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Abstract: Two new indole diterpene derivatives, 5S-hydroxy-β-aflatrem (1) and 14R-hydroxy-β-
aflatrem (2), along with one known analogue, 14-(N,N-dimethl-L-valyloxy)paspalinine (3), were
isolated from the fermentation broth of the fungus Aspergillus sp. PQJ-1 derived from Sphagneticola
trilobata. The structures of the new compounds were elucidated from spectroscopic data and ECD
spectroscopic analyses. All the compounds (1–3) were evaluated for their cytotoxicity against A549,
Hela, Hep G2, and MCF-7 cell lines. Compounds 1 and 2 exhibited selective inhibition against Hela
cells. Further studies showed that 1 significantly induced apoptosis and suppressed migration and
invasion in Hela cells. Moreover, 1 could up-regulate pro-apoptotic genes BAX and Caspase-3 and
down-regulate anti-apoptotic genes Bcl-xL and XIXP.

Keywords: Sphagneticola trilobata; Aspergillus sp. PQJ-1; secondary metabolites; cytotoxic activity

1. Introduction

Indole diterpenes are a large, structurally diverse group of fungal secondary metabo-
lites featuring an indole moiety fused to a diterpene skeleton and have been demonstrated
to be an important source of structurally new and biologically active indole alkaloids [1–3].
These indole diterpenes have been mainly obtained from nine genera: including Aspergillus,
Chaunopycnis, Cladosporium, Dichotomomyces, Drechmeria, Eupenicillium, Mucor, Penicillium,
and Tolypocladium [4–6]. Indole diterpenoids have attracted extensive attention for their
diverse skeletons [7–9] as well as their different biological activities, such as cytotoxicity [10]
and anti-insectant [7], antifungal [11], antibiotic [12,13], anti-H1N1 [14], and tremorgenic
activities [15]. The paxilline-type indole diterpenoids are the largest group of indole diter-
penoids [16], and they feature an indole ring fused to a tetracyclic diterpene, many of which
are biologically active [17–19].

As part of our search for biologically active secondary metabolites from fungi of
plant origin [20,21], we investigated Aspergillus PQJ-1, isolated from Sphagneticola trilobata.
Subsequent chemical studies on EtOAc extract of the culture of this fungal strain led to the
isolation of two new paxilline-type indole diterpene derivatives, 5S-hydroxy-β-aflatrem
(1) and 14R-hydroxy-β-aflatrem (2), along with one known analogue, 14-(N,N-dimethl-L-
valyloxy)paspalinine (3) (Figure 1). Compounds 1 and 2 displayed better inhibitory activity
against Hela cells. By testing the relevant apoptosis genes, it can be tentatively deduced that
1 led to cell death by inducing apoptosis. Moreover, 1 could decrease Hela cell migration
and invasion.
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Figure 1. The structures of compounds 1–3. 
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2.1. Structural Identification of Compounds 1–2 

Compound 1 was obtained as a white amorphous powder. The HRESIMS showed 
the [M-H]− at m/z 516.2753 to be consistent with the molecular formula C32H39NO5, ac-
counting for 14 degrees of unsaturation (Figure S8). The characteristic absorption at λmax 
(logε) 253 (1.55) and 283 (1.73) nm from the UV spectra indicated that the compound con-
tained an indole structural fragment [22]. The 1H NMR spectrum (Figure S1) showed a 
characteristic indole hydrogen signal at δH 10.64 (1H, s, 12-NH); multiple overlapping 
methylene hydrogen signals between δH 1.84–2.86; and six methyl signals—δH 1.44 (3H, s, 
H-5″), 1.43 (3H, s, H-4″), 1.37 (3H, s, H-2′), 1.27 (3H, s, Me-12b), 1.13 (3H, s, Me-12c), and 
1.08 (3H, s, H-3′) (Table 1). The above hydrogen spectral signals suggested that the com-
pound possessed the indole diterpenoid skeleton [23]. The 13C NMR spectrum (Figure S2) 
combined with the DEPT spectrum (Figure S3) revealed the presence of 32 carbon signals 
in the compound, including one carbonyl carbon signal, δC 197.2; six alkenyl carbon sig-
nals, δC 167.7 (C-4a), 151.4 (C-12a), 149.2 (C-2″), 111.4 (C-3″), 119.8 (C-4), and 114.6 (C-7a); 
and six methyl carbon signals, δC 29.4 (C-5″), 29.2 (C-4″), 28.4 (C-2′), 22.9 (C-3′), 22.4 (Me-
12c), and 16.0 (Me-12b). Comparison of the NMR spectra of this compound with Com-
pound 3 revealed that the substituent C7H4NO was missing at position 5 in compound 1, 
and the carbon signal at C-5 in 3 was shifted from δC 74.8 in high field to δC 69.8 in 1. It 
was thus speculated that a hydroxyl substituted at C-5, which was further confirmed by 
the correlation signals in the 1H-1H COSY spectrum (Figure S5) between δH 5.24 (1H, s, 
OH-5) and δH 4.10 (H, m, H-5) and the correlation signals between OH-5 and C-4b/6 in the 
HMBC spectrum (Figure S6). Furthermore, correlations between H-4 and C-4b/2/14a 
can also be observed in the HMBC spectrum. Compound 1 had an additional C5H9 sub-
stituent at C-9 compared to 3, as confirmed by the correlation signals in the HMBC spectra 
of H-5″ with C-1″/2″, H-4″ with C-1″/9, and H-8/10 with C-1″ (Figure 2). The planar struc-
ture of 1 was thus determined. 
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Figure 1. The structures of compounds 1–3.

2. Results and Discussion
2.1. Structural Identification of Compounds 1–2

Compound 1 was obtained as a white amorphous powder. The HRESIMS showed the
[M-H]− at m/z 516.2753 to be consistent with the molecular formula C32H39NO5, account-
ing for 14 degrees of unsaturation (Figure S8). The characteristic absorption at λmax (logε)
253 (1.55) and 283 (1.73) nm from the UV spectra indicated that the compound contained an
indole structural fragment [22]. The 1H NMR spectrum (Figure S1) showed a characteristic
indole hydrogen signal at δH 10.64 (1H, s, 12-NH); multiple overlapping methylene hydro-
gen signals between δH 1.84–2.86; and six methyl signals—δH 1.44 (3H, s, H-5′′), 1.43 (3H, s,
H-4′′), 1.37 (3H, s, H-2′), 1.27 (3H, s, Me-12b), 1.13 (3H, s, Me-12c), and 1.08 (3H, s, H-3′)
(Table 1). The above hydrogen spectral signals suggested that the compound possessed the
indole diterpenoid skeleton [23]. The 13C NMR spectrum (Figure S2) combined with the
DEPT spectrum (Figure S3) revealed the presence of 32 carbon signals in the compound,
including one carbonyl carbon signal, δC 197.2; six alkenyl carbon signals, δC 167.7 (C-4a),
151.4 (C-12a), 149.2 (C-2′′), 111.4 (C-3′′), 119.8 (C-4), and 114.6 (C-7a); and six methyl carbon
signals, δC 29.4 (C-5′′), 29.2 (C-4′′), 28.4 (C-2′), 22.9 (C-3′), 22.4 (Me-12c), and 16.0 (Me-12b).
Comparison of the NMR spectra of this compound with Compound 3 revealed that the
substituent C7H4NO was missing at position 5 in compound 1, and the carbon signal at
C-5 in 3 was shifted from δC 74.8 in high field to δC 69.8 in 1. It was thus speculated that
a hydroxyl substituted at C-5, which was further confirmed by the correlation signals in
the 1H-1H COSY spectrum (Figure S5) between δH 5.24 (1H, s, OH-5) and δH 4.10 (H, m,
H-5) and the correlation signals between OH-5 and C-4b/6 in the HMBC spectrum (Figure
S6). Furthermore, correlations between H-4 and C-4b/2/14a can also be observed in the
HMBC spectrum. Compound 1 had an additional C5H9 substituent at C-9 compared to 3, as
confirmed by the correlation signals in the HMBC spectra of H-5′′ with C-1′′/2′′, H-4′′ with
C-1′′/9, and H-8/10 with C-1′′ (Figure 2). The planar structure of 1 was thus determined.
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Table 1. 1H (400 MHz) and 13C NMR (100 MHz) data for 1–2 (DMSO-d6).

Position
1 2

δC δH (J in Hz) δC δH (J in Hz)

2 87.1 4.39, s 87.1 4.39, s
3 197.2 197.3
4 119.8 6.24, br s 119.8 6.24, s
4a 167.7 167.8
4b 78.8 77.6

5 69.8 4.10, m 28.2 1.83, m
2.75, m

6 31.3 1.84, m 26.8 1.92, m
2.46, m

6a 44.8 2.67, m 45.4 2.73, m

7 26.6 1.95, m
2.49, m 26.6 2.32, m

2.56, m
7a 114.6 115.3
7b 122.9 124.3
8 115.6 6.85, d (1.2) 114.4 7.18, d (1.8)
9 138.8 138.4
10 118.9 6.87, d (7.2) 118.2 6.94, dd (1.8, 9.0)
11 110.8 7.18, d (7.8) 111.4 7.19, d (8.6)

11a 140.8 138.2
12 10.64, s 10.48, s

12a 151.4 152.4
12b 49.9 50.6
12c 39.6 39.6

13 33.1 2.44, m
2.72, m 31.5 1.86, m

14 28.2 1.84, m
2.74, m 70.0 4.10, t (6.4)

14a 104.4 104.4
12b-Me 16.0 1.27, s 16.2 1.28, s
12c-Me 22.4 1.13, s 22.9 1.08, s

1′ 77.6 78.7
2′ 28.4 1.37, s 28.4 1.36, s
3′ 22.9 1.08, s 22.4 1.13, s
1′′ 41.0 40.5
2′′ 149.2 6.19, t (7.2) 149.0 6.03, q (6.4)

3′′ 111.4 4.81, dd (1.2, 10.8)
4.96, dd (1.2, 17.4) 109.8 5.00, t (10.4)

4′′ 29.2 1.43, s 28.6 1.37, s
5′′ 29.4 1.44, s 28.6 1.37, s

4b-OH 4.52, s 4.54, s
5-OH 5.24, s

14-OH 5.29, s
s—sines-single; d—doublet; t—triplet; q—quartet; m—multiplet; br s—broad single; dd—doublet of doublets.

The key NOESY correlations in the NOESY spectra (Figure S7) of Me-12b (δH 1.27)
with H-13α (δH 2.44) and OH-4b (δH 4.52) and Me-12c (δH 1.13) with H-6a (δH 2.67), H-5
(δH 4.10), and H-13β (δH 2.72) (Figure 3) indicated that Me-12b, H-13α, and OH-4b were
in the same direction, while Me-12c, H-13β, H-5, and H-6a were in the same direction.
Furthermore, previous studies had shown that the strongest negative cotton effect at short
ECD wavelengths (λmax 210–250 nm) came from the π-π* leaps of the indole nucleus, which
could be used to determine the absolute configurations of C-4b, C-6b, C-12b, and C-12c
in hexacyclic indole diterpenoids [24]. Thus, the absolute configurations of 4b, 5, 6a, 12b,
12c could be determined as 4bS, 5S, 6aR, 12bS, and 12cR based on λmax 242 (∆ε −188.7)
nm in CD and the associated signals in NOESY. While the absolute configurations at
positions 2 and 14a were determined by comparing the carbon signals with the calculated
values of the NMR data from the literature [24], it was hypothesized that there were two
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possible configurations, 1a (2R, 4bS, 5S, 6aR, 12bS, 12cR, 14aS) and 1b (2S, 4bS, 5S, 6aR,
12bS, 12cR, 14aR), for compound 1. ECD calculations of the two configurations were
carried out using Boltzmann-weighted time-varying density flooding theory (TDDFT) [25].
Geometry optimization was carried out using the DFT method, and the geometry-optimized
conformations were further calculated at the B3LYP/6-311G* level using SMD [26]. The
calculated values were compared with the experimental values, and it was found that the
ECD calculated values of 1a coincided with the experimental values (Figure 4), from which
the absolute configuration of 1 was determined as 2R, 4bS, 5S, 6aR, 12bS, 12cR, 14aS, and it
was designated as 5S-hydroxy-β-aflatrem.
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Figure 4. Experimental CD spectra and the calculated ECD spectra of Compounds 1–2.

Compound 2 was obtained as a white amorphous powder. Its molecular formula
was determined to be C32H39NO5 based on a HRESIMS peak at m/z 516.2753 [M-H]−

(Figure S16), and the degree of unsaturation was 14, which was consistent with the molecu-
lar formula and degree of unsaturation of 1. Comparison of the NMR data of 2 with those
of 1 revealed that the NMR data of the two compounds were similar (Table 1), but from the
correlation signals of H-13 with C-14a and OH-14 with C-13/14a in the HMBC spectrum
(Figure S14) combined with the correlation signals of δH 1.86 (2H, m, H-13) and δH 4.10
(1H, t, J = 6.4 Hz, H-14) in 1H-1H COSY spectrum (Figure S13), it could be inferred that the
hydroxyl substitution in compound 2 was at C-14 (Figure 2), and thus, the planar structure
of compound 2 could be determined.
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In the NOESY spectra (Figure S15), the key NOESY correlations of Me-12b (δH 1.28)
with H-5α (δH 2.75) and OH-4b (δH 4.54) and Me-12c (δH 1.08) with H-6a (δH 2.73), H-14,
and H-5β (δH 1.83) (Figure 3) showed that Me-12b, H-5α, OH-4b, and OH-14 were in the
same direction, while Me-12c, H-5β, H-14, and H-6a were in the same direction. The
absolute configurations of 4b, 6a, 12b, 12c, and 14 could be identified as 4bS, 6aS, 12bS,
12cR, and 14R, respectively, based on the negative cotton effect at λmax 239 (∆ε − 90.7)
nm in CD [24]. Comparing the carbon signals at positions 2 and 14a with the calculated
values from the NMR data in the literature [24], it was hypothesized that there were two
possible configurations, 2a (2R, 4bS, 6aS, 12bS, 12cR, 14R, 14aR) and 2b (2S, 4bS, 6aS, 12bS,
12cR, 14R, 14aS) for compound 2. The ECD calculations of 2a and 2b were performed using
TDDFT [25], and the calculated values were compared with the experimental values of
2. It was found that the ECD calculated values of 2a were in better agreement with the
experimental values (Figure 4), which allowed us to determine the absolute configuration
of 2 as 2R, 4bS, 6aS, 12bS, 12cR, 14R, 14aR and to name it as 14R-hydroxy-β-aflatrem.

2.2. Cytotoxic Activity of Compounds 1–3

Compounds (1–3) were evaluated for their cytotoxicity against four cancer cell lines,
including lung cancer cell A549, cervical cancer cell Hela, liver cancer cell Hep G2, and
breast cancer cell MCF-7 with various concentrations for 48 h and then performed methyl
thiazol tetrazolium (MTT) assays. Compound 1 displayed better inhibitory activities against
Hela, Hep G2, and MCF-7 cells, with IC50 values of 12.54, 15.06, and 26.56 µM, respectively
(Table 2). The most active, Compound 1, was selected for further research.

Table 2. Results of antitumor activities.

IC50 (µM)

Compounds A549 Hela Hep G2 MCF-7

1 >50 12.54 15.06 26.56
2 >50 15.61 20.03 29.47
3 >50 >50 >50 >50

Adriamycin 5.52 1.50 5.73 5.24

2.3. Compound 1 Could Cause Apoptosis of Hela Cell

Apoptosis, which occurs normally during development and aging, is a homeostatic
mechanism for maintaining tissue cell populations and an important strategy for treating
cancer [27]. Apoptosis leads to cell death with cell nuclear pyknosis and apoptotic body
production, which was observed via fluorescence microscopy after Hoechst 33258 stain-
ing [27,28]. As shown in Figure 5A, untreated cells showed uniform blue fluorescence,
but Hela cells treated with 1 for 48 h showed clear apoptotic signals, with shrinkage of
chromatin, fragmentation of nuclei, and bright blue fluorescence, and apoptotic bodies
appeared in apoptotic cells.

We further investigated the effect of 1 on apoptosis using the mitochondrial membrane
potential assay kit (JC-1) [29]. Decrease in mitochondrial membrane potential was a
hallmark event in the early stage of apoptosis. The decrease in membrane potential could
be easily detected by the shift of JC-1 from red to green fluorescence, and the shift of JC-1
from red to green fluorescence could also be used as an indicator of the early stage of cell
apoptosis. Treatment of Hela cells with 0, 6.25, 12.50, and 25.00 µM concentrations of 1 for
48 h showed a decrease in mitochondrial membrane potential with increasing concentration
(Figure 5B). Further analysis of the expression of proapoptotic and anti-apoptotic genes via
real-time fluorescence quantitative PCR that 1 could up-regulate pro-apoptotic genes BAX
and Caspase-3 but down-regulate anti-apoptotic genes Bcl-xL and XIXP (Figure 5C). These
results indicated that compound 1 promoted cell apoptosis.
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Figure 5. Apoptosis and mitochondrial membrane potential were analyzed via real-time quantitative
fluorescence PCR and fluorescence microscopy in Hela cells treated with 1 for 48 h. (A) Hoechst 33258
staining showed that 1 could induce nuclear shrinkage in Hela cells. (B) Reduction in mitochondrial
membrane potential in Hela cells after treatment with 1 for 48 h via JC-1 staining assays. (C) Com-
pound 1 induced changes in the mRNA levels of related genes in Hela cells after treatment for 48 h
at 0, 6.25, 12.50, and 25.00 µM. Values were shown as the means ± standard deviation; * p < 0.05,
** p < 0.01, *** p < 0.005, **** p < 0.001, ns (no significance) compared with the control group.

2.4. Wound Healing and Transwell Assay

Wound healing is one of the hallmarks of tumorigenesis. As shown in Figure 6A,
treatment of cells with compound 1 for 48 h significantly inhibited the migration ability
of Hela cells. In line with the wound-healing assay, a transwell assay displayed that the
level of cell invasion was strikingly decreased after 48 h treatment with 1, although cell
viability was unaffected (Figure 6B) [30]. These results indicated that 1 was also able to
antagonize cell migration and invasion in the Hela cells, with potential activity to inhibit
the metastasis of tumor cells.
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Figure 6. (A) Wound healing assay to determine migrating potentials of Hela cells. The area
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cells. (B) Transwell assays to determine invasion abilities of Hela cells.

3. Materials and Methods
3.1. General Experimental Procedures

Optical rotation spectra were recorded on a Modular polarimeter MCP 5100 (JASCO,
Tokyo, Japan). ECD spectra and UV spectra were measured using a Biologic MOS450-
SFM300 instrument (JASCO, Tokyo, Japan). The Spartan 14 program (Wavefunction Inc.,
Irvine, CA, USA) was used for calculating Merck molecular force field (MMFF). The
Gaussian 16 program package1 was used for density functional theory (DFT) and time-
dependent density functional theory (TDDFT) calculations. NMR spectra were recorded
on a Bruker AV spectrometer (400 MHz for 1H NMR and 100 MHz for 13C NMR) (Bruker
Corporation, Switzerland) instrument using DMSO-d6 as a solvent. Tetramethyl silane
(TMS) was used as an internal standard. HRESIMS spectrometer were measured on a Q-
TOF Ultima Global GAA076 LC mass spectrometer. (Billerica, MA, USA). Semi-Preparative
HPLC was performed on an Agilent 1260 LC series with a DAD detector using an Agilent
Eclipse XDBC18 column (9.4 250 mm, 5 µm) (Agilent Corporation, Santa Clara, CA, USA).
Silica gel (Qing Dao Hai Yang Chemical Group Co.; 200–300 mesh) and octadecyl silyl silica
gel (YMC; 12 nm–50 µm) were used for column chromatography (CC). Precoated silica
gel plates (Yan Tai Zi Fu Chemical Group Co. (Yantai, China); G60, F-254) were used for
thin-layer chromatography (TLC).

3.2. Fungal Materials

The endophytic fungal strain Aspergillus sp. PQJ-1 was isolated from Sphagneticola
trilobata harvested from Hainan Normal University of Hainan Province, China, in Au-
gust 2020. S, trilobata was identified by Prof. Qiong-Xin Zhong, College of Life Science,
Hainan Normal University. The strain was identified as Aspergillus sp. on the basis of the
morphological, physiological, and biochemical characteristics and DNA sequencing of the
ITS region of the rRNA gene, and the sequence of Aspergillus sp. submitted to GenBank
with accession number OM269036. The endophytic fungus Aspergillus sp. PQJ-1 had been
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preserved at the Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of
Education, College of Chemistry and Chemical Engineering, Hainan Normal University,
Haikou, Hainan, China.

3.3. Fermentation, Extraction, and Isolation

The fungal strain Aspergillus sp. PQJ-1 was cultured in potato liquid medium PDB at
28 ◦C without shaking for 35 days. The fermented cultures of Aspergillus sp. PQJ-1 were
extracted 3 times with EtOAc, and the solvents were evaporated under reduced pressure to
obtain an extract (150.0 g).

The total crude extract was subjected to silica gel column chromatography (CC) and
eluted with chloroform/acetone (10:1–0:10, v/v) to give seven fractions (Fr.1–Fr.7). Fr.2
was further separated on an ODS column using a stepped gradient elution of MeOH-H2O
(10:90–100:0, v/v) to yield five subfractions (Fr.2.1–Fr.2.5). Fr.2.3 was further separated on a
Sephadex LH-20 column with chloroform/MeOH (1:1, v/v) to provide four subfractions
(Fr.2.3.1–Fr.2.3.4). Fr.2.3.2 was further separated using HPLC eluted with CH3CN/H2O
(70:30, v/v) to obtain Compounds 1 (21 mg), 2 (17 mg), and 3 (6.7 mg), respectively.

5S-hydroxy-β-aflatrem (1): white amorphous powder; [α]20
D = +111.6 (c 0.077, MeOH);

UV (MeOH) λmax [log ε/(L·mol−1·cm−1)]: 253 (1.55), 284 (1.73) nm; HR-ESI-MS m/z
516.2753 [M − H]− (calcd for C32H38NO5, 516.2728). 1H and 13C NMR data are in Table 1.

14R-hydroxy-β-aflatrem (2): white amorphous powder; [α]20
D = +50.0 (c 0.050, MeOH);

UV (MeOH) λmax [log ε/(L·mol−1·cm−1)]: 242 (1.39), 285 (0.54) nm; HR-ESI-MS m/z
516.2756 [M − H]− (calcd for C32H38NO5, 516.2728). 1H and 13C NMR data are in Table 1.

3.4. Cytotoxicity Assays

The cytotoxic activities of 1–3 against human lung cancer cells A549, cervical can-
cer cells Hela, hepatocellular carcinoma cells Hep G2, and breast cancer cells MCF-7
were evaluated via MTT assay using Adriamycin (ADM) as a positive control [31,32].
The cells in were taken in the logarithmic growth phase and inoculated with 96-well
plate (1 × 105 cells/well), incubated in the incubator at 37 ◦C overnight, and then treated
with various concentrations of drug for 48 h. They were then incubated in the constant-
temperature carbon dioxide incubator for 48 h and then taken out the 96-well plate. Fol-
lowing this, 10 µL of pre-thawed MTT at room temperature was added to each well and
placed into the incubator for 4 h. After being taken out the 96-well plate, the supernatant
was poured off, and the extra liquid was removed and blotted on a paper towel. Then,
150 µL of DMSO was added to each well and shaken away from light to dissolve the dirty
purple crystals. The plate cover was removed, and the absorbance values at 570 nm were
determined using an enzyme counter. The half-maximal inhibitory concentrations were
determined using the GraphPad Prism 9 software.

3.4.1. Cell Line and Cell Culture

Human cell lines A549, Hela, Hep G2, and MCF-7 were provided by the Hainan
Normal University (Haikou, China). A549 cells were cultured in F12K medium (Pricella,
Wuhan, China) supplemented with 10% fetal bovine serum (FBS) (Pricella). Hela, Hep G2,
and MCF-7 cells were cultured in DMEM medium (Pricella) supplemented with 10% FBS
(Pricella). All cells above were maintained in 5% CO2 at 37 ◦C. Cytotoxicity was measured
using the MTT (Beyotime, Shanghai, China) assay.

3.4.2. Wound-Healing Migration Assay

The cells were seeded in a six-well plate (4 × 106 cells/well). When the cells had
grown to a monolayer spread across the bottom of the well plate, a 10 µL pipette tip
was used to make a wound in each well. After washing away the detached cells and
debris with PBS, different concentrations of 1 were added and then incubated in 1% serum
medium for 48 h [29]. The scratches were photographed at 0 and 48 h and assessed for
migratory capacity.
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3.4.3. Transwell Migration Assay

After treating the Hela cells with different concentrations of Compound 1 for 48 h,
the cells were digested with trypsin and resuspended in serum-free medium, with 200 µL
of cells (5 × 104) added to each of the upper chambers and 600 µL of medium containing
10% serum added to the lower chambers to be incubated at 37 ◦C for 48 h. The small
chambers were removed, the medium was aspirated, the cells in the upper chamber were
gently wiped with a cotton swab. The chambers were fixed in 4% paraformaldehyde for
20 min and air-dried, followed by staining with 0.1% crystal violet stain for 10 min and
washing with PBS 3 times. Cell counts were obtained by observing the membranes under a
microscope, counting the cells in each field [30].

3.4.4. Quantitative Real-Time Polymerase Chain Reaction (qPCR) Analysis

The cells after 48 h of treatment with compound 1 were digested with trypsin, cen-
trifuged and the supernatant discarded, 200 µL of RNA lysate was added and the cells
were crushed on ice. The total RNA was extracted using a total RNA isolation kit (Puluo-
maige Biotech Co. Ltd., Beijing, China). The isolated total RNA was reverse-transcribed to
cDNA using the Hifair III 1st Strand cDNA Synthesis SuperMix (gDNA digester plus) kit
(Yeasen Biotechnology Co., Ltd., Shanghai, China). The mRNA levels were normalized to
GAPDH expression in human tumor cells and analyzed relative to controls using the 2−∆∆Ct

method [33]. The qPCR reactions were performed with the following primers: Bcl-xL-F:
5′-TGCGTGGAAAGCGTAGACAAG-3′; Bcl-xL-R: 5′-GTGGGAGGYAGAGTGGATGG-
3′; BAX-F: 5′-TTTTGCTTCAGGGTTTCA-3′; BAX-R: 5′-GGACATCAGTCGCTTCAGT-3′;
Caspase-3-F: 5′-ATTGATGCGTGATGTT-3′; Caspase-3-R: 5′-CAGGTGCTGTGGAGTA-3′;
XIXP-F: 5′-TAGTGCCACGCAGTCT-3′; XIXP-R: 5′-AGGGTTCCTCGGGTAT-3′; GAPDH-F:
5′-AATCCCATCACCATCTTC-3′; GAPDH-R: 5′-TCACGCCACAGTTTCC-3′.

3.4.5. Mitochondrial Membrane Assay

Cells were seeded in six well plates (1 × 104 cell/well). When the cells were walled
and incubated for 48 h with different concentrations of the drug. The culture solution
was aspirated and incubated with JC-1 staining solution for 20 min at 37 ◦C [28]. The
supernatant was then aspirated and washed twice with JC-1 staining buffer before being
observed under a fluorescence microscope and photographed.

3.4.6. Observation of Morphological Changes in Hela Cells by Hoechst 33258 Staining

Hela cells were inoculated in 24-well plates at 1 × 105 cells/well, and after walling,
the cells were treated with compound 1 at concentrations of 0, 6.25, 12.50, 25.00 µM,
respectively, and cultured for 48 h in an incubator at 37 ◦C [28]. The cells were washed
twice with PBS, stained with Hoechst 33258 stain for 15 min, washed twice with PBS, and
then photoprocessed with an OLYMPUS IX-51 fluorescence microscope.

4. Conclusions

In a summary, this study disclosed two previously undescribed paxilline-type indole
diterpene derivatives, named 5S-hydroxy-β-aflatrem (1) and 14R-hydroxy-β-aflatrem (2),
along with one known analogue, 14-(N,N-dimethl-L-valyloxy)paspalinine (3), which were
isolated from the endophytic fungus Aspergillus sp. PQJ-1, derived from the flowers of
S. trilobata. The structures of the new compounds with absolute configurations were de-
termined unambiguously by NMR spectroscopic data analysis and quantum chemical
calculations. Compounds 1–2 possessed cytotoxic activity. The investigation of the under-
lying mode of action confirmed that compound 1 might exert antitumor activity through a
decrease in mitochondrial membrane potential, up-regulation of pro-apoptotic genes and
down-regulation of anti-apoptotic genes, and inhibition of cell migration and invasion.
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