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Abstract: Peptides, functional nutrients with a size between those of large proteins and small amino
acids, are easily absorbed by the human body. Therefore, they are seeing increasing use in clinical
medicine and have revealed immunomodulatory and anti-inflammatory properties which could
make them effective in healing skin wounds. This review sorted and summarized the relevant
literature about peptides during the past decade. Recent works on the extraction, modification and
synthesis of peptides were reviewed. Importantly, the unique beneficial effects of peptides on the
skin were extensively explored, providing ideas for the development and innovation of peptides and
laying a knowledge foundation for the clinical application of peptides.
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1. Introduction

With the development and renewal of science and technology, researchers eventually
discovered a class of organic compounds whose molecular weight lies between proteins
and amino acids. These compounds are easily absorbed, require low energy consumption
to produce, and demonstrate high affinity, specificity, and low toxicity [1]. These com-
pounds are known as peptides, and have been revealed as new components of therapeutic
drugs. An increasing number of studies have proved that peptides have unique efficacy in
antibacterial, anti-inflammatory, and anti-tumor aspects [2,3]. Given their attractive phar-
macological and intrinsic properties, peptides are considered an excellent starting point
for the design of new therapies, with good safety, tolerability, and efficacy in clinical appli-
cation [4]. This provides huge advantages over traditional small molecules. In addition,
peptide-based therapies typically have a lower production complexity than protein-based
biopharmaceuticals [5], which significantly reduces production costs. Therefore, in this
regard, peptides are optimally positioned between small molecules and biopharmaceuti-
cals, and given their increased use, suitable methods for efficiently extracting them from
natural sources have become the focus of attention [6]. However, many studies have shown
that naturally occurring peptides are generally not suitable for direct clinical application
because of their inherent weaknesses [7], including poor chemical and physical stability,
and short circulating plasma half-life [8]. To address these issues, researchers must conduct
studies to improve the application of peptides derived from modification and synthesis.

Although it is not fatal, skin damage often increases pain and affects the self-image
of the patient; regeneration and wound healing are also essential for tissue homeostasis
and the survival of organisms [9]. The causes of skin wounding are diverse, and the
underlying mechanisms of wound healing are equally complex, such as inflammation [10]
and oxidative stress [11]. It is well known that increasing numbers of scholars are interested
in the exploration of skin diseases. Peptides have revealed many biological functions, most
notably as signaling/regulatory molecules in a variety of physiological processes, including
anti-inflammatory, defense, immunity, and homeostasis. These have been identified as good
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choices for skin healing agents [12]. This review integrated recent studies, introduced the
extraction, modification, and synthesis of peptides, and focused on exploring the research
progress of peptides in the field of skin wounding, providing a good knowledge foundation
for the future application and development of peptides.

2. Extraction of Peptides

In recent years, much attention has focused on the extraction and purification of
peptides. Figure 1 shows the current basic process for obtaining peptides. The development
and utilization of peptides also provide new ideas for the innovation of therapeutic drugs.
To increase the peptide extraction rate, enzymolysis and pretreatment are often used before
extraction and separation. There are many types of proteases in nature. Proteases can be
divided into three categories according to their origin: proteases of plant origin, proteases
of animal origin, and proteases of microbial origin. Papain is a highly active endo-cysteine
protease from papaya. It is one of the widely used proteases of plant origin. Trypsin is
an important endoprotease in human and animal intestines. In the pancreas, trypsin is
produced by activating trypsinogen [13]. Flavourzyme is sold as an industrial peptide
enzyme preparation derived from Aspergillus oryzae [14]. Proteases can also be classified
according to their pH value as alkaline proteases, neutral proteases, or acidic proteases.
Although all three of these proteases are found in plants and animals, microbial populations
are their most widespread source [15]. Researchers have generally applied five kinds of
hydrolase (Flavourzyme, trypsin, acid protease, neutral protease, and alkaline protease) to
extract antioxidant peptides from the mackerel (Scomberomorus niphoniusis) defatted visceral
powder. The diphenyl bitter hydrazine radical scavenging rate, hydroxyl radical scavenging
rate, and hydrolysis degree are used as indicators for the selection and optimization of
hydrolytic enzymes to optimize the best hydrolysis solution [16]. This was the case with
apricot kernel (Semen Armeniacae Amarum) hydrolysate that was obtained by hydrolysis
and degreasing with the compound protease of alkaline protease and Flavourzyme [17].
Some studies have used trypsin, Flavourzyme, and neutral and alkaline protease to extract
antioxidant proteins from frog breast oil (Ranae Oviductus) [18].

After obtaining the crude extract, chromatography is often applied to separate the
desired peptides. According to the separation principle, chromatography can be divided
into adsorption chromatography, ion-exchange chromatography, gel chromatography, and
distribution chromatography. Experiments have demonstrated that the cation exchange
column has been widely used in the separation and purification of peptides. This is the
case for the separation and analysis of active antioxidant peptides from mackerel, and
it was found to be the most suitable chromatographic method in [16]. Reportedly, the
cation exchange column was also developed to enrich protein N-terminal peptides. Briefly,
N-terminal peptides with or without n-acetylation can be separated from internal peptides
by strong cation-exchange chromatography according to the charge/orientation retention
type based on the peptides [19]. Surprisingly, the separation of responsible peptides
from egg white hydrolysates [20] and antioxidant peptides from feather hydrolysates [21]
was optimized by cation exchange chromatography and reverse-phase chromatography.
Furthermore, it was reported that purified hirudin peptides were obtained from leeches
(Hirudo) by strong base anion-exchange column chromatography and G10 gel column
chromatography [22].

Gel filtration has also been the preferred option for obtaining the desired active
ingredients from the crude extract. This was the case with the hydrolysates of pearl
millet (Pennisetum glaucum) that were separated by gel filtration chromatography to obtain
antioxidant peptides [23]. The active peptides of apricot kernel (Semen Armeniacae Amarum)
hydrolysates were further isolated by gel filtration chromatography on Sephadex G-25
and G-15, and their antioxidant potential was further evaluated and proved [17]. In order
to understand the taste of Philippine clams (Ruditapes philippinarum), 14 novel umami
peptides were isolated and identified by gel chromatography, HPLC, and UPLC-ESI-QTOF-
MS/MS [24]. A peptide was also found in the foot of green mussel (Perna canaliculus),
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which was purified by size-exclusion chromatography (SEC); its sequence was identified by
LC-MS/MS and its anti-inflammatory effect was investigated by in vitro experiment [25].

For the separation of peptides, HPLC has gained the highest application value because
of its high speed, high efficiency, and high sensitivity [26,27]. This was evident in peptides
isolated from fermented milk (yogurt) [28] and rapeseed (Brassica campestris L.) [29] by
preparative reversed-phase HPLC, then purified and analyzed by ESI-MS/MS. Notably,
a novel peptide with antiplatelet activity was isolated and identified from silver carp
(Hypophthalmichthys molitrix) skin by the same method [30], as was a novel peptide purified
by solid-phase extraction and HPLC from the interleaf of banana (Musa paradisiaca) plants,
with its primary structure determined by MS and amino acid analysis [31].
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3. Modification of Peptides

Natural active peptides are known to play an irreplaceable role in immune regula-
tion [31,32], immune hormones [33], enzyme inhibition [34], and antiviral properties [35,36].
Despite their potential use as therapeutic agents, there are many potential problems with
natural peptides due to their low stability and proteolysis, resulting in short activity du-
ration and low bioavailability in vivo. One way to overcome these shortcomings is to
use modified peptides, known as peptides mimics [37]. For example, natural peptides
found in venoms could be used directly in routine therapy, but many of these peptides
might need to be truncated or stabilized to improve their therapeutic properties. Thus, a
complementary strategy is the generation of peptides mimics by displaying key residues
forming the pharmacophore of the peptide toxin on a non-peptide scaffold [38]. Some
studies have proposed a chemical modification box for peptides, which was used for
the modification of peptides’ skeleton, amino acid side chain, and higher-order structure.
This method was used to overcome the main issues encountered during the transition
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from natural peptides to peptide therapeutic agents, therefore promoting the synthesis
and development of solid-phase peptides [39]. To improve the activity and increase the
function of peptides, the NMEGylation-covalent binding of oligo-N-methoxyethylglycine
(NMEG) chains was evaluated as a novel form of peptide/protein modification, especially
for the stability and solubility of C20 peptides [40]. In addition, a new type of peptide
was designed by a modified method, which greatly broadened the application space of
peptides in different fields. To form a novel peptide, a six-membered carbon ring with an
amino group on the ring binds substituted amino acids to arginine-rich peptides. Further
studies found the value of this peptide in the development of cell-penetrating peptides [41].
The physicochemical properties of peptides are generally regulated by introducing one or
more methyl groups into peptidyl amide bonds, while the pharmacokinetic properties of
peptides are endowed with unprecedented characteristics [42].

4. Synthesis of Peptides

The applications of different modification methods have significantly improved the
inherent shortcomings of natural peptides, such as stability and cell penetration. In addition
to designing new peptides by modification, it was possible to understand the synthesis of
new compounds that do not exist in Nature by using different methods and means.

Previous studies provided new ideas for the development and utilization of peptides,
as well as new therapeutic directions for clinical application. In one work it was reported
that a peptide was synthesized based on a known chemical formula. The basic peptide
components of the Lactobacillus casei peptidoglycan complex were used as a reference to
compose this chemical formula, which has potential as an effective anti-tumor agent [43].
A new method has been developed in which lysine residues are linked to the C-terminal
of the desired peptides by a standard peptide bond during synthesis. The immobilized
carboxypeptidase B (CPB) is then used to remove these lysine residues after purification,
thus improving the total synthesis and purification yield of the peptides [44]. Similarly,
there is a method in which the heterozygous organic peptides’ macrocyclic compounds are
synthesized by cyclizing ribosomal-derived peptide sequences with non-peptide organic
connectors [45]. Furthermore, cyclic RGD peptides could be efficiently synthesized based
on microflow triphosgene-mediated peptide chain extension and microflow photochemical
macrocyclic lactamization [46]. A novel strategy was also described for the generation of
bicyclic peptides containing non-peptide skeleton elements, starting from recombinant
peptide precursors. These compounds were produced by a ‘one-pot and two-step’ sequence
in which the peptides were macrocycled via bifunctional oxyamine/1,3-amino-thiol syn-
thetic precursors, and then the intramolecular disulfide was formed between the synthetic
precursor mercaptan and a cysteine embedded in the peptide sequence [47]. In another
one-pot method, goadsporin (GS) was synthesized using recombinant enzymes in a flexible
in vitro translation system (called the FIT-GS system) [48].

5. Beneficial Effects of Peptides on Skin

The skin is composed of epidermis, dermis and subcutaneous tissue. Understanding
skin structure is fundamental for the treatment of all skin conditions. The healing of
skin wounds is an important biological process which can regenerate new skin after a
wound. Skin injuries can be divided into skin trauma and burns, skin disease, and skin
cancer. Among them, chronic wounds caused by skin injuries and burns are the most
common skin diseases due to the slow healing of hypoxia, abnormal peripheral sensory
nerve function, and insufficient blood tissue supply. The most significant sign of chronic
wounds is severe abnormal immune skin function [49]. The active components of peptides
could serve as first-line innate immune defense against exogenous microorganisms in
the skin, in addition to coordinating adaptive immune responses to perform various
immunomodulatory functions. Different authors found that peptides repair skin damage
through a variety of mechanisms (Figure 2) [50,51]. Many skin diseases and injuries have
been reported to involve the production of ROS radicals [52], and a dramatic increase in
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ROS levels can cause oxidative stress. Peptides acting on the skin can have a therapeutic
effect by inhibiting the production of ROS. In addition, the skin has a vast antioxidant
system, including superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase
(CAT) [53], and the therapeutic process of peptides on the skin involves the regulation of
these factors. When skin pathology occurs, it is often regulated by the PI3K/AKT [54],
MAPK/ERK [55], and TGFβ/Smad pathways [56]. Further studies have shown that
peptides can regulate inflammatory factors (IL-1, IL-6, IL-8) or matrix metalloproteinases
(MMP1, MMP2, MMP3) by PI3K/AKT, MAPK/ERK, and TGFβ/Smad pathways, thereby
reducing the inflammatory response of the skin [57,58].
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5.1. Skin Burns and Trauma

There are many kinds of chronic skin wound disorders, such as the commonly ob-
served skin burns [59,60] and trauma [61]. Researchers have discovered many medicines [62]
and methods [63,64] that can treat chronic wounds. According to relevant data, effective
peptides in skin injury have been widely extracted and found in Nature [65]. With the
innovation and development of science and technology, scientists have gradually explored
the specific mechanism of those peptides for skin therapy. Traditional herbal products are
often applied for skin healing, and plant therapeutic agents such as honeysuckle (Lonicera
japonica Thunb) [66], patchouli (Pogostemon cablin (Blanco) Benth) [67], and aloe (Aloe vera (L.)
Burm.) [68] often act to promote wound healing through their various bioactive ingredients.
However, researchers speculate that the content of plant peptides is low, and it is difficult
to achieve effective treatment with peptides from plants alone. Therefore, new studies are
seeking other species to broaden the range of skin treatments.

Animal peptides have attracted extensive attention from scholars as new molecu-
lar platforms for skin therapeutics [69]. For example, gecko duct analogs (GJ-CATH3)
have been found to exhibit significant wound-healing properties in mouse models with
full-thickness skin wounds. These peptides have the potential to stimulate HaCaT cell
proliferation while also preventing a decrease in SOD activity and an increase in MDA
concentration in damaged skin tissues [70]. Multifunctional peptides were found in sala-
mander (Cynops orientalis) skin, and might play an important role in the host’s immune
response to bacterial infection and skin wound repair [71,72].
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Previous studies have shown that many aquatic animal peptides also have skin-healing
properties. The relationship between wound healing and wound microbiome colonization
was investigated by using skin collagen peptides of salmon (Oncorhynchus keta) and tilapia
(Oreochromis mossambicus). Several studies revealed that collagen peptides were related
to the regulation of microbial community colonization in wound tissue. They were also
found to promote wound healing by controlling inflammatory response and increasing
wound angiogenesis and collagen deposition [73,74]. Peptides extracted from the enzymatic
digestion of perch (Lateolabrax japonicus) could also accelerate wound healing by enhancing
the formation of microvessels at the wound site [75]. The active peptides (Aps) of pearl
oyster (Pinctada Martensii) increased collagen synthesis and type III collagen content in
wounds via the TGF-/Smad signaling pathway, inhibiting scar formation and promoting
skin wound healing in [76].

It has been reported that amphibian skin has an excellent ability to enhance wound
healing [77]. These active ingredients, especially polypeptide extracts, have been proven to
effectively promote skin wound healing. Thus, polypeptide extracted from amphibian skin
has great potential for skin repair [78]. According to Table 1, reporting on skin treatments
with amphibian-sourced peptides, a new 24-residue peptide belonging to the ducting family
was identified from the skin of the plateau frog (Nanorana pleskei) and has been shown to
promote wound contraction and repair in in vivo and in vitro experiments [79]. Ot-WHP, as
a wound-healing-promoting peptide from the Chinese concave-eared torrent frog (Odorrana
tormota), has the same effect on skin treatment, according to another study [80]. There
was also a new short peptide (named RL-QN15) in the skin secretions of Rana serrata that
could regulate cytokines secreted by macrophages and accelerate re-epithelization and
granulation tissue formation [81]. Researchers evaluated two peptides, called CW49 and
pseudin-2 (Pse-T2), from frog (Odorrana graham) skin, showing that the former could treat
skin injury by promoting angiogenesis [82], and the latter by destroying the membrane
integrity to kill bacterial cells [83]. Peptides extracted from other frogs also had skin-healing
properties [84–93].
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Table 1. Amphibians for skin treatment.

Species Latin Name Petite Nomenclature Sequence In Vitro In Vivo Disease Quote

Plateau frog Nanorana pleskei Cathelicidin-NV ARGKKECKDDRCRLLMKRGSFSYV HACAT Full-thickness wound
in mice Skin wound healing [79]

The Chinese
concave-eared frog Odorrana tormota Ot-WHP ATAWDLGPHGIRPLRPIRIRPLCG HACAT, RAW Full-thickness wound

in mice Skin wound healing [80]

Frog Rana Serrata RL-QN15 QNSYADLWCQFHYMC HACAT, RAW
Full-thickness

wounds in mice and
oral ulcers in rats

Wound healing
mouth ulcers [81]

Frog Odorrana graham CW49 APFRMGICTTN None Full-thickness wound
in diabetic mice

Diabetes skin
wound healing [82]

Frog Pseudis paradoxa Pse-T2 None RBC,
HACAT

Full-thickness wound
in mice Skin wound healing [83]

Frog Odorrana grahami AH90 ATAWDFGPHGLLPIRPIRIRPLCG HACAT,
RAW

Full-thickness wound
in mice Skin wound healing [84]

Frog Rana pleurade RP-1 None HACAT Irradiation-induced
trauma in mice

Radiation-induced
wound healing [85]

Frog Rana pleurade RL-RL10 RLFKCWKKDS HACAT Full-thickness wound
in mice Skin wound healing [86]

Frog Rana limnocharis OA-FF10 FFTTSCRSGC HDPs Full-thickness wound
in mice Skin wound healing [87]

Frog Rana limnocharis cathelicidin-OA1 IGRDPTWSHLAASCLKCIFDDLPKTHN HACAT, HDPs Full-thickness wound
in mice Skin wound healing [88]

Frog Rana pleurade chensinin-1 None None Full-thickness wound
in mice Skin wound healing [94]

Frog Rana limnocharis OA-GL21 GLLSGHYGRVVSTQSGHYGRG HACAT, HDPs Full-thickness wound
in mice Skin wound healing [90]

Frog Rana limnocharis OM-GL15 GLLSGHYGRASPVAC None Photodamage in mice Skin photodamage [91]

Frog Rana sierrae brevinin-1Ma FLPILAGLAANLVPKLICSITKKC None None Skin immune protection [92]

Frog Odorrana livida antioxidin-RL AMRLTYNRPCIYAT HACAT, HDPs Photoaging in mice Skin photoaging [93]
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5.2. Infectious and Inflammatory Skin Disease

Some peptides have been revealed to induce cell proliferation, migration, and dif-
ferentiation. These peptides could also regulate inflammatory response and control the
production of various cytokines/chemokines. These capabilities enable them to promote
wound healing and improve skin barrier function [95]. An increasing body of evidence
proves that peptides play an important role in skin defense, and some have therapeutic
effects on viral resistance in atopic eczema (AE) [96]. A homing peptide CRKDKC (CRK)
was found to be widely used in wound recovery and angiogenesis in tumors, and the
removal of cysteine from CRK produces a skin-homing therapeutic molecule (DCN-tCRK).
Experiments in vivo have proved that this molecule could inhibit TGF in skin-β signal
transduction, thereby improving recessive dystrophic epidermolysis bullosa [97]. There
is also an emollient containing oat plant extract that has revealed anti-inflammatory and
barrier repair properties to treat specific dermatitis [98]. Other antimicrobial peptides had
similar dermatitis repair effects [99].

5.3. Neoplastic Skin Disease

Emerging evidence suggested that peptide components not only treated some inflam-
matory skin diseases but played a role in the healing of skin tumors [100]. An example
of this was three antimicrobial peptides which were identified from frog skin secretions
by ‘shotgun’ cloning and MS/MS fragmentation. By testing the antimicrobial and biofilm
activity of microorganisms, they were found to induce bacterial death by destroying cell
membranes and binding to bacterial DNA, thereby alleviating skin cancer [101]. Antimicro-
bial peptides obtained from insects were shown to have antibacterial and anti-inflammatory
effects on the skin, but also anti-cancer effects [102]. Another study found that the insect-
derived peptide poecilocorisin-1 had a potential therapeutic effect on malignant melanoma
skin cancer [103]. The combined therapy of antimicrobial peptides and chemotherapeutic
drugs was also developed as a new method for the treatment of skin cancer, and revealed a
synergistic therapeutic effect on skin cancer in mice [104].

6. Clinical Application and Prospect of Peptides in Skin Healing

Skin wound healing, especially chronic wound healing, is a common and challenging
clinical problem. The development and utilization of clinical therapeutic agents have
attracted extensive attention [105–107]. There is thus an urgent need to develop new
interventions to promote skin repair. Recent studies showed that both peptides and
nanoparticles might be potential therapies for skin wounds [108,109]. Researchers synthe-
sized antibacterial photodynamic gold nanoparticles (AP-AuNPs), which combined an
antibacterial peptide and nanoparticles. AP-AuNPs are used as a wound-dressing nanoma-
terial in skin infections to promote wound healing [110]. In addition, ZnO nanoparticles
of different sizes were also functionalized with an amphipathic peptide to improve their
photoprotection capability in skin [111]. For example, marine peptides extracted from
tilapia (Oreochromis mossambicus) were combined with a biological material called chitosan
(CS) and used as a therapeutic agent for skin wound healing [112]. In many studies, re-
searchers designed new peptide scaffolds to obtain peptides that could be stable in the
wound environment, and their efficacy in promoting wound healing was demonstrated
in vitro and in vivo [113]. The fusion of peptides and mediators could also form potential
new drugs for the treatment of skin wounds and inflammation. One study was assessed
to analyze the molecular design characteristics of peptide-based hydrogels for improving
wound healing [114]. Transglutaminase (TG) was thus identified from the transcriptomes
of Spirulina, and its free-radical-scavenging potential was evaluated. With the help of an
electrostatically spun chitosan/polyvinyl alcohol nanofiber pad, this TG could promote
wound healing in vitro [115]. Therefore, we expect to see the design of a carrier that could
carry peptides, maximize the efficacy of peptides, expand the application range of peptides,
and develop more drugs for skin treatment [1].
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7. Discussion

There have been many attempts to explore and develop peptide extraction and syn-
thesis methods to advance beyond traditional models and improve peptide availability.
Therefore, this review summarized these extraction, modification, and synthesis methods
to provide innovative ideas for the efficient utilization of peptides. In addition, it focused
on the peptides that have shown protective and therapeutic effects on the skin. Although
the potential of peptides for skin therapy was found in many organisms, many peptides
with skin therapeutic properties are yet to be discovered. The current literature collection
suggests that peptides are relatively scarce in clinical applications. One possible reason
is that peptides are not easily stored, due to their facility to break down and deteriorate
easily. Therefore, it is necessary to explore new ways to facilitate their clinical applica-
tion, especially regarding their advantages in the skin field which could provide relief
for patients suffering from skin injuries. Based on experimental evidence, it was found
that peptides could affect skin mechanisms by regulating inflammation, oxidative stress,
apoptosis, aging, and autophagy. These findings suggest that peptides can influence many
pathophysiological processes and biochemical signaling pathways. Therefore, peptides
have the potential for use as therapeutic agents for other diseases. The findings provide a
theoretical reference for broader applications of peptides.

8. Conclusions

This review describes the extraction, modification and synthesis of peptides in recent
years, which might provide ideas for the acquisition and development of novel peptides. In
addition, this review highlights possible mechanisms of action of peptides in the treatment
of skin diseases, and these findings suggest peptides could be candidates for the alleviation
and treatment of skin diseases. However, many detailed studies are needed to clarify
whether peptides have the same effect in other pathologies.
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