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Abstract: The development of tunable molecule separation membranes requires materials with
remote controllability and ultra-high separation capability. In this paper, a novel photoswitchable
metal organic framework (MOF) thin film (Cu2(AzoBPDC)2) was prepared by liquid phase epitaxial
layer-by-layer assembly to realize the reversible remote-controlled switching. The azobenzene side
groups in the Cu2(AzoBPDC)2 thin film showed excellent reversible photoswitching performance
under UV (365 nm) and Vis (450 nm) irradiation, achieving the remote-controlled mode of the
diffusion flux of polar gas molecules in the MOF thin film.

Keywords: metal–organic frameworks; azobenzene; photoswitchable; gas separation

1. Introduction

Due to its remote-controllable physical and chemical properties, smart materials have
been widely taken into consideration and enabled a variety of specific advanced applica-
tions [1–4]. Light stimulus enables the on/off function of the photoswitchable materials in
remote-controlled mode in comparison with other external stimuli (such as temperature,
electric field, pH value) and is considered to be the most-prospective technology. In recent
years, various photoswitchable molecules have been reported [5–8], and since the cis-form
azobenzene was first discovered under UV irradiation [9], azobenzene has become the
most widely studied photoswitchable molecule between trans and cis [10–12]. As a smart
material, photoswitchable azobenzene-containing metal organic frameworks (MOFs) with
periodic nano-porous structures [13–15], high specific areas, and structural designability
are particular promising and interesting. The physical and chemical properties and pore
structure of photoswitchable azobenzene-containing MOFs could be remotely controlled
by changing the external light stimulus [16,17]. Based on this, it can be applied in gas sepa-
ration, such as adjusting the size of the pore by light stimulus, so as to realize the efficient
separation of gas or liquid mixtures. In this context, the photoswitchable azobenzene-
containing MOFs hold a substantial potential application in separation, since they offer a
low-cost, energy-saving, and environmentally friendly alternative to traditional separation
technology [5,18].

To obtain the photoswitchable azobenzene-containing MOFs, azobenzene units are
usually integrated (or filled) into the MOF structure as a functional group (or a guest
molecule) [19–21]. However, the filling of azobenzene molecules into the MOF channels
has certain requirements on the pore size of the MOFs [2,22], and isomerization may be
hampered due to the restricted space; however, azobenzene, as the side group of the MOFs,
can overcome this difficulty. The introduced azobenzene units as dangling groups have
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enough free space for the trans-to-cis conversion. In addition, there are only a few cases
based on photoswitchable MOFs, especially photoswitchable MOF thin films. Therefore,
it is of great significance to design and prepare novel photoswitchable MOF thin films to
enrich their structures and properties.

Here, we report a novel photoswitchable MOF thin film with azobenzene units as the
side groups. The Cu2(AzoBPDC)2 thin film was prepared by the liquid phase epitaxial
layer-by-layer assembly technique [23] using AzoBPDC and copper acetate as precursors,
as shown in Scheme 1. The micropores’ structure and the surface properties of the thin
films can be adjusted by illuminating them with different wavelengths of light based on the
switching of the azobenzene side groups, and then, the diffusion flux of the gas molecules
in the thin film can be controlled remotely.
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2. Results and Discussion

Firstly, to explore the structure of the Cu2(AzoBPDC)2 thin film, XRD and IRRAS
were employed. As shown in Figure 1a, the prepared Cu2(AzoBPDC)2 thin film exhib-
ited a highly oriented and crystallinity structure with diffraction peaks at 5.8◦ and 11.8◦,
corresponding to the crystal planes of (001) and (002), respectively, exhibiting a similar
SURMOF-2 structure based on a regular packing of (Cu++)2-carboxylate paddle-wheel
planes with a P4 symmetry, a series of isoreticular MOF structures described in the previous
work [24]. The results were consistent with the simulated data, indicating the successful
synthesis of the MOF film. As can be seen from IRRAS (Figure 1b), there were no bands
between 1800 and 1600 cm−1, demonstrating that no free carboxyl group existed in the
MOF film. In addition, the strong characteristic bands in the range of 1600–1400 cm−1

can be attributed to the symmetric stretching vibration of carboxylate [25]. The IRRAS
analysis showed that the AzoBPDC functional unit formed an excellent coordination with
the copper ions, reconfirming the successful acquisition of the Cu2(AzoBPDC)2 thin film.

To the best of our knowledge, the thickness and surface roughness of thin films have a
strong impact on the quality and optical and gas separation properties of thin films. There-
fore, the surface and cross-section of the prepared thin film were subsequently investigated
by FE-SEM. As shown in Figure 1c, the surface SEM image of the Cu2(AzoBPDC)2 thin film
displayed a relatively flat and evenly distributed surface structure. Note that the uniformity
and high flatness of the film were more conducive to the subsequent study of the optical
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and gas separation performance. From the cross-section of the Cu2(AzoBPDC)2 thin film
(Figure 1d), it can be observed that the prepared thin film was very dense with a thickness
of about 400 nm, further proving that the prepared thin film was ultra-high quality and
could meet the follow-up research.
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Figure 1. (a) XRD patterns of Cu2(AzoBPDC)2 film; (b) IRRAS of Cu2(AzoBPDC)2 film; SEM images
of Cu2(AzoBPDC)2 thin film (c) surface; (d) cross-section.

To investigate the photoswitching of the azobenzene moieties in the Cu2(AzoBPDC)2
thin film, UV–Vis, IRRAS, and PL were performed. In Figure 2a, it can be observed that the
azobenzene π-π* band (near 350 nm) significantly decreased under the UV irradiation with
a Xe lamp with a 365 nm wavelength. Afterwards, the thin film was illuminated with visible
light (a Xe lamp with a 450 nm wavelength), and the azobenzene π-π* band (near 350 nm)
increased and was restored to the initial state. These results are consistent with a previous
report [21]. These intensity variations in the UV–Vis spectra clearly show the trans-to-cis
isomerization caused by the UV irradiation and the opposite change by the visible light
irradiation. Meanwhile, IRRAS was used to further characterize the photo response of
the MOF thin film by irradiation with UV and visible light. As shown in Figure 2b, upon
irradiation with UV light, the intensities of the trans azobenzene bands at 775 and 690 cm−1

decreased, while that of the cis azobenzene band at 672 cm−1 increased. [26] Additionally,
the cis band decreased and trans band increased under visible light irradiation, further
confirming the photoswitching properties of the Cu2(AzoBPDC)2 thin film. Furthermore,
the reversible changes of the vibration band at around 738 cm−1 could be also due to the
reversible photoswitching of the azobenzene bands. The PL spectrum provided additional
evidence of the light response of the Cu2(AzoBPDC)2 thin film, as shown in Figure 2c.
The PL emission intensity of the thin film decreased after irradiation with UV, indicating
that the excitation photons were reduced. Then, when exposed to visible light, the PL
emission intensity can be enhanced and restored to the pristine state, with an increase in
the excitation photons, which is consistent with the results of the UV–Vis spectra. The
above optical experiments proved the successful synthesis of the photoswitched MOF film,
and the photo response group (azobenzene) could smoothly carry out photoisomerization
in the MOF channels. Moreover, the crystallinity before and after the photo response was
measured to verify the stability of the film. As depicted in Figure 2d, the XRD of the thin
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film before and after UV–Vis irradiation had no obvious change, showing that the structure
of the Cu2(AzoBPDC)2-MOF will not be destroyed by the process of the photo response.
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film before and after UV–Vis irradiation performed once.

The photoisomerization of the azobenzene side group usually changes its dipole
moment and, thus, the polarity of the MOF (note that the dipole moments of cis and
trans azobenzene are about 3.2 and 0 D, respectively [20]). One hypothesis may explain
the different effects of the photoswitching on the diffusion flux of the gas molecules,
namely the different interaction between the gas molecules and frameworks, depending
on the polarity of the gas molecules. To test this hypothesis, the gas separation perfor-
mance of the Cu2(AzoBPDC)2 film in the trans and cis states was investigated. Three
polar molecules (methanol, acetone, and acetonitrile) and three non-polar molecules
(ether, trichloromethane, and benzene) were selected to test their diffusion flux in the
Cu2(AzoBPDC)2 film. As shown in Figure 3a–c, when the sample is irradiated by UV, the
azobenzene side group changes from trans to cis, resulting in the increased polarity of the
MOF thin film. Consequently, as the polar gas molecules pass through the MOF film, they
quickly diffuse into the Cu2(AzoBPDC)2 film due to the dipole interaction, thus increasing
the diffusion flux of the polar molecules. Then, the isomerism of the azobenzene side group
reverses under visible light irradiation, and the gas diffusion flux returns to the initial state.
When the non-polar gas molecules pass through the UV-irradiated MOF film, they generate
a weaker dipole interaction, which results in the diffusion flux of the non-polar molecules
not changing significantly from the pristine state (Figure 3e,f). It can be concluded that
the diffusion flux of the polar molecules through the MOF film significantly varies before
and after the photo response of the azobenzene side groups, while that of the non-polar
molecules does not. Additionally, by comparing the diffusion flux of gas molecules under
different conditions (Table 1), it was found that the diffusion flux was closely related to the
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polarity of the gas molecules, that is the greater the polarity of the molecules, the faster the
diffusion flux of the MOF film with the cis states. Therefore, the diffusion flux of the polar
gas of the prepared MOF film can be remotely controlled by irradiation and has a bright
application prospect in the field of gas separation as a smart material.
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Table 1. Diffusion flux of polar and non-polar gas molecules under different conditions (pristine and
under UV–Vis irradiation).

Methanol
(mL/(min·cm2)

Acetonitrile
(mL/(min·cm2)

Acetone
(mL/(min·cm2)

Trichloromethane
(mL/(min·cm2)

Diethyl Ether
(mL/(min·cm2)

Benzene
(mL/(min·cm2)

Pristine 0.05456 0.05533 0.02268 0.13389 0.10994 0.06369
Cis 0.16177 0.16828 0.03949 0.13987 0.13648 0.06019

Trans 0.05540 0.05464 0.02280 0.13771 0.11639 0.06294
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3. Materials and Methods
3.1. Materials’ Preparations

The chemicals were purchased from Aladdin or Sinopharm Chemical Regents Co.,
Ltd. (Shanghai, China) and used without further purification. The synthesis of AzoBPDC
was based on a previous report [1]. The details of the synthesis (Figure S1) and 1H NMR
spectrum (Figure S2) of AzoBPDC are shown in the Supporting Information.

The functionalization of the substrate: Firstly, the quartz glass or Al2O3 substrate was
soaked in anhydrous ethanol for 10 min, then washed with anhydrous ethanol three times,
dried, and placed in the ultraviolet irradiation instrument for 10 min before the preparation
of MOF thin films. For the gold substrate, it was soaked in a 16-mercaptohexadecanoic
acid (MHDA) solution for 12 h to form the self-assembled monolayer. Subsequently, it was
washed with anhydrous ethanol three times and then dried before the preparation of the
MOF thin films.

The preparation of the Cu2(AzoBPDC)2 thin films: Typically, the substrate was first fixed
on the sample support, and then, the copper acetate monohydrate (Cu(OAc)2·H2O: 1 mM)
ethanolic solution and AzoBPDC (2-phenyldiazo-4,4’-biphenyl dicarboxylic acid, 0.2 mM)
ethanolic solution were sequentially added dropwise into the rotating functionalized
substrate (500 rad/min) for 15 s. Between each step, the substrate was rinsed with pure
ethanol for 10 s to remove residual reactants. A continuous cycling (60 cycles) of the above
steps allowed growing a high-quality Cu2(AzoBPDC)2 thin film on the substrate. Before
the further experiments and characterizations, all of the MOF thin films were activated in
an oven at 60 ◦C for 24 h to remove the residual solvent.

3.2. Characterizations

The structure and morphology of all the samples were characterized by X-ray diffrac-
tion (XRD), Fourier transform infrared (FT-IR) spectroscopy, and field emission scan-
ning electron microscopy (FE-SEM). The photoswitching of the Cu2(AzoBPDC)2 thin
film was explored with the ultraviolet–visible (UV–Vis) absorption spectrum, infrared
reflection absorption spectroscopy (IRRAS), and steady/transient state fluorescence spec-
trometry (PL). The detailed instrument model and test methods are documented in the
Supporting Information.

3.3. Measurement of Diffusion Flux of Gas Molecules

The diffusion flux of the gas molecules was measured by a home-made device, as
shown in Figure S3, which consisted of an upper cavity and a lower cavity. The detailed
method was as follows: firstly, the organic solvent was injected into the lower cavity, and
then, the prepared Cu2(AzoBPDC)2 thin film (Al2O3 substrate) was placed in the middle of
the upper and lower cavity. Subsequently, the switch valve at the top of the device was
connected to a drying tower, a pressure test table, a control valve, and a multi-purpose
vacuum pump in turn. Finally, the vacuum pump was opened and the pressure kept
at 0.08 Mpa. Then, the control valve was slowly opened to stabilize the pressure of the
pressure gauge at 0.08 Mpa. At this time, the solvent in the lower cavity was gradually
vaporized and diffused through the prepared Cu2(AzoBPDC)2 thin film. During this
process, the specific value of the remaining solvent could be read out by the scale of the
lower cavity.

4. Conclusions

To enrich the structure of photoswitchable MOF films, a new azobenzene-based
MOF (Cu2(AzoBPDC)2) film was prepared by the layer-by-layer self-assembly spraying
method, and its impact on the diffusion flux of the gas molecules was explored. The
photoisomerization of the azobenzene side groups in the MOF film, caused by UV–Vis
irradiation, was verified by the UV–Vis, IRRAS, and PL spectra. Diffusion experiments
of different gas molecules showed that the effect of the photoswitching of azobenzene
in Cu2(AzoBPDC)2 films on the diffusion flux mainly depends on the polarity of the gas
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molecules (here, polar molecules). When the azobenzene side groups in MOF channels
switch to the cis state, the diffusion flux of the polar molecules significantly increases, but
that of the non-polar molecules does not change. Furthermore, the diffusion flux of the gas
molecules increased to some extent with its polarity. This work not only further enriches
the structure of photoswitchable MOF films, but also lays the foundation for the large-scale
application of future smart materials.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28020877/s1, Figure S1: Synthesis of AzoBPDC; Figure
S2: 1H NMR spectrum of AzoBPDC; Figure S3: The device diagram of the gas separation experiment.
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