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Abstract: Liver cancer has high incidence and mortality rates and its treatment generally requires the
use of a combination treatment strategy. Therefore, the early detection and diagnosis of liver cancer
is crucial to achieving the best treatment effect. In addition, it is imperative to explore multimodal
combination therapy for liver cancer treatment and the synergistic effect of two liver cancer treatment
drugs while preventing drug resistance and drug side effects to maximize the achievable therapeutic
effect. Gold nanoparticles are used widely in applications related to optical imaging, CT imaging, MRI
imaging, biomarkers, targeted drug therapy, etc., and serve as an advanced platform for integrated
application in the nano-diagnosis and treatment of diseases. Dual-drug-delivery nano-diagnostic
and therapeutic agents have drawn great interest in current times. Therefore, the present report aims
to review the effectiveness of dual-drug-delivery nano-diagnostic and therapeutic agents in the field
of anti-tumor therapy from the particular perspective of liver cancer diagnosis and treatment.
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1. Introduction

Liver cancer is a common primary malignant tumor of the liver with relatively high
incidence and mortality rates, and single treatment methods usually lead to poor out-
comes [1]. The early detection and diagnosis of the occurrence and development of liver
cancer, followed by the timely implementation of a multimodal combined treatment modal-
ity, remains challenging to date. Nanotechnology and its application in the field of medicine
and human health have, fortunately, raised the hope of achieving an integrated diagnosis
and treatment of liver cancer [2,3].

Synergistic treatment involves using two chemotherapeutic agents or a multimodal
approach to treat a condition. When applied to the treatment of tumors, synergistic
treatment could prevent the issues of drug resistance and side effects while reducing the
possibility of tumor recurrence arising commonly due to the traditionally administered
high doses of single drugs, thereby achieving a more desirable therapeutic effect [4,5]. In
addition, the combined administration of drugs with different physicochemical properties
and different mechanisms of action leads to better therapeutic outcomes. In particular,
the order of administration of drugs is important when the drugs are capable of causing
considerably different effects, synergistic or even opposite [6,7].

Recent studies have reported various nanoplatforms, such as liposomes [8], dendritic
polymers [9], polymer nanoparticles (NPs) [10], and silica nanoparticles [11,12], with the
capability to encapsulate a collection of different drugs and deliver them together to
target (usually diseased) cells, thereby eliminating the side effects occurring due to the
application of the respective drugs individually. Inorganic Janus NPs (JNPs) are capable
of carrying different concentrations of drugs in their different compartments, without the
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interference of any of the drugs with the remaining ones. This is achieved because of the
heterogeneous structure, surface properties, and various functions of JNPs and it greatly
facilitates the independent release of individual drugs compared to that with the use of
conventional nanoparticles with limited capacity to control the order of release of the drugs.
Alternatively, two distinct compartments may be designed to synergize stimulus–response
release properties (pH stimulation or NIR stimulation responsiveness) [13,14]. Inorganic
JNPs exhibit great potential for application in dual-drug delivery systems. Therefore, the
progress of research on the dual drug delivery systems for liver cancer diagnosis and
treatment is the focus of the present review.

2. Diagnosis and Treatment of Liver Cancer
2.1. Imaging Diagnosis of Liver Cancer

The imaging diagnosis methods available for liver cancer mainly include ultrasound,
CT imaging, MR imaging, PET/CT, PET/MRI, and SPECT. However, the above imaging
techniques have both advantages and disadvantages, and each of these is applicable in
specific clinical scenarios and not in others. Radiomics has emerged as a field with certain
potential in the clinical diagnosis and treatment of liver cancer in recent years.

Ultrasound color Doppler flow imaging (CDFI) is the preferred imaging method
among clinicians for the examination of the liver. Color ultrasound enables the screening of
liver cancer lesions, determining the presence or absence of a tumor, and analysis of the
nature and composition of a tumor. In addition, CDFI enables the monitoring of blood
flow inside a lesion and its surroundings, obtaining the related information, etc., allowing
for a qualitative diagnosis of the lesion based on the hemodynamic characteristics [15].
Contrast-enhanced ultrasonography (CEUS) enables the early detection of vascular lesions
within a tumor. CEUS responds to the changes in blood vessels within a tumor based on the
quantitative data on blood flow, perfusion, and related parameters in the lesion [16]. It also
allows for the monitoring of changes in the microcirculation and dynamics of the tumor
via combining the characteristics of ultrasound images with the enhancement curve of a
lesion, and the quantitative results thus obtained are more useful in analysis and diagnosis
compared to those of a subjective assessment.

Conventional CT imaging includes ordinary plain scanning and enhancement scan-
ning examinations for exploring the basic morphological changes in a tumor, its density,
the degree of tumor enhancement, etc., to estimate or evaluate the response to tumor
treatment [17]. CT also enables thin layer reconstruction, such as MIP, CPR, VR, etc. CT
offers a faster scanning speed, which is an advantage over magnetic resonance imaging
(MRI). Therefore, CT is the most widely used imaging technique in clinical practice. The
molecular targeted drugs for anti-tumor angiogenesis could affect the cell doubling time
and lead to tumor necrosis; however, to date, the early detection of these changes has
not been achieved, let alone the real-time detection of tumor vascular changes in lesions.
CTPI (computed tomography perfusion imaging), on the other hand, allows for dynamic
enhanced CT scanning. In CTPI, specific scanning time items are selected, and arterial scans
are performed in multiple phases, which allows the software to analyze lesions in different
periods, including the analysis of changes in tumor density, enhancement types, and curves
(obtaining time density curves). The software’s post-processing workstation may also
obtain multiple quantitative parameters capable of reflecting ultra-early changes in blood
flow within a tumor, which occur prior to morphological changes. This is particularly
beneficial in the evaluation of targeted drug efficacy. Therefore, perfusion scanning and
its quantitative parameters could be applied to detect tumor angiogenesis and necrosis,
monitor changes in micro-perfusion, and observe the effect of the targeted therapy based on
quantitative parameters [18]. Energy spectrum CT allows for the obtention of dual-energy
data through an energy spectrum analysis of the outcomes. The obtained data on the
morphological changes occurring within the tissues and organs enables the achievement of
material separation, extraction of proton density maps, anhydrous iodine maps, etc., and
realizing optimal energy imaging. The parameter adjustment of energy levels allows for
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the generation of energy spectrum images of different components [19]. Certain studies
have used the quantification of iodine uptake to assess the iodine content inside a tumor,
which reflects changes in the levels of vascularity and perfusion inside the tumor after
treatment. Energy spectrum CT imaging may, therefore, be considered an effective method
for evaluating the molecular targeted therapies for liver cancer [20,21].

PET/CT, PET/MRI, and SPECT imaging offer high sensitivity. The functional imaging
of tumors has a high diagnostic value and is of great significance in the application sce-
nario of benign and malignant tumors [22,23]. However, PET/CT and PET/MRI imaging
techniques are relatively expensive. SPECT is used widely, although it offers a low spatial
resolution [24]. PET/CT is commonly used in the study of liver metastases [25].

MRI routine scans include both plain and enhanced scans. MRI enables both multi-
sequence and multi-parameter imaging and also the non-invasive in vivo imaging of water
molecules, thereby having greater diagnostic value in the clinic. Special cases also involve
the clinical application of the liver-specific contrast agent gadoxetic acid disodium, which
is particularly advantageous for the evaluation of benign and malignant tumors of the
liver. Diffusion-weighted imaging (DWI) is an MRI technique that enables the detection of
the microscopic diffusion motion of water molecules in living tissues. DWI reflects tumor
activity, allows for evaluating the changes in the tumor based on the changes in tissue signal
intensity, and facilitates the quantitative analysis of tumors based on the apparent diffusion
coefficient (ADC) values. Using numerical features to reflect histological characteristics,
DWI realizes the dual imaging of morphology and functionality. DWI and ADC maps are
important tools for the early assessment of tumor therapy efficacy and response to molecular
therapeutic agents [26–28]. Dynamic contrast-enhanced magnetic resonance imaging (DCE-
MRI) and perfusion-weighted imaging (PWI) play crucial roles in the diagnosis of liver
cancer. Magnetic resonance perfusion imaging is divided into drug perfusion and non-drug
perfusion scanning methods. DCE-MRI enables the measurement of various parameters
to reflect tumor perfusion and changes in vascular permeability, thereby assisting in the
early detection of tumor vascular damage. According to the research outcomes of several
mathematicians, who have nevertheless not reached any consensus so far, the treatment and
evaluation effects achieved using the quantitative parameters and perfusion parameters
of DCE-MRI are affirmative and are expected to play an increasingly important role in
the early evaluation of efficacy [29]. MRS (magnetic resonance spectroscopy) studies
have demonstrated that different tumor metabolites result in different MRI spectra, which
are closely related to the tumor type and metabolic activity. Much research remains to
be conducted to justify the application of MRS technology, warranting the continuous
improvement of MRI software and hardware technology through efficacy evaluation.

Radiomics is an emerging field with an underlying principle of extracting certain
features from an image using imaging quantitative analysis technology, which allows for
the quantitative description and analysis of the morphology and pathological characteristics
of lesions in the images obtained through various medical imaging methods. Radiomics
has received the attention of several mathematicians as it enables the evaluation of the
malignancy, grading, staging, and prognosis of tumors. Radiomics has great application
prospects in tumor diagnosis and treatment, and the evaluation methods include both
morphological and textural analysis. Radiomics-based evaluation has been applied to
tumor chemotherapy and radiotherapy, tumor grading, and the differentiation of benign
and malignant tumors, while comparative analyses of the application of genomics and
radiomics are also reported [30]. Omics features and special markers have been used for the
auxiliary diagnosis of lesions for which evaluation using conventional imaging methods is
difficult [31]. The quantitative numerical features offered by radiomics assist in specifying
the clinical diagnosis and undertaking difficult treatment decisions. Certain studies have
indicated that imaging omics features have good application value for tumors (early and
late stages) [32].
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2.2. Treatment of Liver Cancer

Surgical treatment is preferred in the treatment of liver cancer. Indeed, for patients
with a history of cirrhosis, even if just one liver has been affected, surgical treatment is not
suitable as hepatic encephalopathy and other complications may occur after surgery. Such
patients, who are not suited to surgical treatment, may be treated with other methods, such
as chemotherapy, radiation therapy (RT), radiofrequency ablation, molecular targeted drug
therapy, and other commonly used clinical treatment methods, together with photothermal
therapy (PTT), photodynamic therapy (PDT), or a combination of multiple treatment
methods that have been studied extensively in the past few years.

In the treatment of hepatocellular carcinoma of a large size, the residual volume of
the liver is assessed prior to surgery, and resection is preferred if the tumor is completely
removable. However, it might be difficult to completely resect the lesion in surgery in
certain cases, leaving a possibility of recurrence. In such scenarios, it is necessary to plan
and implement a comprehensive clinical treatment approach [33]. For instance, to destroy
the tumor entirely during surgery and reduce the recurrence rate after surgery, patients
might require postoperative chemotherapy or radiotherapy. Radiofrequency ablation might
also be required for recurrent lesions developing after surgery [34]. The development of
modern medicine seeks to minimize the trauma caused to patients while achieving the
same therapeutic effect as that of traditional surgery, which has led to the emergence of
minimally invasive procedures that offer the advantages of a small wound, light pain, rapid
recovery, a short hospital stay, and less bleeding [35].

Chemotherapy is one of the conventional therapies used in the clinical treatment of
cancer. The underlying principle may be divided into several categories [36–38]. The first
category involves destroying the tumor cells by interfering with cell division. The second
category involves interfering with the process of DNA replication and transcription, which
again enables the killing of tumor cells. The administration of chemotherapy is usually
conducted in accordance with the course of treatment, predisposing it to side effects arising
due to multiple administrations, such as systemic toxicity and the development of drug
resistance. It is clinically proven that chemotherapy prolongs the survival of patients.
However, due to the non-specific nature of chemotherapeutic drugs, these drugs cannot be
specifically delivered to target tissues and, therefore, exert limited therapeutic effects [39].

Radiotherapy is another commonly used anti-tumor treatment method in clinical
settings. The underlying principle is the application of high-energy X-ray and gamma ray
irradiation to kill tumor cells. Radiotherapy is usually performed under the guidance of CT
imaging [40]. The radiation involved, however, damages the neighboring healthy tissues as
well, which could lead to complications such as radioactive inflammation [41]. Nonetheless,
radiation therapy for cancer has progressed significantly in recent years, although the
challenge of increasing the radiation dose to the lesions while suppressing the unnecessary
doses to the healthy liver tissue remains. Radiation therapy provides a non-invasive local
treatment effect achieved through ionizing radiation. With time, X-ray radiation therapy
has emerged, which is represented by three-dimensional conformal radiation therapy,
stereotactic body radiation therapy, proton beam and particle beam therapies, which have
rendered radiation therapy a safe and effective treatment option for liver cancer [42].

Gene therapy has become a research hotspot in recent years. The underlying principle
of gene therapy is the targeting of exogenous therapeutic actuators into the target tumor
genes, correcting them by intervening at the gene level, thereby affecting the expression of
the tumor genes [43,44]. However, since nucleic acid is exogenous, an exclusion reaction
might occur, and nucleic acid implantation is a genetic alteration. Therefore, the long-term
consequences of gene mutation have to be investigated. Gene therapy includes various
gene transfer strategies aimed at treating patients with primary and secondary liver cancer,
such as gene-directed enzyme/prodrug therapy, tumor suppressor gene inhibition, tumor
suppressor gene recovery, immunotherapy, anti-angiogenesis, and viral therapy.

Photodynamic therapy (PDT) is a mild local treatment method, and as an alternative
treatment strategy, it has attracted much attention in the ablation treatment of superficial
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or lumen tumor patients. PDT belongs to the group of minimally invasive treatments
for tumors using light. PDT requires the use of a photosensitizer for applying a specific
wavelength laser to irradiate the tumor to be treated. Near-infrared laser is the most
preferred one for this method because of its strong penetrating power. PDT offers the
advantages of low systemic toxicity and no drug resistance. However, PDT may cause
phototoxicity [45–47] due to the use of photosensitizers, which could accumulate in the
body of the patient. In addition, skin damage could be a side effect as skin is sensitive
to light.

Photothermal therapy (PTT) has also emerged as a research hotspot among the various
therapeutic methods studies in recent years. In this therapy, the light energy generated
using a near-infrared laser (NIR laser) is converted into thermal energy [48], which is
directed to directly kill the tumor cells. In the entire process, no systemic damage is caused.
However, this treatment method requires the use of nanoparticle materials with special
photothermal property conversion functions [49]. Photothermal agents are nanomaterials
capable of generating thermal energy after irradiation using a near-infrared laser. These
materials exhibit strong light absorption performance and photothermal conversion. PTT
involves the use of these photothermal agents to better control and select the target treat-
ment regions and focus the thermal energy for treatment over these target tissues, thereby
reducing damage to the surrounding healthy tissues. A variety of nanomaterials are used
as photothermal agents, including commonly used gold nanostructures, copper mono-
sulfide nanoparticles, etc. These nanoparticles exhibit strong absorption capacity in the
near-infrared light region of the electromagnetic spectrum, within the wavelength range of
650–900 nm. Due to the uneven heat distribution across a tumor tissue, PTT alone might not
exhibit the desired level of efficacy. Therefore, research on the synthesis of multifunctional
nanocomposites that combine PTT with other treatment methods is emerging as a novel
direction in the path to resolving the above-stated issues.

Cancer may be treated using several approaches. However, the efficacy of a single
treatment method is relatively limited. Chemotherapy is one of the more commonly used
methods for cancer treatment, although the poor targeting efficiency, easy degradation, high
toxicity, and side effects of chemotherapeutic drugs, along with the extended duration of
application required, could lead to tumor drug resistance. Therefore, a combination of mul-
tiple chemotherapeutic drugs might become necessary. Traditionally, when administering
two chemotherapeutic agents in vivo, the drugs are injected independently, which seldom
achieves the “1 + 1 = 2” effect and could even lead to an antagonistic effect. Therefore, a
nanoprobe that could carry multiple drugs, which would then exhibit a superimposition
effect on each other or would be released sequentially, as required, upon stimulation, has
to be developed to achieve better therapeutic effects. The emergence of nanotechnology
has become well integrated with the field of medicine. Nanomaterials are used in drug
delivery and gene therapy [50–52]. While nanomaterials are applied to a wide range of
scenarios in the fields of drug delivery, gene therapy, tumor imaging, etc., their application
in the field of life medicine has to be intensified, and multidisciplinary cross-collaboration
must be ensured.

3. Nano-Diagnostic Technology and Its Application for Tumor Treatment
3.1. Nano-Diagnostic and Therapeutic Technology

Nanotechnology is expected to play an important role in the diagnosis and treatment
of cancer as it allows for the early detection of tumors and, consequently, the early under-
standing of the changes required in the ongoing treatment. Ralph Weissleder reviewed
the progress of molecular imaging in cancer diagnosis and treatment and reported that
medical imaging technology would play a central role in clinical oncology. Molecular
imaging enables clinicians to locate the tumors in the patient’s body, while also revealing
the expression and activity of the molecules involved in a tumor’s behavior and response
to treatment [53]. The concept of precision medicine proposes that clinical cancer diagnosis
and treatment require precise information, such as the location and size of a tumor and
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whether or not the signs of metastasis exist. However, advancements in tumor imaging
have been relatively slow due to the availability of poor pharmacokinetic profiles or the
high cost of clinical development of molecular imaging agents [54].

Recently, the technology community has witnessed China’s rise in the field of nan-
otechnology. With the increase in government funding and the improvement of research
infrastructure, China has progressed significantly. Currently, China has the fastest-growing
list of publications in the field of nanotechnology and also the associated industrialization
to boast about. The profound impact of the development of nanotechnology, evidenced via
publications in highly influential journals, has increased rapidly over the past 20 years [55].

Successful imaging agents must, therefore, exhibit better pharmacokinetic profiles and
lower toxicity for clinical relevance. Over the past decades, cancer imaging studies have
identified an increasing number of imaging techniques that provide anatomical and physi-
ological information and are now used widely in clinical practice. All of these techniques
require the detection of the target molecule or cell. In this context, nanotechnology could
play an important role via the provision of novel imaging probes. Indeed, nano-imaging
enables the earlier detection and diagnosis of cancer compared to the other existing imaging
methods [52].

The progress of treatment under various pathophysiological conditions requires the
development of better therapeutic agents and the use of combinations of the required
therapeutic agents with integrated biomaterials. Micrometers and nanometers combined
with intelligent biomaterials with sensing and response capabilities serve as important
medical systems for diagnosis and treatment. Micro and nanoelectromechanical systems
(MEMs and NEMs, respectively) are used widely in drug delivery, tissue engineering, etc.,
with significant contributions to the treatment system [56].

3.2. Nano-Diagnostic Agent

A nano-diagnostic agent is a nanoparticle system that combines both diagnostic and
therapeutic effects in a single platform. In comparison to the other diagnostic agents,
nano-diagnostic agents exhibit further advanced functions in a single platform, including
sustained/controlled release, improved transport efficiency, synergistic therapy, siRNA
co-delivery, etc. The exploration of efficient ways to utilize these multimodal nano-
heterostructures for the development of multimodal nano-diagnostics is the focus of our
research [57,58]. Table 1 presents the different nano-diagnostic platforms currently avail-
able [59].

Table 1. Ref. [59]. The current advanced theranostic nanomedicine platforms for the integration of
diagnosis and therapy.

Type of
Theranostic

Nanomedicine
Material (s) Therapeutic

Agent
Diagnostic

Agent Size Targeting
Agent Advancement

Drug-polymer
conjugates HPMA 64Cu 64Cu N.A. RGD Cancer imaging and

radiochemo-therapy
Polymeric

nanoparticles PLA-TPGS Docetaxel Quantum dots ~250 nm Folic acid Co-delivery of docetaxel
and quantum dots

Solid lipid
nanoparticles

Low-density
lipoprotein,
Cholesterol

Paclitaxel/
siRNA Quantum dots ~130 nm cRGD Multimodal

therapy

Dendrimers Polypropyleni-
mine Phthalocyanines Phthalo

cyanines ~62 nm LHRH Delivery of single
theranostic agent

Liposomes
TPGS,

Phospholipids,
Cholesterol

Docetaxel Quantum dots ~210 nm Folic acid Co-delivery of docetaxel
and quantum dots

Micelles TPGS Iron oxide
nanoparticles

Iron oxide
nanoparticles ~178 nm Passive Delivery of single

theranostic agent
Gold

nanoparticles
Gold

nanoparticles DOX Gold
nanoparticles ~55 nm CPLGLAGG

peptide
Stimulus responsive

drug release
Carbon

nanomaterials SWCNTs Intrinsic property Intrinsic property Length of
~140 nm Passive Self-photoluminescent and

photothermal property
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Nanomedicine therapeutic drugs may include hydrophobic drugs, proteins, peptides,
etc., as well as hydrophilic substances, and often hydrophobic and hydrophilic drugs
have to be used in combination to achieve the desired therapeutic effects [60,61]. In this
regard, to determine how to combine the two kinds of drugs for them to play a better role,
nanocarriers could be beneficial. Nano-diagnostic agents are also applied in optical medical
imaging (using fluorescent probes or quantum dots), CT, and MRI [62].

Various nano-diagnostic agents have been developed in recent years, which has led
to progress in the field of nanomedicine and its clinical application, although certain chal-
lenges related to their application in vivo and in preclinical trials remain to be overcome [63].
Most studies on nano-diagnostic agents, however, have focused on the preparation, physic-
ochemical properties, and in vitro cell culture of nano-isomers, while the research on their
in vivo evaluation is limited. Among the few in vivo studies that have been conducted,
either therapeutic or diagnostic effects are reported, but not both. Nano-diagnostic agents
exhibit various characteristics, such as stimulus-responsive drug release (with examples
of stimuli pH, temperature, magnetism, and ultrasound), synergistic effects (e.g., siRNA
delivery and combination therapy), and multiple routes of administration (e.g., oral, au-
tophagy inhibition, etc.). Iron oxide nanoparticles exhibit excellent biosafety properties as
they degrade and metabolize into iron pools in the serum to either form hemoglobin or
enter metabolic pathways [64]. Radiation from heavy metal quantum dots utilized for use
as probes in the human body is currently a major concern.

In the future, the development and use of biocompatible, non-immunogenic, ultra-
small (<5.0 nm) quantum dots for carrying nanomedicines for clearance mechanisms via
renal excretion is highly anticipated. Carbon nanotubes are potentially toxic and produce
oxidative free radicals in vivo, which leads to inflammation and cellular damage to organs
such as the lungs and the liver via lipid peroxidation. In addition, gold nanoparticles
reportedly exhibit oxidative stress-induced cytotoxicity, which, however, appears to be a
common side effect observed for other nanoparticles as well [65,66].

4. Research Progress on Dual-Drug-Delivery Nano-Theranostic Agents for Liver Cancer

The emergence of nanomedicine and the concept of precision medicine in recent
years has raised the requirements for cancer diagnosis and treatment. Therefore, it would
be of great significance to realize the early diagnosis of micro-liver cancer and conduct
timely and efficient treatment and efficacy evaluation to improve the survival rate of liver
cancer patients. Traditionally, the evaluation of tumor efficacy was based on changes in
lesion size. Advanced imaging markers were used for detecting ultra-early changes in
tumor microstructure and targeting drugs to achieve early diagnosis and evaluation and
accordingly provide timely guidance to clinicians, thereby improving the survival rate of
cancer patients [67].

Gold nanoparticles are capable of combining different hydroxyl or carboxyl groups
and utilizing their respective loading characteristics to combine multiple drugs, contrast
agents, or nanoparticles, thereby conferring multiple functions to these nanoparticles.
Meanwhile, the pH sensitivity and the near-infrared light characteristics of nanoparticles
enable new nanoparticles to sequentially release different types of loaded drugs, thereby
achieving synergistic or antagonistic effects between the drugs; this serves as a theoretical
basis for the synthesis of novel drugs, targeted imaging, and treatment [29,68,69].

Huang et al. prepared reversible disulfide crosslinked pullulan nanoparticles (FA-Pull-
LA-CLNPs) with folate (FA) modification for the dual targeting and reduction-responsive
delivery of anti-tumor liver drugs [70]. In addition, Huang et al. explored unique am-
phiphilic PCL AuNC/Fe (OH) (3)-PAA Janus nanoparticles (JNPs) to simultaneously retain
hydrophilic drugs (doxorubicin) and hydrophobic drugs (docetaxel) within the different
domains of the carrier system [71]. In a 2021 study by Yao et al., the GNSPLD liposomes
gradually accumulated in tumor tissue after tail vein injection due to the EPR effect and
targeting activity. The drug and photolysis products were released from drug-loading
liposomes after internal GSH triggering and external UV triggering, which further re-
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sulted in the suppression of tumor cell growth. Treatment with GNSPLD + UV showed
a better anticancer effect and fewer side effects in vivo. (Figure 1) [72]. Yan et al. used
polyethylene glycol-based polymers (α-lipoic acid) and the mPEG-α-PLA copolymer to
construct a double-reduction/pH response nanocarrier for capsaicin (CAP) and doxoru-
bicin (DOX) [73]. Zeng et al. designed a dual-drug-loading nanosystem (named a THCD
NP) that could selectively transport and target tumor cells for the treatment of cancer [74].
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Figure 1. Ref. [72]. Drug delivery called the CAPIR cascade process consisting of five steps such as
1© blood circulation, 2© tumor section accumulation, 3© tumor penetration, 4© cell internalization,

and 5© intracellular drug release.

Chen et al. developed a nanocarrier based on pH/NIR dual-responsive hollow meso-
porous silica nanoparticles (HMSNs) for the co-delivery of doxorubicin hydrochloride
(DOX) and indocyanine green (ICG) [75]. In another experiment, researchers prepared a hy-
brid nanosystem using C60-Fe3O4 and functionalized it with polyethylene glycol (PEG2000),
then coated it with folate receptors targeting thermosensitive liposomes and DOX. There
are 80:20:5:4 ratios in optimized liposome formulations, consisting of DPPC/DSPC/DSPE-
PEG2000-folate@DOX.The characteristics of the multifunctional liposome (MFL) enable
them to more effectively destroy tumor cells than do non-magnetic folate-targeting lipo-
somes. (Figure 2) [76]. Santhamoorthy et al. prepared a double-pH and thermosensitive
copolymer hydrogel (HG) system (PNIPAm-co-PAAm HG) using N-isopropylacrylamide
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(NIPAm) and acrylamide (AAm) as comonomers [77]. Wu et al. developed a dual-targeted
nanoscale drug delivery system based on EpCAM aptamers and lactic acid-modified
oligoamide amine dendrimers for the simultaneous delivery of the FDA-approved drug
disulfiram and the photosensitizer indocyanine green, thereby realizing a system that
combined imaging and therapeutic functions in a single platform [78]. Wu et al. also
prepared a dual-gated folate functionalized nanodiamond delivery system (NPFSSD),
which exhibited activated fluorescence and cytotoxicity for doxorubicin [79]. Thirupathi
et al. developed a dual-stimulus PNIPAm-co-PAAm-Mela/Cur HG copolymer system for
temperature-responsive and pH-induced drug delivery applications. In addition, the study
demonstrated that the PNIPAm-co-PAAm-Mela HG system might be used for controlled
drug release to specific sites in chemotherapeutic applications [80].
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Figure 2. Ref. [76]. Schematic representation of the fabrication process of multifunctional liposome
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Pooresmaeil et al. designed and prepared a novel type of double-response (pH and
temperature) and photoluminescence nano-gel, which was encompassed in a D-nenenebb
galactose (D-Gal) moiety (CQDs/β- CD\/NIPA-M@AA-Gal). The authors then evaluated
the potential of this nano-gel as a targeted drug carrier [81]. Huo et al. used the unique
cisplatin hydrazide and cisplatin indocyanine green (ICG) coordination reaction and de-
veloped a multifunctional coordination nano-prodrug named cisplatin/ICG-co-loaded hy-
drazine hyaluronic acid/bovine serum albumin (HBCI) nanoparticles through the double
coordination process of desolvation (Figure 3) [82]. Hu et al. constructed phosphate peptide-
modified polydopamine-encapsulated doxorubicin-loaded hollow mesoporous organic
silicon dioxide nanoparticles (pPeptide-PDA@HMONs-DOX) based on multi-modified
hollow mesoporous organic silicon nanoparticles (HMONs) [83]. A study suggests that
Sur@T7-AIE-Gd NPs as a novel siRNA vector nanoplatform with dual-mode imaging char-
acteristics for the targeted and real-time monitoring of HCC which increase the accuracy
and sensitivity of tumor localization and visualization [84]. Ding et al. designed and syn-
thesized cholic acid-, galactose-, or lactose-bi-conjugated chitosan derivatives as potential
anti-liver cancer drug carriers. The structures of these derivatives were characterized via
proton nuclear magnetic resonance spectroscopy, element analysis, particle size distribu-
tion, zeta potential, and scanning electron microscopy [85]. Amoyav et al. explored how
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to maximize the therapeutic effect of the drug system by changing tissue pressure while
improving drug exposure to the target organs. The authors prepared porous degradable
polymer microspheres (MS), which were designed for the combined release of doxorubicin
(DOX) and dexamethasone (TPZ), and introduced these drug-carrying microspheres into
the liver as a hypoxic-activated prodrug [86].
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Chen et al. firstly fabricated multifunctional Trojan Horse-like amphiphilic NBs; due
to their unique nanostructure, they could meet the requirements for reserving hydrophobic
(SF)/hydrophilic (DOX) drugs in separate rooms and releasing drugs from independent
channels under pH/NIR dual-stimuli, which provides potential clinical value for prevent-
ing HCC metastasis [87]. Qi et al. used enoxolone (GA) and galactose (Gal) as target
ligands to prepare novel multifunctional liposomes (CAPS-CUR/GA and Gal Lip) for the
co-administration of curcumin (CUR) and capsaicin (CAPS) (Figure 4) [88]. Arafa et al.
reported the design, development, and evaluation of a liver cancer-specific mitochondria-
targeted double-linked metal organic scaffold (NMOF) for sequential drug delivery to
cells and mitochondria [89]. Ebadi et al. discussed the physical chemistry, magnetism,
and cytotoxicity of Fe3O4 nanoparticles coated with a polymer carrier and loaded with
fluorouracil (5-FU)-based anticancer drugs. The synthesized Fe3O4 nanoparticles were
coated with polyvinyl alcohol and Zn/Al-layered double hydroxides to serve as the main
drug bodies [90]. Anirudhan et al. developed a drug delivery system based on aminated
mesoporous silica nanoparticles (AMSN) and corn prolamin (a plant protein) for the co-
delivery of fluorouracil (5-FU) and curcumin (CUR), and confirmed the use of prepared
material as a pH-responsive dual-drug carrier to liver cancer cells [91]. Qiu et al. designed
double-ligand liposomes modified with enoxolone (GA) and cyclic arginine glycine aspartic
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acid (cRGD) (GA/cRGD-LP) for targeting GA receptors and α-β integrin. The authors of
the present review have also developed a highly selective targeted drug delivery system
that could further improve the anti-tumor efficiency of drugs via the targeting of liver
tumor cells and the vascular system [92].
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drug resistance and metastasis. (a) Preparation of dual–ligand–modified Lip for co–delivery of CUR
and CAPS. (b) Passive accumulation of Lip in TME. (c) GA–and Gal–receptor-mediated uptake and
drug—induced apoptosis. (d) Phenotype reversion and apoptosis of aHSCs.

Assali et al. used doxorubicin (DOX) connected with acid-labile linkage and man-nose
(Man) as targeting agents for the double-covalent functionalization of single-wall carbon
nanotubes (SWCNTs). The developed nano-drug was characterized using transmission
electron microscopy, which revealed that the functionalized single-walled carbon nan-
otubes with a diameter of 6–10 nm exhibited good dispersion. In addition, the percentage
of functionalization was determined through thermogravimetric analysis (Figure 5) [93].
In a study by Chen et al., they developed a novel drug delivery system of microspheres
based on EC that could effectively dual-load NaHCO3 nanoparticles and DOX nanopar-
ticles; microspheres loaded with NaHCO3 nanoparticles can continuously improve the
pH of the tumor microenvironment, thereby breaking its equilibrium state and ultimately
providing an enhanced effect of inhibiting the growth of tumor cells [94]. Jedrzak et al.
synthesized multifunctional nanocarriers based on PAMAM dendrimer products (G) 4.0,
5.0, and 6.0 fixed on polydopamine (PDA)-coated magnetite nanoparticles (Fe3O4). The
synthesized nanoplatform was characterized based on transmission electron microscopy
(TEM), zeta potential, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron
spectroscopy (XPS), and magnetic resonance imaging (MRI). In addition, as a proof of
concept, it was confirmed that the G5.0 functionalized nanocarrier could be successfully
applied to achieve the combined chemotherapy and photothermal therapy (CT-PTT) of
liver cancer cells [95]. Pandey et al. designed and synthesized amphiphilic biocompatible
mikto-arm star copolymers comprising a two-hydrophobic-polymer-(ε-caprolactone)-based
block, a short poly-(alkynylglycine) intermediate block, and a hydrophilic galactose pep-
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tide block. The star-shaped copolymers were initially self-assembled into uncrosslinked
(UCL) micelles, with the free alkyne groups on the core–shell interface of the UCL micelles,
and then crosslinked with bis-(azidoethyl)-disulfide (BADS) through click chemistry to
form interface-crosslinked (ICL) micelles [96]. Yang et al. prepared bifunctional albumin-
based nanoparticles (gal-BSA NPs) using sonochemical methods and reported that these
NPs could effectively encapsulate bilirubin (BR) owing to their adsorption ability and
hydrophobic interactions. Moreover, the possibility of blank gal-BSA NPs replacing BSA
and having a better adsorption capacity for excess BR was also stated. In addition, the
potential anti-tumor activity of BR against HepG2 cells was explored and GSH-reactive
NPs loaded with gal-BSA were developed for the treatment of cancer [97].
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Wu Hao et al. constructed pH/enzyme-responsive polymer prodrug nanoparticles
with a 10-HCPT structure. At pH 7.4, the nanoparticles exhibited a core–shell structure
and good in vitro stability with little drug release. However, when exposed to pH 5.0,
the nanoparticles exhibited a nanogel-like morphology, and in the presence of 2 µM pa-
pain, the cumulative drug release rate was as high as 71.4% in 60 h, which was almost
twice as high as that in the case of 0.2 µM papain, suggesting that dual stimulation by
both the enzyme and pH can significantly enhance selective drug release from tumor
cells [98]. Zhang et al. modified our previously developed catadine-loaded BR2 liposomes
with anti-CA IX antibodies, which improved their targeted delivery of drugs to cancer
cells through the highly expressed carbonic anhydrase IX (CA IX) receptor. The cellular
uptake of bifunctional liposomes (DF-Lp) was observed to be higher than that of the other
treatments. The induction of CA IX overexpression led to the higher cell binding of DF-Lp,
resulting in an excessive antibody blockade that led to a decrease in cancer cell correla-
tion, indicating that the liposomes exhibited specific targeting of the CAIX-expressing
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cells [99]. In a study, Abdelmoneem et al. were inspired by the targeting action of lactofer-
rin (LF) via binding to LF receptors overexpressed by HCC cells, and lactoferrin shell-coated
oily core nanocapsules (LF-NCs), glycyrrhetinic acid (GA)-targeted and lactobionic acid
(LA)-targeted LF-NCs were fabricated for the combined delivery of hydrophobic drugs,
sorafenib (SFB) and quercetin (QRC), and they proposed a potential therapeutic HCC
strategy. (Figure 6) [100]. Singh et al. developed a dual-drug delivery platform named
“Biphasic”, which could target cancer cells and also eliminate bacteria in the ecological
niche of cancer. Binuclear liposomes include liposomes loaded with anticancer drugs (such
as doxorubicin) within their cores and lipids loaded with cationic Cathelicidin (sushi S3)
on their surfaces. Folic acid also adheres to the surface of liposomes, conferring cancer cell
specificity [101].
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Bullo et al. designed graphite oxide polyethylene glycol (GOPEG) nanocarriers and
loaded them with two anticancer drugs, protocatechuic acid (PCA) and chlorogenic acid
(CA). The designed anticancer nanocomposite was then encapsulated inside folic acid
to facilitate cancer cell targeting as folic acid receptors were overexpressed on its sur-
face [102]. Luo et al. developed a dual-pH/redox-responsive hybrid PM through the
self-assembly of two amphiphilic diblock copolymers named polyethylene glycol methyl
ether poly-(-amino ester) (mPEG-b-PAE) and polyethylene glycol methyl ether grafted
disulfide poly-(amino ester) (PAE-ss-mPEG) for the delivery and controlled release of anti-
cancer drugs [103]. Ni et al. synthesized the biotin/lactic acid-modified polyethylene glycol
lactic acid polyethylene glycol (BLPP) copolymer and curcumin- and fluorouracil-loaded
nanoparticles (BLPPNPs/C+F) to achieve the enhanced treatment of hepatocellular carci-
noma. The in vitro and in vivo studies demonstrated that the blank BLPPNPs exhibited
good biocompatibility [104]. Zhong et al. proposed a novel multi-component microsphere
(MCM) system with co-encapsulation and spatiotemporal drug release capabilities for the
postoperative treatment of cancer and liver regeneration, and this system could be loaded
with doxorubicin (DOX) and liver regeneration-enhancing factor (ALR) into its shell and
core, respectively. In addition, these MCMs exhibited a rapid release of DOX and a per-
sistent release of ALR. These dual-drug-loaded MCMs exhibited significant postoperative
tumor-killing effects and the promotion of liver regeneration [105]. Espinoza et al. studied
the efficiency of a dual-pH-sensitive intelligent nanocarrier based on silica nanoparticles
(SNPs) extracted from rice husk ash (RHAs) in the inhibition of liver cancer cell prolifera-
tion. The SNPs were coated with chitosan (CH) and then loaded with doxorubicin (DOX),
followed by functionalization with the cell membrane (CM) to realize the homologous
targeting ability [106].
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The emergence of a series of nano-diagnostic and therapeutic platforms, modified
using different methods, has enabled the realization of various functions, such as targeted
osteoporosis, photothermal combined chemotherapy, the integration of imaging and treat-
ment, etc. Meanwhile, as there is a possibility of these agents having an amphiphilic nature,
the current research could attempt to load targeted molecules and fluorescence imaging
substances on these agents and conduct experimental studies on other types of tumors
using these agents.

5. Conclusions and Outlook

At present, there are still some problems to be solved in nano research; the different
pharmacokinetic characteristics of different drugs put forward different requirements
for nano-drug-carrying synthesis, which further increases the difficulty of drug-carrying
system research and development. Nano-drugs have potential safety issues and toxicity
risks, and drugs will be gradually released during the circulation process, causing systemic
toxicity and reducing the efficiency of tumor delivery. How to optimize the drug loading
rate of nano-drugs, reduce and solve the toxicity of drug loading, and better achieve clinical
translation are important challenges we are facing.

Nano research should be carried out in collaboration with clinicians, especially in
the case of the accumulation of clinical research data, to carry out innovative research
that meets clinical needs and realizes real clinical value. It should apply the translational
field not only to more traditional liposomes, but also to polymer micelles, and other such
primary level applications toward functional, targeted, and environmentally sensitive
nanomedicines. Complex toxicity assessment procedures are required for newly developed
nanomaterials. Designing and developing new models of cross-fertilization of AI with
nanomedicines is also a hotspot for future research to further improve their anti-tumor
effects and facilitate their clinical translation. The use of nanocarrier drug therapy offers
the possibility of treating a number of diseases that have long been considered untreatable.
dual-drug-delivery nano-theranostic Agents provide new ideas for the bioavailability of
drugs and shorten the treatment time. It is reasonable to believe that nanotechnology will
make an important contribution to tumor control.

Nano-diagnostic and therapeutic agents modified using different methods are ex-
pected to achieve the early and specific diagnosis of liver cancer and detection of changes in
lesions. Therefore, nano-level diagnosis and treatment could become the focus of medical
research in the future.
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