile of the drug disposition [35]. The solubility of several weakly soluble pharmaceutical
compounds, including raloxifene hydrochloride, sinapic acid, pyridazinone derivatves,
baricitinib, meloxicam, and clozapine, has been enhanced using DMSO as a potential
solubilizer/cosolvent [26,38–42]. There is no information in the literature regarding the sol-
ubility data and thermodynamic parameters of ITN (3) in numerous {DMSO (1) + H2O (2)}
mixtures at different temperatures (298.2–318.2 K) under constant atmospheric pressure
(101.1 kPa). Therefore, this investigation was conducted to determine the solubility and
thermodynamic parameters of ITN (3) in numerous {DMSO (1) + H2O (2)} mixes, including
pure DMSO and H2O, at 298.2–318.2 K under atmospheric pressure. The information
acquired during the data collection phase of the study may be helpful for the development
of dosage forms, pre-formulation studies, and purification of the studied drug.
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2. Results and Discussion
2.1. Solid-State Characterization and Experimental Solubility Data of ITN

The solid-phase characterization of ITN before solubility determination (pure ITN)
and after solubility determination (equilibrated ITN) was carried out to investigate the
possibility of ITN evolving into polymorphs or solvates/hydrates. The findings of this
characterization on pure and equilibrated ITN using differential scanning calorimetry
(DSC), powder X-ray diffraction (PXRD), and Fourier transforms infrared spectroscopy
(FTIR) investigations are presented in our most recent work [33]. The FTIR, DSC, and
PXRD spectra of both samples of ITN were said to be similar and to exhibit similar peak
characteristics in our most recent paper [33]. Furthermore, the equilibrated ITN sample did
not exhibit any additional FTIR, DSC, or PXRD peaks. According to these results, ITN did
not transform into polymorphs or solvates/hydrates. The experimental solubility values
of ITN (3) in numerous {DMSO (1) + H2O (2)} mixtures at five distinct temperatures and
constant pressure are mentioned in Table 1.

Table 1. Experimental (xe) and ideal solubility (xidl) data of ITN (3) in binary {DMSO (1) + H2O (2)}
mixes at 298.2–318.2 K and 101.1 kPa a (values in parentheses are standard deviations).

m a
xe

b

T = 298.2 K T = 303.2 K T = 308.2 K T = 313.2 K T = 318.2 K

0.0 3.10 (0.07) × 10−7 4.60 (0.15) × 10−7 7.50 (0.18) × 10−7 1.10 (0.02) × 10−6 1.50 (0.03) × 10−6

0.1 1.12 (0.02) × 10−6 1.59 (0.03) × 10−6 2.45 (0.05) × 10−6 3.47 (0.06) × 10−6 4.61 (0.11) × 10−6

0.2 3.83 (0.08) × 10−6 5.28 (0.17) × 10−6 7.87 (0.21) × 10−6 1.10 (0.01) × 10−5 1.42 (0.02) × 10−5

0.3 1.36 (0.01) × 10−5 1.82 (0.03) × 10−5 2.57 (0.04) × 10−5 3.43 (0.06) × 10−5 4.29 (0.07) × 10−5

0.4 4.68 (0.07) × 10−5 6.06 (0.08) × 10−5 8.23 (0.10) × 10−5 1.08 (0.01) × 10−4 1.32 (0.02) × 10−4

0.5 1.65 (0.04) × 10−4 2.05 (0.05) × 10−4 2.69 (0.06) × 10−4 3.31 (0.07) × 10−4 3.96 (0.08) × 10−4

0.6 5.70 (0.10) × 10−4 6.88 (0.12) × 10−4 8.57 (0.17) × 10−4 1.08 (0.01) × 10−3 1.22 (0.02) × 10−3

0.7 2.02 (0.03) × 10−3 2.33 (0.05) × 10−3 2.79 (0.06) × 10−3 3.24 (0.07) × 10−3 3.66 (0.08) × 10−3

0.8 6.97 (0.10) × 10−3 7.81 (0.12) × 10−3 8.96 (0.20) × 10−3 1.02 (0.01) × 10−2 1.15 (0.01) × 10−2

0.9 2.44 (0.02) × 10−2 2.66 (0.03) × 10−2 2.86 (0.03) × 10−2 3.19 (0.04) × 10−2 3.39 (0.05) × 10−2

1.0 8.47 (0.10) × 10−2 8.88 (0.11) × 10−2 9.31 (0.12) × 10−2 9.80 (0.13) × 10−2 1.02 (0.01) × 10−1

xidl 4.28 (0.03) × 10−2 4.43 (0.04) × 10−2 4.58 (0.05) × 10−2 4.73 (0.06) × 10−2 4.88 (0.07) × 10−2

a The uncertainties u are u(T) = 0.18 K, u(m) = 0.0007, and u(p) = 2 kPa. b The relative uncertainty ur in solubility is
ur(xe) = 0.04.

ITN solubility (3) in numerous {DMSO (1) + H2O (2)} mixes has not been documented.
At 298.2–318.2 K, ITN mole fraction solubility data in pure DMSO and H2O have been
recorded [33]. Figure 2 compares graphically the experimental and literature solubility
data of ITN in pure H2O and DMSO at 298.2–318.2 K. According to the findings shown
in Figure 2, there was a strong correlation between the experimental solubility data of
ITN in pure H2O and DMSO and those mentioned in the literature [33]. These findings
showed that ITN’s experimental solubility statistics agreed well with previously published
research [33]. In general, it was found that neat DMSO and neat H2O had the highest
and lowest mole fraction solubilities of ITN, respectively. The low polarity of DMSO
in contrast to the high polarity of H2O may be the cause of ITN’s greatest solubility in
pure DMSO [38–40]. In addition, the enhanced ITN solubility in DMSO could be due to
intermolecular interactions between –COOH groups of ITN (Figure 1A) with S=O groups
of DMSO (Figure 1B). Temperature and the mass fraction of DMSO both increased the mole
fraction solubility of ITN (3) in different {DMSO (1) + H2O (2)} solutions. The effect of
the DMSO mass fraction on the solubility of ITN in logarithmic mole fractions was also
investigated between 298.2 and 318.2 K. Figure 3 provides documentation on the outcomes.
At each temperature under study, the ITN solubility increased linearly with the DMSO
mass fraction in mixes of {DMSO (1) + H2O (2)}. The solubility of ITN in mole fractions
increased significantly from neat H2O to neat DMSO. Solubilizing ITN in an aqueous media
could potentially use DMSO as a solubilizer or cosolvent.
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2.2. Determination of Hansen Solubility Parameters (HSPs)

ITN’s total HSP (δt) was derived using reference [33], and it was found to be 19.30 MPa1/2,
suggesting low polarity. The HSP values for neat DMSO (δ1) and neat H2O (δ2) are
23.60 MPa1/2 and 47.80 MPa1/2, respectively, according to the literature [33]. Calculations
revealed that the range of HSP for different {DMSO (1) + H2O (2)} mixtures free of ITN
(δmix) was between 26.02 and 45.38 MPa1/2. It was found that the δmix values fell in {DMSO
(1) + H2O (2)} combinations as the DMSO mass percentage increased. As a result, DMSO
mass fraction (m) = 0.1 and m = 0.9, respectively, were used to obtain the maximum and
minimum δmix values. It was discovered, however, that a reduction in δmix values enhanced
the solubility values of ITN. ITN (δt = 19.30 MPa1/2) and pure DMSO (δ1 = 23.60 MPa1/2)
had HSPs that were generally close to one another. The examinations further revealed
the greatest solubility of ITN in neat DMSO. Because of this, the ITN solubility data from
experiments employing {DMSO (1) + H2O (2)} mixes closely mirrored these findings.

2.3. Ideal Solubility and Molecular Interactions

Table 1 displays the ideal solubility (xidl) values for ITN. The calculated values for
ITN’s xidl range from 4.28 × 10−2 to 4.88 × 10−2 at 298.2–318.2 K. ITN exhibited sub-
stantially higher xidl values than experimental solubility (xe) values in pure H2O. At all
temperatures examined, ITN’s xe values were higher than its xidl values in pure DMSO.
Because ITN is most soluble in pure DMSO, it can be used as the best cosolvent for ITN
solubilization.

Table 2 displays the activity coefficient (γi) values for ITN in various {DMSO (1) +
H2O (2)} combinations at 298.2–318.2 K. At each of the studied temperatures, the ITN’s
γi value was at its highest in pure H2O. But at each temperature considered, the γi of
ITN was lowest in pure DMSO. In comparison to neat H2O, the γi values for ITN were
substantially lower for neat DMSO. The highest γi for ITN in neat H2O may be explained by
the least solubility of ITN in H2O. These outcomes suggest that, when compared to the ITN–
H2O combination, the ITN–DMSO combination has the greatest number of solute–solvent
interactions at the molecular level.

Table 2. Activity coefficients (γi) of ITN in numerous {DMSO (1) + H2O (2)} combinations at
298.2–318.2 K.

m
γi

T = 298.2 K T = 303.2 K T = 308.2 K T = 313.2 K T = 318.2 K

0.0 1,366,467 972,627.0 611,320.0 441,076.0 326,128.0
0.1 384,000.0 278,000.0 187,000.0 136,000.0 106,000.0
0.2 111,979.0 83,952.80 58,249.00 43,099.10 34,943.20
0.3 31,441.80 24,298.30 17,811.50 13,802.30 11,402.70
0.4 9161.740 7310.360 5568.540 4372.740 3713.1570
0.5 2602.340 2166.250 1703.980 1429.250 1233.060
0.6 751.8650 644.3650 534.7140 438.6560 399.5110
0.7 211.8050 189.9250 164.4500 146.1890 133.4190
0.8 61.48640 56.71900 51.11100 46.46460 42.45130
0.9 17.59830 16.68020 16.02050 14.83990 14.41810
1.0 5.057310 4.988350 4.918850 4.828590 4.790800

2.4. Correlation of ITN Solubility Data

ITN’s solubility values were correlated by six different computational models, like
“van’t Hoff, Apelblat, Buchowski-Ksiazczak λh, Yalkowsky-Roseman, Jouyban-Acree, and
Jouyban-Acree-van’t Hoff models” [26,43–51]. Table 3 displays the findings concerning
the correlation with the “van’t Hoff model”. It was determined that this model’s overall
root mean square deviation (RMSD) was 1.87%. For all cosolvent mixtures as well as neat
DMSO and H2O, the determination coefficient (R2) for ITN was calculated to be 0.9940 to
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0.9992. Results from the “van’t Hoff model” and ITN (3) experimental solubility values in
mixes of {DMSO (1) + H2O (2)} showed a strong correlation.

Table 3. Outcomes for the “van’t Hoff model” in terms of model parameters (a and b), R2, and
RMSD for ITN (3) in numerous {DMSO (1) + H2O (2)} mixtures (values in parentheses are standard
deviations of model parameters).

m a b R2 Overall RMSD (%)

0.0 10.402 (0.34) −7568.3 (512.12) 0.9966
0.1 9.3196 (0.32) −6865.0 (432.41) 0.9971
0.2 8.8695 (0.30) −6364.6 (402.15) 0.9967
0.3 7.4104 (0.27) −5549.1 (321.27) 0.9969
0.4 6.9041 (0.22) −5031.7 (301.43) 0.9968
0.5 5.5507 (0.17) −4252.5 (284.81) 0.9967 1.87
0.6 5.1279 (0.16) −3757.5 (253.58) 0.9940
0.7 3.4432 (0.10) −2877.3 (194.29) 0.9978
0.8 3.1037 (0.09) −2408.9 (180.21) 0.9988
0.9 1.6606 (0.05) −1603.6 (64.29) 0.9948
1.0 0.52410 (0.01) −892.54 (28.41) 0.9992

In binary solvent mixes, pure H2O, and DMSO, experimental and Apelblat solubility
data for ITN are graphically correlated in Figure 4. The findings shown in Figure 4 reveal
that the experimental solubility values of ITN and the “Apelblat model” correlated well. In
Table 4, the Apelblat model parameters and correlation findings for ITN in binary {DMSO
(1) + H2O (2)} mixes are shown. It was determined that this model’s overall RMSD was
1.69%. Including pure DMSO and H2O, ITN (3) demonstrated an R2 of 0.9951–0.9994 in all
cosolvent combinations. A significant correlation was also found between the results of the
“Apelblat model” and the experimental ITN (3) solubility values in numerous {DMSO (1)
H2O (2)} mixes.

Table 4. Outcomes of the “Apelblat model” in terms of model parameters (A, B, and C), R2, and
RMSD for ITN (3) in numerous {DMSO (1) + H2O (2)} mixes (values in parentheses are standard
deviations of model coefficients).

m A B C R2 Overall RMSD (%)

0.0 454.09 (31.12) −27954 (182.26) −65.877 (6.71) 0.9969
0.1 563.01 (34.58) −32298 (203.31) −82.214 (8.45) 0.9978
0.2 512.95 (32.81) −29519 (188.16) −74.847 (7.71) 0.9974
0.3 521.99 (33.10) −29183 (183.24) −76.408 (7.93) 0.9979
0.4 436.22 (29.82) −24751 (174.34) −63.746 (6.94) 0.9977
0.5 344.90 (26.24) −19840 (121.63) −50.388 (5.13) 0.9974 1.69
0.6 347.63 (26.31) −19489 (119.06) −50.857 (5.16) 0.9951
0.7 126.23 (6.13) −8521.8 (64.31) −18.230 (1.57) 0.9980
0.8 −148.36 (7.21) 4553.4 (44.12) 22.479 (1.77) 0.9994
0.9 44.494 (2.84) −3574.5 (38.84) −6.3581 (0.76) 0.9950
1.0 11.915 (1.01) −1418.1 (22.89) −1.6901 (0.10) 0.9992

The findings of the “Buchowski-Ksiazaczak λh” correlation for ITN in cosolvent
mixtures and neat solvents are shown in Table 5. It was determined that this model’s overall
RMSD was 3.15%. These results also show a strong agreement between the experimental
solubility values from ITN and the “Buchowski-Ksiazaczak λh model”.

The results of the correlation with the “Yalkowsky-Roseman model” are shown in
Table 6. It was determined that this model’s overall RMSD was 2.10%, suggesting a
satisfactory connection between the “Yalkowsky-Roseman model” and the solubility data
for ITN (3) in various {DMSO (1) + H2O (2)} combinations.
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Table 5. Outcomes of “Buchowski-Ksiazaczak λh model” for ITN (3) in numerous {DMSO (1) +
H2O (2)} mixes (values in parentheses are standard deviations of model parameters).

m λ h Overall RMSD (%)

0.0 5.3156 (0.86) 1423.8 (31.23)
0.1 4.8451 (0.83) 1416.9 (30.62)
0.2 4.1898 (0.75) 1519.0 (33.18)
0.3 3.8473 (0.66) 1442.3 (32.51)
0.4 3.2108 (0.51) 1567.0 (34.21)
0.5 2.8430 (0.42) 1495.8 (32.91) 3.15
0.6 2.1723 (0.27) 1729.7 (38.44)
0.7 1.9127 (0.12) 1504.3 (33.61)
0.8 1.2176 (0.10) 1978.4 (41.18)
0.9 0.88170 (0.01) 1818.7 (39.42)
1.0 0.44750 (0.02) 1994.4 (42.12)
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indicate the experimental ITN solubility data, whereas solid lines indicate the “Apelblat model” ITN
solubility data.
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Table 6. Findings of “Yalkowsky-Roseman model” for ITN (3) in several {DMSO (1) + H2O (2)}
combinations at 298.2–318.2 K.

m
log xYal Overall RMSD (%)

T = 298.2 K T = 303.2 K T = 308.2 K T = 313.2 K T = 318.2 K

0.1 −5.96 −5.80 −5.61 −5.46 −5.34
0.2 −5.42 −5.28 −5.10 −4.96 −4.85
0.3 −4.87 −4.75 −4.59 −4.47 −4.37
0.4 −4.33 −4.22 −4.08 −3.97 −3.89 2.10
0.5 −3.79 −3.69 −3.57 −3.48 −3.40
0.6 −3.24 −3.16 −3.06 −2.98 −2.92
0.7 −2.70 −2.63 −2.55 −2.49 −2.44
0.8 −2.15 −2.10 −2.04 −1.99 −1.95
0.9 −1.61 −1.57 −1.54 −1.50 −1.47

In several {DMSO (1) + H2O (2)} mixes at varied temperatures and in varied solvent
mixes, the solubility value of ITN (3) was likewise correlated to “Jouyban-Acree and
Jouyban-Acree-van’t Hoff models” [51]. The results of the correlation with the “Jouyban-
Acree and Jouyban-Acree-van’t Hoff models” are shown in Table 7. According to the
calculations, the overall RMSDs for the “Jouyban-Acree and Jouyban-Acree-van’t Hoff
models” are 1.02% and 1.15%, respectively.

Table 7. Findings of “Jouyban-Acree” and “Jouyban-Acree-van’t Hoff” models for ITN (3) in different
{DMSO (1) + H2O (2)} mixtures (values in parentheses are standard deviations of model parameters).

System Jouyban-Acree Jouyban-Acree-van’t Hoff

A1 0.52410 (0.01)
B1 −892.54 (28.41)

A2 10.402 (0.34)
B2 −7568.3 (512.12)

Ji 29,178 (532.41)
1.15

{DMSO (1) + H2O (2)} Ji 30,624 (561.32)

RMSD (%) 1.02

2.5. Thermodynamic Parameters for ITN Dissolution

The van’t Hoff method was used to derive apparent standard enthalpy (∆solH◦) values
for ITN in all cosolvent mixtures as well as neat DMSO and H2O. The linear van’t Hoff
graphs of ITN in all cosolvent mixtures, as well as in pure DMSO and H2O, are shown in
Figure 5 where R2 > 0.99 was determined, as shown in Table 8. The results for all thermody-
namic parameters are likewise shown in Table 8. ITN (3) ∆solH◦ values in numerous {DMSO
(1) + H2O (2)} mixes and neat DMSO and H2O ranged from 7.430 to 63.00 kJ mol−1. ITN (3)
apparent standard Gibbs energy (∆solG◦) values in various {DMSO (1) + H2O (2)} mixes
and neat DMSO and H2O ranged from 6.077 to 36.27 kJ mol−1. These results for ITN’s
∆solH◦ and ∆solG◦ revealed “endothermic dissolution” of ITN (3) in various {DMSO (1) +
H2O (2)} mixes as well as neat DMSO and H2O [26,38]. ITN (3) apparent standard entropy
(∆solS◦) values between 4.392 and 86.78 J mol−1 K−1 were obtained in numerous {DMSO
(1) + H2O (2)} mixes as well as in neat DMSO and H2O, showing that entropy-driven ITN
(3) dissolution occurs in these binary mixtures [26]. In all {DMSO (1) + H2O (2)} mixes,
including neat DMSO and H2O, it was discovered that the dissolution of ITN (3) was
“endothermic and entropy-driven” [26,38].
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Figure 5. van’t Hoff plots at the mean harmonic temperature (Thm) for ITN created between loga-
rithmic mole fraction solubility (ln xe) and 1/T-1/Thm for ITN in numerous {DMSO (1) + H2O (2)}
mixtures (DMSO mass fraction m = 0.0–1.0).

Table 8. Apparent thermodynamic parameters (∆solH0, ∆solG0, and ∆solS0) along with R2 values for
ITN (3) in different {DMSO (1) + H2O (2)} mixtures c (values in parentheses are standard deviations
of thermodynamic parameters).

m ∆solH0/kJ mol−1 ∆solG0/kJ mol−1 ∆solS0/J mol−1 K−1 R2

0.0 63.00 (0.76) 36.27 (0.43) 86.78 (1.12) 0.9966
0.1 57.15 (0.67) 33.20 (0.41) 77.75 (1.03) 0.9971
0.2 52.98 (0.63) 30.19 (0.39) 73.99 (1.00) 0.9967
0.3 46.19 (0.52) 27.15 (0.37) 61.83 (0.98) 0.9969
0.4 41.89 (0.48) 24.14 (0.36) 57.59 (0.92) 0.9968
0.5 35.40 (0.42) 21.13 (0.30) 46.31 (0.81) 0.9967
0.6 31.28 (0.40) 18.10 (0.26) 42.78 (0.74) 0.9940
0.7 23.95 (0.32) 15.10 (0.24) 28.74 (0.56) 0.9978
0.8 20.05 (0.28) 12.07 (0.20) 25.90 (0.48) 0.9989
0.9 13.35 (0.22) 9.078 (0.14) 13.87 (0.23) 0.9948
1.0 7.430 (0.10) 6.077 (0.09) 4.392 (0.10) 0.9992

c The relative uncertainties are u(∆solH0) = 0.051, u(∆solG0) = 0.047 and u(∆solS0) = 0.057.

2.6. Enthalpy–Entropy Compensation Analysis

An enthalpy–entropy compensation analysis was utilized to study the solvation behav-
ior of ITN (3) in various {DMSO (1) + H2O (2)} mixes as well as pure DMSO and H2O. The
results are presented in Figure 6. Figure 6 demonstrates that ITN (3) delivers a linear ∆solH◦

vs. ∆solG◦ curve in all {DMSO (1) + H2O (2)} mixtures with neat DMSO and H2O, with a
slope of larger than 1.0 and R2 of greater than 0.99. Based on these findings, it is predicted
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that the ITN (3) solvation driven mechanism is enthalpy-driven in all {DMSO (1) + H2O (2)}
mixes as well as in neat DMSO and H2O. The fact that ITN solvates more effectively in pure
DMSO molecules than in neat H2O molecules should be used to explain this mechanism of
ITN solvation [26,38]. This led to stronger interactions between ITN-DMSO molecules than
ITN-H2O molecules. ITN (3) solvated similarly to raloxifene hydrochloride, sinapic acid,
pyridazinone derivatives, and baricitinib in numerous {DMSO (1) + H2O (2)} mixes as well
as in neat DMSO and H2O [26,38–40].

Molecules 2023, 28, x FOR PEER REVIEW 10 of 16 
 

 

2.6. Enthalpy–Entropy Compensation Analysis 
An enthalpy–entropy compensation analysis was utilized to study the solvation be-

havior of ITN (3) in various {DMSO (1) + H2O (2)} mixes as well as pure DMSO and H2O. 
The results are presented in Figure 6. Figure 6 demonstrates that ITN (3) delivers a linear 
ΔsolH° vs. ΔsolG° curve in all {DMSO (1) + H2O (2)} mixtures with neat DMSO and H2O, 
with a slope of larger than 1.0 and R2 of greater than 0.99. Based on these findings, it is 
predicted that the ITN (3) solvation driven mechanism is enthalpy-driven in all {DMSO 
(1) + H2O (2)} mixes as well as in neat DMSO and H2O. The fact that ITN solvates more 
effectively in pure DMSO molecules than in neat H2O molecules should be used to explain 
this mechanism of ITN solvation [26,38]. This led to stronger interactions between ITN-
DMSO molecules than ITN-H2O molecules. ITN (3) solvated similarly to raloxifene hy-
drochloride, sinapic acid, pyridazinone derivatives, and baricitinib in numerous {DMSO 
(1) + H2O (2)} mixes as well as in neat DMSO and H2O [26,38–40]. 

 
Figure 6. Apparent standard enthalpy (ΔsolH°) vs. apparent standard Gibbs energy (ΔsolG°) en-
thalpy–entropy compensation analysis for solubility of ITN in various {DMSO (1) + H2O (2)} mix-
tures at the mean harmonic temperature (Thm) = 308 K (DMSO mass fraction m = 0.0–1.0). 

3. Materials and Methods 
3.1. Materials 

ITN was acquired from BOC Sciences (Shirley, NY, USA). DMSO was procured from 
Sigma Aldrich (St. Louis, MO, USA). Purified H2O was procured via a Milli-Q device. The 
details of each material are summarized in Table 9. 

Table 9. Summary of materials used. 

Material Molecular 
Formula 

Molar Mass 
(g mol−1) CAS RN Purification 

Method 
Mass Fraction 

Purity 
Analysis 
Method Source 

ITN C20H28O2 300.40 4759-48-2 None >0.98 HPLC BOC Sciences 
DMSO C2H6OS 78.13 67-68-5 None >0.99 GC Sigma Aldrich 
Water H2O 18.07 7732-18-5 None - - Milli-Q 

ITN: isotretinoin; DMSO: dimethyl sulfoxide; HPLC: high-performance liquid chromatography; 
GC: gas chromatography. 

Figure 6. Apparent standard enthalpy (∆solH◦) vs. apparent standard Gibbs energy (∆solG◦) enthalpy–
entropy compensation analysis for solubility of ITN in various {DMSO (1) + H2O (2)} mixtures at the
mean harmonic temperature (Thm) = 308 K (DMSO mass fraction m = 0.0–1.0).

3. Materials and Methods
3.1. Materials

ITN was acquired from BOC Sciences (Shirley, NY, USA). DMSO was procured from
Sigma Aldrich (St. Louis, MO, USA). Purified H2O was procured via a Milli-Q device. The
details of each material are summarized in Table 9.

Table 9. Summary of materials used.

Material Molecular
Formula

Molar Mass
(g mol−1) CAS RN Purification

Method
Mass Fraction

Purity
Analysis
Method Source

ITN C20H28O2 300.40 4759-48-2 None >0.98 HPLC BOC Sciences
DMSO C2H6OS 78.13 67-68-5 None >0.99 GC Sigma Aldrich
Water H2O 18.07 7732-18-5 None - - Milli-Q

ITN: isotretinoin; DMSO: dimethyl sulfoxide; HPLC: high-performance liquid chromatography; GC: gas chro-
matography.

3.2. Determination of ITN (3) Solubility in {DMSO (1) + H2O (2)} Mixes

Mass measurements of all {DMSO (1) + H2O (2)} combinations were taken by a digital
analytical balance (Mettler Toledo, Greifensee, Switzerland), which had a sensitivity of
0.10 mg. A series of {DMSO (1) + H2O (2)} solutions, with DMSO mass percentages
ranging from 0.10 to 0.90, was examined. Three replicates of each {DMSO (1) + H2O (2)}
combination were taken [26]. ITN’s mole fraction solubility versus mass fraction of DMSO
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(m = 0.0–1.0) and neat DMSO and H2O was measured using a shake flask approach at
298.2–318.2 K and 101.1 kPa [52]. In essence, the known amounts of each {DMSO (1) +
H2O (2)} combination and neat DMSO and H2O were combined with extra ITN crystals in
triplicate. The equilibrium was achieved by saturating the resultant mixes in a WiseBath®

WSB shaking water bath (Model WSB-18/30/-45, Daihan Scientific Co. Ltd., Seoul, Korea)
at a shaking speed of 100 rpm for 72 h [33]. In order to evaluate the equilibrium time,
the preliminary experiments were performed at different time intervals. It was found
that there was negligible change in solubility after 72 h and hence it was selected as the
equilibrium time. The saturated solutions were again removed from the shaker after they
had reached equilibrium and centrifuged for 30 min at 5000 rpm. A previously established
environmentally friendly HPLC method was used to assess the ITN content after the
supernatants were isolated and diluted (as required) [53]. The identification of ITN was
carried out via a Nucleodur (dimensions: 150 mm × 4.6 mm and particle size: 5 µm)
reversed-phase C18 analytical column at 298.2 K. The environmentally friendly mobile used
was a binary mixture of ethyl acetate and ethanol (50:50% v v−1). The mobile phase was
delivered with a flow speed of 1 mL min−1. The ITN measurements were performed at a
wavelength of 354 nm. The sample volume was 20 µL, which was injected using a Waters
autosampler. The Analytical GREEnness (AGREE) score was determined to evaluate the
eco-friendliness nature of the HPLC method. The AGREE score was predicted to be 0.76
for the present HPLC method, indicating the eco-friendly nature of the HPLC method [53].
ITN mole fraction solubilities (xe) were calculated using their standard formulae described
in our previous work [38–40].

3.3. HSPs of ITN and Numerous {DMSO (1) + H2O (2)} Combinations

A drug’s HSP is directly correlated with how well it dissolves in a neat solvent or
cosolvent–H2O combination. A medication will reportedly have the highest solubility in
a certain solvent when its HSP is close to that solvent’s [54]. As a result, the HSPs for the
research medication ITN, neat DMSO, and neat H2O were calculated. ITN, neat H2O, and
neat DMSO δt values were derived from reference [33].

Using Equation (1), the δmix was calculated [55]:

δmix =∝ δ1 + (1− ∝)δ2 (1)

where α is the DMSO volume percentage in the mixture of {DMSO (1) + H2O (2)}.

3.4. ITN Ideal Solubility and Molecular Interactions

Using Equation (2), we derived the xidl of ITN at 298.2–318.2 K [56]:

lnxidl =
−∆Hfus(Tfus − T)

RTfusT
+

(
∆Cp

R

)[
Tfus − T

T
+ ln

(
T

Tfus

)]
(2)

where T is an absolute temperature; Tfus is the ITN fusion/melting temperature; R is a
universal gas constant; ∆Hfus is the ITN fusion enthalpy, and ∆Cp is the difference in the
molar heat capacity of the ITN solid state with its liquid state [57]. Equation (3) was utilized
to derive the ∆Cp for ITN [56,57]:

∆Cp =
∆Hfus
Tfus

(3)

The Tfus and ∆Hfus values for ITN were taken as 452.7 K and 7.64 kJ mol−1, respec-
tively from reference [33]. The ∆Cp for ITN was calculated to be 16.67 J mol−1 K−1 using
Equation (3). Finally, the xidl values for ITN were derived from Equation (2). Equation (4)
was used to derive the γi values for ITN in numerous {DMSO (1) + H2O (2)} mixes including
neat DMSO and H2O [56,58]:

γi =
xidl

xe
(4)
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The chemical basis of molecular interactions between the solute and solvent was
explained using ITN γi values.

3.5. Correlation of ITN Solubility with Computational Models

The computational verification of experimental drug solubility data is crucial for
practical predictions and validations [43,44]. For the correlation of the experimental sol-
ubility data of ITN, six distinct computational models, namely “van’t Hoff, Apelblat,
Buchowski-Ksiazczak λh, Yalkowsky-Roseman, Jouyban-Acree, and Jouyban-Acree-van’t
Hoff models”, were utilized [26,43–51]. The program used for all modeling tasks was MS
Excel 2013. “van’t Hoff model solubility (xvan’t)” of ITN (3) in binary {DMSO (1) + H2O (2)}
mixtures was derived via Equation (5) [26]:

lnxvan′t = a +
b
T

(5)

where a and b are Equation (5) model parameters recorded using the least squares methodol-
ogy [49]. RMSD was used to correlate the values xe and xvan’t for the ITN. A formula taken
from the literature was used to calculate the RMSD [59]. With the help of Equation (6), the
“Apelblat model solubility (xApl)” of ITN (3) in numerous {DMSO (1) + H2O (2)} mixtures
was derived [45,46]:

lnxApl = A +
B
T
+ Cln(T) (6)

where “nonlinear multivariate regression analysis” [59] was used to obtain the Equation (6)
model parameters from the experimental ITN solubility values provided in Table 1. In terms
of RMSD, the results from ITN’s xe and xApl were likewise correlated. By Equation (7), the
“Buchowski-Ksiazczak λh solubility (xλh)” of ITN (3) in numerous {DMSO (1) + H2O (2)}
mixtures was derived [47,48]:

ln

[
1 +

λ
(
1− xλh)

xλh ] = λh
[

1
T
− 1

Tfus

]
(7)

where λ and h are Equation (7) model parameters.
Because Equations (5)–(7) reflect solubility data at varied temperatures in a certain

solvent composition, they cannot be used to forecast the solubility data of a binary solvent
combination at varied solvent compositions [51,60,61]. In order to make such forecasts,
cosolvency models such as the Yalkowsky–Roseman, Jouyban–Acree, and Jouyban–Acree–
van’t Hoff models are needed. With the help of Equation (8), “logarithmic solubility of
Yalkowsky-Roseman model (log xYal)” for ITN (3) in numerous {DMSO (1) + H2O (2)}
mixtures was derived [50]:

log xYal = w1 log x1 + w2 log x2 (8)

where, x1 = ITN solubility (3) in DMSO (1); x2 = ITN solubility in H2O (2); w1 = DMSO mass
fraction, and w2 = H2O mass fraction. Drug solubility data in various solvent compositions
at a given temperature are linked by Equation (8).

Equation (9) was utilized to derive the solubility of drugs in distinct cosolvent mixtures
and temperature (xm,T) via the “Jouyban-Acree model” [51]:

ln xm,T = w1 ln x1,T + w2 ln x2,T + (
w1.w2

T
)

2

∑
i=0

Ji(w1 − w2)
i (9)

where x1,T and x2,T are the solubility of ITN in DMSO (1) and H2O (2) at temperature T and
J terms are Equation (9) model parameters. To calculate the solubility of ITN in cosolvent
compositions at the target temperature, the solubility of ITN in neat DMSO and H2O must
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be used as input data. Equations (5) and (9) can be used to create the “Jouyban-Acree-van’t
Hoff model” [51] to get around this restriction.

3.6. Thermodynamic Parameters

At the mean harmonic temperature (Thm), all apparent thermodynamic parameters for
ITN were determined [56]. The Thm was determined using the reported equation [51,56].
The calculated Thm for ITN is 308 K. An apparent thermodynamic analysis was applied to
derive several thermodynamic parameters. The “van’t Hoff and Gibbs equations” were
used to calculate these parameters. The ∆solH0 values for ITN (3) in various {DMSO (1) +
H2O (2)} mixtures were calculated using Equation (10) and Thm = 308 K [47,62]:(

∂lnxe

∂(1/T− 1/Thm)

)
P
= −∆solH0

R
(10)

The “∆solH0” for ITN was derived using the graphed “van’t Hoff” plots between the
ln xe values of ITN and 1/T− 1/Thm. The van’t Hoff plots for ITN (3) in binary {DMSO (1) +
H2O (2)} mixes are shown in Figure 5.

Additionally, at Thm = 308 K, the ∆solG0 for ITN (3) in binary {DMSO (1) + H2O (2)}
mixes was calculated using the Krug et al. methodology via Equation (11) [62]:

∆solG0 = −RThm × intercept (11)

where, the “van’t Hoff plots” shown in Figure 5 were used to determine the intercept values
for ITN (3) in binary mixtures of DMSO (1) and H2O (2).

By Equation (12), the ∆solS0 for ITN (3) in numerous {DMSO (1) + H2O (2)} mixtures
was derived [56,62,63]:

∆solS0 =
∆solH0 − ∆solG0

Thm
(12)

3.7. Enthalpy–Entropy Compensation Analysis

An enthalpy–entropy compensation analysis was used, as previously described [26],
to evaluate the solvation behavior of ITN (3) in numerous mixes of {DMSO (1) + H2O (2)}.
Weighted curves of ∆solH◦ vs. ∆solG◦were generated at Thm = 308 K for this experiment [64,65].

4. Conclusions

The solubility of ITN in several {DMSO (1) + H2O (2)} combinations has not yet been
published. This study evaluated the solubility of ITN (3) in binary {DMSO (1) + H2O (2)}
combinations as well as neat DMSO and H2O at various temperatures under constant
pressure. In all {DMSO (1) + H2O (2)} mixes, including neat DMSO and H2O, ITN (3) mole
fraction solubilities rose with the temperature and DMSO mass fraction. The maximum and
minimum solubilities of ITN in neat DMSO and neat H2O, respectively, were found for each
temperature studied. Six distinct computational models and experimentally determined
ITN (3) solubility data were highly correlated for all {DMSO (1) + H2O (2)} mixes, including
neat DMSO and H2O. It was discovered that all thermodynamic values, including ∆solH◦,
∆solG◦, and ∆solS◦, in numerous {DMSO (1) + H2O (2)} mixes as well as pure DMSO and
H2O were positive, showing “endothermic and entropy-driven” ITN dissolution. Enthalpy
drove the ITN solvation process in all {DMSO (1) + H2O (2)} combinations as well as in
pure DMSO and H2O. The collected information from this study may be beneficial for
recrystallization, purification, pre-formulation studies, and for the creation of dosage forms
for the medicine under study.
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