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Abstract: Photocatalysis is a hopeful technology to solve various environmental problems, but it is
still a technical task to produce large-scale photocatalysts in a simple and sustainable way. Here,
nano-flower β-Bi2O3/TiO2 composites were prepared via a facile solvothermal method, and the
photocatalytic performances of β-Bi2O3/TiO2 composites with different Bi/Ti molar ratios were
studied. The nano-flower Bi2O3/TiO2 composites were studied by SEM, XRD, XPS, BET, and PL. The
PL result proved that the construction of staggered heterojunction enhanced the separation efficiency
of carriers. The degradation RhB was applied to study the photocatalytic performances of prepared
materials. The results showed that the degradation efficiency of RhB increased from 61.2% to 99.6%
when the molar ratio of Bi/Ti was 2.1%. It is a mesoporous approach to enhance photocatalytic
properties by forming heterojunction in Bi2O3/TiO2 composites, which increases the separation
efficiency of the generated carriers and improves photocatalytic properties. The photoactivity of the
Bi2O3/TiO2 has no evident changes after the fifth recovery, indicating that the Bi2O3/TiO2 composite
has distinguished stability.

Keywords: Bi2O3/TiO2; heterojunction; photocatalysts; degradation RhB

1. Introduction

Environmental pollution and destruction are becoming a vertical global crisis. Organic
dye pollutants are directly discharged into water from dyeing textiles. Most dyes, such as
RhB, MB, MR, and EY, are non-biodegradable and carcinogenic, which has brought damage
to environment and human health [1]. Therefore, developing an environmental harmony,
ecological cleanliness, and safe and energy-saving treatment technology for the problem of
environment contamination is the most important immediate challenge that human beings
must face [2–4].

Photocatalysis offers a clean, gentle reaction conditions, an easy procedure, and safe
technology that can degrade the pollution under solar irradiation [4–7]. Photocatalytic
technology plays a significant role in the field of environmental pollution protection [8–10].
Metal oxide semiconductors have garnered great attention in pollution treatment owing
to their cheap and easy synthesis [11,12]. As a classic semiconductor, titanium dioxide
(TiO2) is the one most generally cited in photocatalytic technology in virtue of its chemical
stability, nontoxicity, low price, and high activity [13]. The photocatalytic reaction system
and reaction mechanism of TiO2 were studied [14,15]. In particular, TiO2 photocatalysts
have been explored broadly in the area of environmental pollution and energy transforma-
tion [16–18]. However, the TiO2 photocatalysts also expose many problems, such as the
large band gap (3.2 eV), absorption narrow wavelength range light, easy recombination
with photogenerated electrons, and holes, which bring about lower photocatalytic effi-
ciency, limiting its application [19,20]. For this reason, modification of TiO2 for enhancing
its photocatalytic properties is needed and crucial. Many different means have been tried
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by researchers to change the surface or comprehensive performances of TiO2, for instance,
doping metal [21], structural adjustment [22], and heterogeneous structure [23,24], thereby
promoting the photocatalytic properties. In these modifications, construction of heterojunc-
tions is a promising strategy to improve the separation efficiency of photogenerated charge
carriers. TiO2 united with narrow bandgap semiconductors that are visible-light-responsive
would extend the light absorption range and decrease the combination of photogenerated
charge carriers, for example, TiO2/ZnFe2O4 [25], CdS/TiO2 [26], g-C3N4/TiO2 [27], and
InVO4/TiO2 [28].

Among these visible-light-responsive and narrow band gap semiconductors, bis-
muth oxide (Bi2O3) is an up-and-coming semiconductor to construct heterojunctions with
TiO2, in which the band gap is lower than that of TiO2 [29]. When Bi2O3 is irradiated
with visible light, photogenerated holes of the valence band of Bi2O3 have strong oxida-
tion, which is beneficial to degrade the pollutions. In addition, Bi2O3 has been under
comprehensive study due to its excellent physical and chemical properties, low price, and
non-toxicity [30–32]. Bi2O3 has α, β, γ, δ, ε, andω phases, i.e., six kinds of polymorphs [33].
In particular, β-Bi2O3 possesses high light-absorption performances among the six poly-
morphs, and the band gap is about 2.3 eV [34]. Therefore, the construction of β-Bi2O3/TiO2
heterojunction structures can be carried out to increase the light response and photocat-
alytic performances. However, for the case of β-Bi2O3/TiO2 photocatalytic composites,
the preparation methods are complex, including a two-step procedure, photo-deposition,
deposition-reduction, and impregnation method [35,36].

Here, in this paper, the β-Bi2O3/TiO2 heterojunction photocatalysts were prepared via
a simple, one-step solvothermal method. The influences of the molar ratios of β-Bi2O3/TiO2
on the photocatalytic degradation of RhB for β-Bi2O3/TiO2 were assessed. In the meantime,
the morphology, crystal structure, surface chemical optical state, and photoelectrochemical
properties of photocatalysts were investigated.

2. Results and Discussion
2.1. Characterization of Photocatalysts

Figure 1 shows the XRD patterns of pure Bi2O3, pure TiO2, and Bi2O3/TiO2 photo-
catalysts with different molar ratios of Bi. For the pure TiO2, the diffraction peaks are
at 25.3◦, 37.8◦, 48.1◦, 53.9◦, and 62.7◦, coinciding with (101), (004), (200), (105), and (204)
of the anatase TiO2 (JCPDS No.21-1272) [37]. For pure Bi2O3, the diffraction peaks are
corresponding to β-Bi2O3 [32]. For Bi2O3/TiO2 composites with different molar ratios of Bi,
it is evident that the diffraction peaks are similar to pure TiO2 and correspond to the anatase
TiO2. The diffraction peak of the Bi phase is not observed in Bi2O3/TiO2 composites for
several reasons. The size of Bi is extremely small and highly dispersed, and the doping
amount of Bi is too small [36]. There are similar results in the reported literatures [38]. For
example, Zhu et al. [39] found that Bi2O3/TiO2 lacks the Bi2O3 diffraction even when the
Bi/Ti ratio in Bi2O3/TiO2 was 4.1%.

The morphologies of materials were analyzed via SEM and HRTEM, and the images
are displayed in Figures 2 and 3. In Figure 2a, the pure Bi2O3 reveals a stuffed, coral-like
sphere with a diameter between 50–150 nm. The pure TiO2 exhibits a flower-like structure
(Figure 2b). As shown in Figure 2c–f, the Bi2O3/TiO2 composites in different molar ratios of
Bi display a flower-like structure that is similar to the morphology of pure TiO2. It indicates
that the incorporation of Bi2O3 does not influence the topography of TiO2. In addition, the
diameter of the flower-like structure of Bi2O3/TiO2 composites is between 5 µm–10 µm,
and the thickness diameter of the flower-like structure is about 65 nm. Meanwhile, the EDS
was applied to investigate the elemental contents of 2.1% Bi2O3/TiO2, and the atomic ratio
of Bi/Ti is about 2.9%, as displayed in Table 1.
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Table 1. The elemental contents of 2.1% Bi2O3/TiO2 from EDS.

Element Atomic
Fraction (%)

Atomic Error
(%)

Mass
Fraction (%)

Mass Error
(%) Fit Error (%)

O 61.88 1.29 38.71 0.1 0.61
Ti 37.06 0.38 52.26 0.18 2.57
Bi 1.06 9.03 8.03 9.23 0.19

From the TEM images of Bi2O3/TiO2 composites (Figure 3a), some nanoparticles
with a diameter between 2~3 nm are evenly spread on the TiO2. The HRTEM image of
Bi2O3/TiO2 composites (Figure 3b) shows that the lattice fringe is about 0.335 nm, assigned
to (110) of β-Bi2O3. This indicates that β-Bi2O3 is present in the Bi2O3/TiO2 composites.
Moreover, the crystal lattice fringe of 0.365 nm is corresponding to the (101) plane of anatase
TiO2. This indicates that the Bi2O3 and TiO2 are closely interlinked. Due the deposition
of Bi2O3 on TiO2, it could be profitable to the carriers migrate between Bi2O3 and TiO2
and enhance the separation efficiency of carriers as well as the photocatalytic properties.
Furthermore, the crystallite size of Bi2O3/TiO2 composites decreased compared with Bi2O3
and TiO2 [40].

The chemical compositions and element valence state of 2.1%Bi2O3/TiO2 photocata-
lysts were studied through XPS. Figure 4a displays the XPS survey scan of 2.1%Bi2O3/TiO2,
which demonstrates that the presence of Bi, O, and Ti elements can be seen in Bi2O3/TiO2
composites. It indicates that the Bi2O3/TiO2 composites managed to compound by
solvothermal method. The high-resolution XPS for Bi 4f of Bi2O3/TiO2 composites is
displayed in Figure 4b, and the two main peaks at 159.19 eV and 164.43 eV are correspond-
ing to the Bi 4f7/2 and Bi 4f5/2, respectively, which indicates the presence of Bi3+ [41]. In
additional, the peaks at 157.43 eV and 162.63 eV are attributed to the Bi 0 (metallic Bi) [42],
indicating that the Bi3+ and metallic Bi are both in Bi2O3/TiO2 composites. Ti 2p peaks
of Bi2O3/TiO2 composites are fitted by two XPS peaks (Figure 4c), and the two peaks at
458.19 eV and 463.81 eV are assigned to Ti 2p3/2 and Ti 2p1/2, respectively, showing the
existence of Ti4+ [43]. The high-resolution XPS O1s of Bi2O3/TiO2 composites located at
529.36 eV, 530.04 eV, and 531.71 eV belong to lattice oxygen in Bi-O of Bi2O3, Ti-O of TiO2,
and surface absorbed hydroxyl groups, respectively (Figure 4d) [44]. It is worth noting
that the binding energies of Ti 2p and O1s in 2.1% Bi2O3/TiO2 are shifted towards lower
binding energies compared to TiO2, while Bi 4f binding energy is shifted to high binding
energy compared to B2O3. In conclusion, the XPS results indicate strong interactions and
electron transfer between Bi2O3 and TiO2 in Bi2O3/TiO2.

The specific surface areas are important elements to influence the catalytic properties.
Therefore, the nitrogen adsorption–desorption isotherm was employed to evaluate the
BET surface area of β-Bi2O3, TiO2, and Bi2O3/TiO2 photocatalysts, and the results are
shown in Figure 5. The isotherms of all photocatalysts are typical type IV, and the H3
hysteresis loop in the light of IUPAC classification can be observed [45]. It indicates that
the β-Bi2O3, TiO2, and Bi2O3/TiO2 photocatalysts are mesoporous structures. The BET
specific surface areas of β-Bi2O3, TiO2, and Bi2O3/TiO2 photocatalysts are 3.1, 8.7, and
42.0 m2/g, respectively. Apparently, the specific surface area of Bi2O3/TiO2 composites is
considerably increased after the fusion of Bi2O3 on TiO2 compared with pure TiO2. With
the increase of calcination temperature, Bi5O7NO3 gradually transformed to β- Bi2O3,
and the following decomposition reaction (Bi5O7NO3 → 5/2Bi2O3+NO+3/4O2) occurs
at the calcination temperature. The products of NO and O2 during the decomposition of
Bi5O7NO3 will affect the crystallization process of TiO2, thus making the TiO2 structure
looser and producing many pores, increasing the specific surface area of the composite.
From the SEM results, it can be seen that more holes are formed after the combination of
Bi2O3 and TiO2, increasing the specific surface area. In addition, it was reported that the
higher specific surface area was frequently accompanied by higher adsorption properties
and active sites [46]. Therefore, the Bi2O3/TiO2 composites have a higher adsorption
capacity and active sites, indicating the improvement of photocatalytic properties.
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2.2. Analysis of Optical and Photoelectrochemical Performances

The optical properties of pure Bi2O3, pure TiO2, and Bi2O3/TiO2 composites were
assessed through UV–vis DRS. As displayed in Figure 6a, obviously, the absorption edge
of TiO2 is about 400 nm in the UV spectrum. However, the Bi2O3 has a larger absorption
range, and the absorption edge is about 500 nm. For Bi2O3/TiO2 composites, the absorp-
tion edges are red-shifted in comparison to the pure TiO2, particularly 2.1% Bi2O3/TiO2
composites. Therefore, after incorporation of Bi2O3, it is profitable to increase the light
energy acquirement and visible light absorption for pure TiO2. It would help to separate
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the photogenerated carriers and increase the properties of degradation of RhB. Further,
the Kubelka–Munk formula (αhυ = A(hυ − Eg)n/2) was employed to count the band-gap
energy of catalysts [47]. The band gap of pure TiO2, pure Bi2O3, and 2.1% Bi2O3/TiO2
samples are about 3.1 eV, 2.72 eV, and 2.79 eV, respectively (Figure 6b).
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Photoluminescence (PL) was applied to measure the separating efficiency of photogen-
erated electrons and holes of prepared samples because of its high sensitivity and because
it does not destroy contaminated samples. Figure 7 shows the PL results of pure TiO2, 1.3%
Bi2O3/TiO2, 2.1% Bi2O3/TiO2, 2.9% Bi2O3/TiO2, 3.7% Bi2O3/TiO2, and 5% Bi2O3/TiO2,
respectively. It is evident that the PL intensities of all Bi2O3/TiO2 photocatalysts are less
than that of pure TiO2, implying that the construction of Bi2O3/TiO2 restrains the regroup
of photogenerated electrons and holes. Meanwhile, the 2.1% Bi2O3/TiO2 composite has
the lowest intensity, which implies that the separation efficiency of photoinduced carriers
is highest, corresponding to the high degradation rate of RhB [45].
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2.3. Photocatalytic Performance Analysis

The photocatalytic properties of pure TiO2, pure Bi2O3, and Bi2O3/TiO2 composites
were assessed by degrading the RhB via simulation sunlight, and the consequences are
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displayed in Figure 8. The experiment is divided into two steps: first, in order to achieve
concentration balance, the photocatalysts adsorbed the RhB for 30 min under dark re-
actions; then, the photocatalysts were illuminated under simulated sunlight by xenon
lamp. Figure 8a presents the impact of Bi2O3 ratio on TiO2 photocatalytic properties. It is
found that the pure Bi2O3, pure TiO2, and Bi2O3/TiO2 composites have lower absorption
ability in the dark after 30 min. However, the photocatalytic performances of Bi2O3/TiO2
composites with simulated sunlight increased first with the enhancement of Bi2O3 content,
and the 2.1% Bi2O3/TiO2 composites exhibited exceptional photocatalytic abilities. The
degradation rate of RhB can reach 99.6% under the irradiation of simulation sunlight for
60 min, which is about 0.63 of the time and six times better than pure TiO2 and pure Bi2O3,
respectively. It is mainly because of the constitution of the heterojunction between Bi2O3
and TiO2, which restricts the combination of carriers and thus enhances the photocatalytic
properties of the photocatalyst. However, the photocatalytic properties of Bi2O3/TiO2
catalysts declined when increasing the Bi2O3 content from 2.9% to 5%, which may be the
result of the aggregates of the Bi2O3 and the drop of active sites. On the other hand, the
excessive Bi2O3 can be considered as the recombination center, which results in the decrease
of photocatalytic properties. The excessive Bi2O3 would influence the transmission of light
between the Bi2O3 and TiO2, blocking the motivation of TiO2 and resulting in reducing the
photocatalytic efficiency of photocatalysts [48]. Moreover, the catalytic performances of
different Bi2O3/TiO2 reported in other papers were compared, and the details are listed in
Table 2. It can be seen that the β-Bi2O3/TiO2 photocatalyst in this work shows the efficient
photocatalytic performance for photodegradation RhB.
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Figure 8. (a) Photocatalytic degradation RhB of catalysts, (b) reaction kinetic constants for degrada-
tion, (c) recycle stability of 2.1% Bi2O3/TiO2 composites for RhB degradation, and (d) the XRD of
before photodegradation and five cycles of photogradation of 2.1% Bi2O3/TiO2 composites.
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Table 2. Comparative performance of Bi2O3/TiO2 materials for photocatalytic dye photodegradation.

Catalyst Degradation Time
(min)

Performance
(Efficiency (%)) Light Source Reference

β-Bi2O3/TiO2 60 min 100% Simulated sunlight this work
Bi2O3/TiO2 nanofiber 120 min 65% Simulated sunlight [45]

Bi2O3/TiO2-Ph 120 min 87% Visible light [35]
Bi2O3/TiO2 75 min 99% Visible light [49]

TiO2/Bi2O3-g-C3N4 120 min 98% Ultraviolet light/sunlight [50]
Ag-Bi2O3-TiO2 90 min 100% Full-spectrum light irradiation [51]

Meanwhile, the first-order reaction rate constant (k) determined by quasi-first-order
kinetic model was applied to study the photocatalytic processes. As shown in Figure 8b,
the k values of TiO2, Bi2O3, 1.3%Bi2O3/TiO2, 2.1% Bi2O3/TiO2, 2.9% Bi2O3/TiO2, 3.7%
Bi2O3/TiO2, and 5% Bi2O3/TiO2 are 0.03654 h−1, 0.0034 h−1, 0.04315 h−1, 0.07729 h−1,
0.05717 h−1, 0.05568 h−1, and 0.05397 h−1, respectively. It is obvious that the k value
of 2.1% Bi2O3/TiO2 composites is the maximum, which is 2.1 and 22.7 times of TiO2
and Bi2O3, respectively. The result shows that the 2.1% Bi2O3/TiO2 composites display
preferable photocatalytic activity compared to other catalysts. In addition, the recycling
stability of the 2.1% Bi2O3/TiO2 composites was assessed. As represented in Figure 8c, the
photocatalytic activity of 2.1% Bi2O3/TiO2 composites not to have obvious change after five
trials, indicating the outstanding stability and repeatability. Further, in order to verify the
stability of 2.1% Bi2O3/TiO2 composites, the XRD was employed to analyze the structure
of 2.1% Bi2O3/TiO2 composites before and after five trials, as shown in Figure 8d. It can be
seen that there is no obvious change in 2.1% Bi2O3/TiO2 composites before and after five
trials, which also implies the stability of Bi2O3/TiO2 composites.

Based on the above analysis, a potential degradation mechanism is put forward. As
represented in Figure 9, when the Bi2O3/TiO2 photocatalyst is illuminated by simulated
sunlight, the photogenerated electrons (e−) are activated and diverted from the CB of
TiO2 to the CB of Bi2O3 via the interface of Bi2O3/TiO2 composites; meanwhile, the holes
(h+) are transferred from the VB of Bi2O3 to the VB of TiO2; therefore, the photoinduced
holes accumulate in the heterojunction interface, which is favorable for the separation of
photogenerated electrons and holes. The photogenerated electron and holes could have
the following reactions [52]: On the one hand, the electrons react with O2 in the solution
to produce •O2

−. Then, the H+ react with the •O2
− to generate H2O2, which then reacts

with electrons to transform •OH. On the other hand, the h+ on the VB of TiO2 oxides
the H2O/OH- to form •OH radicals for RhB degradation. Therefore, the Bi2O3/TiO2
composites have higher photocatalytic activity.
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3. Experimental
3.1. Chemicals

Titanium tetrachloride was purchased from Shanghai Nuotai Chemical Co., Ltd,
Shanghai, China. Sinopharm Chemical Reagent Co., Ltd, Shanghai, China. provided
nitric acid (HNO3, AR), bismuth nitrate pentahydrate (Bi(NO3)3·5H2O, AR), and sodium
bicarbonate (NaHCO3, AR). Sodium hydroxide (NaOH, AR) and glycerol were obtained
from Xilong Chemical Co., Ltd, Guangzhou, China. Ethanol (CH3CH2O, AR) was obtained
from Aladdin. Rhodamine B was provided by Shanghai Yuanye Biotechnology Co., Ltd,
Shanghai, China.

3.2. Preparation of β-Bi2O3/TiO2 Photocatalysts

Bi(NO3)3·5H2O, 30 mL glycerin, and 20 mL ethanol were mixed together and then
stirred for 30 min and sonicated for 1 min. The mixtures were poured into a Teflon-sealed
reactor. Titanium tetrachloride was added drop by drop into the solution. Then, the Teflon-
sealed reactor was put into an oven and heated for 48 h at 110 ◦C. When the temperature
dropped to 25 ◦C, the reaction productions were collected and washed with ethanol several
times and dried at 80 ◦C for 6 h to obtain the material. The material was calcined at 375 ◦C
for 4 h to obtain the product. The molar ratios of Bi/Ti in the composites were settled
at 1.3%, 2.1%, 2.9%, 3.7%, and 5.0%, which were calculated by theoretical methods. The
as-prepared photocatalytics were denoted as 1.3%, 2.1%, 2.9%, 3.7%, and 5.0% Bi2O3/TiO2,
which are based on the molar ratio of Bi/Ti. As a comparison, pure Bi2O3 and TiO2 samples
were prepared with the same procedure.

3.3. Characterization

The crystal structure was studied by a X-ray diffraction (XRD, RiGdku, RINT2000
with Cu K α radiation (λ = 0.15418 nm). The morphologies of photocatalysts were studied
through a field-induced emission scanning electron microscope (FESEM, JSM-6700F). The
transmission electron microscopy (TEM) was employed by JEM-2010F, and the accelerating
voltage was 200 kV. The Brunauer–Emmett–Teller (BET) specific surface area of prepared
photocatalysts was recorded on a Quantachrome NOVA 2000e. A UV–vis scanning spec-
trophotometer (UV–vis/DRS, SHIMADZU UV-2450) was applied to investigate the optical
properties of the prepared photocatalysts. The photoluminescence (PL) was measured by
a Hitachi F4500 fluorescence spectrometer. The X-ray photoelectron spectroscopy (XPS,
ESCALAB MK II) was employed to analyze the elemental compositions of the samples.
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3.4. Photocatalytic Activity Analysis

The photocatalytic properties of all photocatalysts were analyzed by degrading rho-
damine B (RhB) with simulation sunlight illumination. The illuminant was a 300 W Xe lamp
(PLS-SXE300, Beijing Park Lay Technology Co., Ltd., Beijing, China), and the light intensity
was 100 mW/cm2. Briefly, the photocatalyst (50 mg) was placed into 60 mL of 20 mg/L of
RhB solution. Before exposure to light, the mixture solution was stirred for 30 min to obtain
adsorption equilibrium. Then, 3 mL of solution was extracted and centrifuged at 20 min
intervals. The RhB concentration was recorded through the UV–vis spectrophotometer.
The stability of Bi2O3/TiO2 photocatalyst was studied via five recycling experiments, and
the results were the average value of three samples.

4. Conclusions

In this study, flower-like Bi2O3/TiO2 photocatalysts were successfully prepared by
solvothermal route, and XRD, SEM, TEM, XPS, BET, UV–vis, and PL were employed to
analyze the morphology and properties of the photocatalysts. The influence of doped
Bi2O3 content on TiO2 photocatalytic efficiency was determined. The XRD results implied
that the presence of Bi2O3 did not destroy the lattice structure of TiO2. The photocatalytic
properties of materials were studied via RhB degradation. A significantly improvement in
photoactivity was obtained when the heterojunction was created between Bi2O3 and TiO2.
Further, the 2.1% Bi2O3/TiO2 photocatalyst has the best degradation efficiency, which is
99.6% degradation of RhB at 60 min. It is mainly because the heterojunction in Bi2O3/TiO2
strengthens the movement and separation of carriers and then enhances the photocatalytic
properties of the Bi2O3/TiO2.
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