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Abstract: Carbon microcoils (CMCs) were formed on stainless steel substrates using C2H2 + SF6

gas flows in a thermal chemical vapor deposition (CVD) system. The manipulation of the SF6 gas
flow rate and the SF6 gas flow injection time was carried out to obtain controllable CMC geometries.
The change in CMC geometry, especially CMC diameter as a function of SF6 gas flow injection time,
was remarkable. In addition, the incorporation of H2 gas into the C2H2 + SF6 gas flow system with
cyclic SF6 gas flow caused the formation of the hybrid of carbon nanofibers–carbon microcoils (CNFs–
CMCs). The hybrid of CNFs–CMCs was composed of numerous small-sized CNFs, which formed on
the CMCs surfaces. The electromagnetic wave shielding effectiveness (SE) of the heating film, made
by the hybrids of CNFs–CMCs incorporated carbon paste film, was investigated across operating
frequencies in the 1.5–40 GHz range. It was compared to heating films made from commercial carbon
paste or the controllable CMCs incorporated carbon paste. Although the electrical conductivity of
the native commercial carbon paste was lowered by both the incorporation of the CMCs and the
hybrids of CNFs–CMCs, the total SE values of the manufactured heating film increased following the
incorporation of these materials. Considering the thickness of the heating film, the presently measured
values rank highly among the previously reported total SE values. This dramatic improvement in
the total SE values was mainly ascribed to the intrinsic characteristics of CMC and/or the hybrid of
CNFs–CMCs contributing to the absorption shielding route of electromagnetic waves.

Keywords: controllable carbon microcoils; hybrid of carbon nanofibers-carbon microcoils; carbon
paste; heating film; electromagnetic wave; shielding effectiveness; absorption shielding route

1. Introduction

The trend toward miniaturization and multifunctionality of electronic devices has
exacerbated the problem of electromagnetic interference (EMI). As the applicable frequency
range of electronic devices enters the higher frequency region, the shielding of electro-
magnetic wave radiation emitted from electronic devices is required to prevent not only
the malfunction of other electronics, but also a significant threat to human health. This is
because increased exposure can cause the device to malfunction and affect human health.
The only solution to prevent damage from harmful radiation and protect electronics is to
provide a shield that filters out the interference.

The shielding of electromagnetic waves typically proceeds via three main routes:
reflection loss, absorption loss, and internal reflection loss [1]. For an absorption loss route
greater than 10 dB, reflection and absorption loss routes are usually regarded as the main
shielding routes [1–4]. In the relatively low-frequency range (typically less than 2.0 GHz),
the reflection loss route is thought to be the crucial mechanism for preventing EMI [4,5].
However, at high operating frequencies (above 2.0 GHz), the absorption loss route is
considered the main mechanism for preventing EMI [4,5]. High electrical conductivity is
the key parameter for the shielding mechanism via the reflection loss route, while both high
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electrical conductivity and high magnetic permeability are important parameters for the
shielding mechanism through the absorption loss route [1,5]. Therefore, in a relatively low
frequency range, conductive metals, such as copper and aluminum, seem to be appropriate
materials for EMI shielding via the reflection loss route. However, at higher operating
frequencies, carbon-based materials would be the optimal materials through the absorption
loss route because carbon-based materials can possess high magnetic field characteristics.
Furthermore, carbon-based materials are lightweight and moldable [6–8]. Therefore, carbon-
based materials are preferred as optimal materials for electromagnetic wave shielding in the
relatively high operating frequency range for portable electronics, automobile electronics,
and avionic electronic devices [5,9–11].

Recently, carbon-based heating films have been introduced as replacements for con-
ventional heating systems [12–17]. They commonly consist of a substrate film made from
polymers such as polyethylene terephthalate (PET). Next, they are coated with electrically
resistive materials and are electrically contacted by busbars. The applicable materials for
carbon-based heating films include carbon nanotubes (CNTs) [12,13], graphene oxide [14],
reduced graphene oxide [15,16], and graphene nanoplatelets (GNPs) [17]. The materi-
als used in busbars are commonly composed of silver, aluminum, and copper, and are
laminated with another layer of insulating film, usually having similar characteristics to
the substrate. Conductive polymers can occasionally be used together with carbon-based
nanomaterials to improve the electrical conductivity of carbon-based films [18]. Thus,
carbon-based heating films are made of stacks comprised of many individual functional
films, which can give rise to efficient heat-dissipating capabilities. This heating film system
has several advantages, such as energy savings, eco-friendliness, and durability. A difficult
problem in the application of a heating film is the shielding of electromagnetic waves
emitted from the heating source in the film.

To date, there are some reports of heating films being used to shield against electro-
magnetic interference. Lee et al. registered a patent concerning a film-type planar heating
element that can be used to prevent electromagnetic waves from generating heat in the
form of multiple layers of films [19]. Kim et al., registered a patent for a production method
of heating films to be used in electromagnetic wave shielding applications [20]. Kang
et al.suggested a method for generating heat on a large-area graphene film more efficiently
by utilizing the unique electromagnetic wave absorption properties of graphene [21].

Lin et al. showed that graphene exhibits a higher electron shielding effect than
CNT. In addition, it was shown that when CNT and graphene were hybridized, electrical
conductivity was improved by about eight times [22]. In previous research results, materials
with a three-dimensional structure, compared to one-dimensional shielding materials, have
higher electromagnetic wave shielding effects [23]. We introduce carbon microcoils (CMCs)-
related materials, as a three-dimensional structure, in the manufacturing of heating films
which can be used as shielding agents against electromagnetic waves. CMCs exhibit
unique helical geometries [24]. When an incoming electromagnetic wave reaches the
CMCs, electric current flows through helically oriented individual carbon fibers (CFs)
situated on the CMCs, thereby inducing an electromotive force and generating a variable
magnetic field [25–27]. Finally, the incoming electromagnetic wave energy is absorbed
into the unique geometries of CMCs and converted into thermal energy [26]. Previously,
we reported an increase in the shielding effectiveness (SE) of the CMCs–polyurethane
composites with increasing content of CMCs [28]. Kim et al. reported that the SE of
a hybridized carbon microcoil–carbon fiber nonwoven fabric increased slightly [29]. In
addition, diverse hybrid formations using carbon-based materials have been developed to
enhance the SE values [29–31]. These combined results clearly suggest that the formation
of CMCs-related materials could enhance SE values.

In the present work, controllable CMCs were obtained by manipulating the additive
gas, SF6, and flow injection time. In addition, the hybrid formation of numerous small
carbon nanofibers (CNFs) on the surfaces of CMCs (CNFs–CMCs) can be achieved by the
injection of H2 flow with the cyclic process of SF6 flow. The SE of the heating film made
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from the CNFs–CMCs hybrid material incorporated with carbon paste was investigated
across the operating frequencies in the 1.5–40 GHz range. The results were compared with
those for heating films made using a native commercial carbon paste or controllable CMCs-
incorporated carbon paste. The morphologies and electrical conductivities of different types
of heating films were investigated. The main shielding mechanism of the heating film made
from the hybrids of CNFs–CMCs incorporated carbon paste is suggested and discussed.

2. Results and Discussion

Figure 1 shows the magnified FESEM images of the surface morphologies for samples
A–I. Under a flow rate of 20 sccm SF6, the diameters of the CMCs increased with the SF6
flow injection time (see Figure 1a–c). Under the 50 sccm and 100 sccm SF6 flow rates,
the CMCs diameters also tended to increase with increasing SF6 flow injection time (see
Figure 1d–f and Figure 1g–i, respectively). This reveals that the lowest SF6 flow injection
time in this study (5 min) can give rise to the CMCs with the smallest diameters, irrespective
of the SF6 flow rate. In addition, Figure 1 shows that overall the diameters of the CMCs are
independent of the SF6 flow rate. These results strongly suggest that the SF6 flow injection
time, instead of the SF6 flow rate, can directly influence the formation of CMCs with a
specific diameter.
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(f) F, (g) G, (h) H, and (i) I.

Figure 2 shows FESEM images of sample J, which were obtained by the injection of H2
flow and the cyclic process of SF6 flow. As shown in Figure 2a, a woolen yarn-type surface
is present in sample J. The magnified FESEM image of sample J also indicated the existence
of many small-sized CNFs on the CMCs surfaces (see Figure 2b,c). As previously reported,
the small-sized CNFs around the CMCs seem to have a hybridized aspect between the
CNFs and CMCs by the cyclic process of SF6 flow [32–40]. This result suggests that the
cyclic SF6 flow with the injection of H2 gas could produce CNFs–CMCs hybrids [40].
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The presence of different nanocarbon formation attributes in sample J compared to
samples A–I can be explained as follows. It is known that producing a hybrid nanocarbon
from typical nanocarbon materials, such as CNTs with CNFs and CMCs with carbon
nanocoils, is very difficult because the transition metals used as catalysts to promote hybrid
nanocarbon growth tend to easily diffuse into the interior of the carbon substrate during
the reaction [41,42]. For the surfaces of CMCs during the reaction, the tiny Ni catalysts
used for hybrid nanocarbon growth would not be sufficient because tiny Ni catalysts could
easily diffuse into the interior of CMCs in an amorphous solid state [43–45]. Consequently,
numerous small-sized CNFs could not be formed on the surfaces of the CMCs of samples
A–I because of the lack of tiny Ni catalysts on the surfaces of the CMCs during the reaction.

However, a previous report revealed that the injection of H2 gas into the flow of C2H2,
and an abundant C2H2 gas flow relative to the SF6 gas flow in the reaction environment
are known to facilitate the formation of numerous small-sized CNFs by the generation of
numerous tiny Ni catalysts from large-sized Ni catalysts [46]. In this work, the H2 flow
injection for sample J was subjected to the injection of H2 flow into the C2H2 flow. Further-
more, the cyclic process in sample J could produce an abundant C2H2 flow environment
compared with SF6 gas flow, especially during the SF6 flow-off period [40]. Compared to
samples A–I, sample J produced a much higher number of tiny Ni catalysts, which could
readily be placed on the surfaces of the CMCs. Consequently, this would result in the
formation of small-sized CNFs on the surfaces of the CMCs owing to the increased number
of tiny Ni catalysts, probably enough to overcome the insufficiency of Ni catalysts on the
surfaces of the CMCs. This can be attributed to the diffusion of Ni catalysts into the interior
of the CMCs during the reaction.

Figure 3 shows systematic diagrams for the formation of samples A–I (C2H2 + SF6 gas
flow system without cyclic process of SF6 gas flow, Figure 3a) and sample J (C2H2 + SF6 + H2
gas flow system with a cyclic process of SF6 gas flow, Figure 3b). Ni fragments were located
merely on the heads of CMCs for samples A–I (Figure 3a). However, for Sample J, Ni
fragments were present on the CMC head and the tiny-sized Ni fragments were present on
the CMC surface. Moreover, the numerous tiny Ni fragments, produced by the injection of
H2 gas into the C2H2 flow during the cyclic addition of SF6, were present on the surfaces of
the CMCs as shown in Figure 3b.

For the mass production of CMCs-related nanocarbon samples, we chose the condi-
tions of samples E and J among the various types of CMCs-related nanocarbon formation
reaction conditions. Almost 19 g of CMCs per approximately 0.6 g Ni catalyst could be
obtained in a one-batch reaction, as shown in Figure 4a. Figure 4b–d show the FESEM
images of these CMCs samples. The obtained sample seemed to have CMCs with fixed di-
ameters within the range of 1–5 µm. The magnified FESEM image of this sample (Figure 4d)
clearly indicated the formation of well-developed controllable CMCs geometries under
these reaction conditions.
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Under the experimental conditions of sample J, approximately 20 g of the hybrids of
CNFs–CMCs per approximately 0.6 g Ni catalyst could be obtained in a one-batch reaction,
as shown in Figure 5a. Figure 5b–d clearly show the formation of hybridized CNFs–CMCs
between the numerous small-sized CNFs and CMCs.

After achieving mass production of CMCs-related materials, we made a blend of
30 wt% sample J with 70 wt% commercial carbon paste. A blend of 30 wt% sample E with
70 wt% commercial carbon paste was also prepared to compare the SE values of samples
J and E. These blends were coated on a PET film by a commonly used printing method
using a spatula blade. Figure 6 shows the SE values of these coated PET films across the
operating frequencies in the 1.5–40 GHz range.

Compared with the total SE values of the PET film coated with 30 wt% sample E-
incorporated carbon paste (see Table 1), the value of the PET film coated with 30 wt%
sample J-incorporated carbon paste was more than two-fold higher in dB scale across the
entire operating frequency range, as shown in Figure 6.
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Figure 6. The total SE values of the coated PET films using the blends of CMCs-related materials and
commercial carbon pastes.

Table 1. Thickness, electrical resistivity, and electrical conductivity of the coated PET films by com-
mercial carbon paste, 30 wt% sample E-incorporated carbon paste, and 30 wt% sample J-incorporated
carbon paste.

The Coated PET Films and
Type of Carbon Paste

Thickness
t (mm)

Electrical Resistivity
ρ (Ω·m)

Electrical Conductivity
σ (S/m)

Correction Factor *
F (F/w)

Commercial carbon paste 0.6 (±0.04) 2.42 (±0.15) × 10−4 4.13 (±0.08) × 103 0.98
30 wt% sample

E-incorporated carbon paste 0.6 (±0.07) 5.43 (±1.22) × 10−4 1.84 (±0.46) × 103 0.79

30 wt% sample
J-incorporated carbon paste 0.6 (±0.05) 4.61 (±0.65) × 10−4 2.17 (±0.23) × 103 0.79

* Correction factor was calculated from Table 2 in Ref. [32].
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Table 2. EMI SE of carbon-based materials.

Carbon-Based Materials Thickness
(mm)

Electrical
Conductivity or

Resistivity

Operating
Frequency

(GHz)
SE (dB) SE/Thickness

(dB/mm) Ref.

CNT/*MCMB 0.15–0.6 1100 S/m

8.2–12.4

31–56 93–206 [47]

15 wt% *CNF/*ABS

1.1

1.5 ± 0.1 Ω·cm 35 31.8

[48]15 wt%
CNT/*ABS 0.81 ± 0.05 Ω·cm 51 46.4

*CNF/epoxy 2.1 - 5–34 2.4–16.2 [49]

GNP/*PEDOT:PSS 0.8 684 S/m 70 88 [50]

*SCF/*EVA 3.5 -

8–12

29.5–34.1 8.4–9.7 [51]

*MX/*RGO 3 1000 S/m 51 17 [52]

*3D G–CNT–Fe2O3 0.6 22,781 S/m 130–134 216–223 [53]

*GN/Cu 0.009
(±0.0015) 5.88 (±0.29) × 106 S/m 1–18 52–63 5777–7000 [54]

*SWCNT/epoxy 1.5 20 S/m 0.01-1.5 15–49 10–32.6 [55]

The coated PET film using
30 wt% sample

E-incorporated carbon paste
0.6 1840 S/m

1.5~40

12–24 20–40

This work
The coated PET film using

30 wt% sample
J-incorporated carbon paste

0.6 2170 S/m 24–56 40.0–93.3

*CNT: carbon nanotube, *MCMB: mesocarbon microbeads, *CB: carbon black, *CNF: carbon nanofiber,*ABS:
acrylonitrile–butadiene–styrene, *PEDOT:PSS: poly(3,4-ethylenedioxythiophene)–poly(styrene-sulfonate), *SCF:
short carbon fiber, *EVA: ethylene vinyl acetate, *MX: Mxene, *RGO: reduced graphene oxide, *3D G–CNT–Fe2O3:
three-dimensional graphene–carbon nanotube–iron oxide, *GN: graphene, *SWCNT: single wall carbon nanotube.

This dramatic increase in the total SE values of the coated PET film by 30 wt% sample
J-incorporated carbon paste seems to be partly ascribed to the enhanced electrical con-
ductivity (from (1.84 ± 0.46) × 103 S/m to (2.17 ± 0.23) × 103 S/m, see Table 2) by the
hybrid formation between the numerous small-sized CNFs and the CMCs in sample J, as
in a previous report [30]. Furthermore, the numerous small-sized CNFs on the surfaces
of the CMCs in sample J intersected with one another. When an incoming electromag-
netic wave reaches these intersected-CNFs, electric current flows into the intersections and
dissipates in various directions, thereby inducing an electromotive force and generating
a variable magnetic field [25]. The geometry of these CNFs holds and rotates incoming
electromagnetic waves within the generated variable magnetic field. Thus, the incom-
ing electromagnetic wave energy is absorbed into these CNFs and is finally converted
into thermal energy [26]. Therefore, these intersections can contribute to the absorption
mechanism for shielding against electromagnetic waves. Consequently, the total SE values
of the PET film coated with the 30 wt% sample J-incorporated carbon paste were higher
than those of the 30 wt% sample E-incorporated carbon paste. This matches the measured
SE values shown in Figure 6. The skin depth (δ) of a shielding material is defined as
δ = (πσfµ)−1/2 [2], indicating that δ2 is inversely proportional to the electrical conductivity
(σ), frequency (f ), and magnetic permeability (µ). Therefore, higher magnetic permeability
can efficiently reduce the skin depth of the shielding material, thereby enhancing the SE
values. The intrinsic characteristics of CMCs, and the aspect of numerous small-sized CNFs
intersecting with one another in sample J, can enhance the magnetic field and then absorb
incoming EM waves. Consequently, they can enhance magnetic permeability (µ), resulting
in an improvement in the absorption loss of electromagnetic waves. Therefore, the SE
values of the PET film coated with the 30 wt% sample J-incorporated carbon paste were
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much higher than those of the 30 wt% sample E-incorporated carbon paste across the entire
operating frequency range.

Indeed, the PET film coated with 30 wt% sample J-incorporated carbon paste had total
SE values above 20 dB throughout the entire range of operating frequencies. Compared
with the previously reported total SE values, the presently measured values seem to be
ranked in the top tier (see Table 2). Therefore, we suggest that the hybridized CNFs–CMCs
sample can be effectively used in diverse industrial fields.

A blend of 2 wt% sample J with 98 wt% commercial carbon paste was also prepared to
determine the optimal amount of sample J to add to the commercial carbon paste. Indeed,
the already established manufacturing process for the commercial heating film by SH
Korea Co. required the injection of the smallest possible amount of sample J, because a
considerable amount of sample J may cause poor adhesion between the paste layer and the
PET substrate. The PET film coated with the 2 wt% sample J-incorporated carbon paste
seemed to satisfy the adhesion problem, as well as provide good SE values, as shown in
Figure 6.

For the manufacturing process of the commercial heating film, we used a coated
PET film with 5 wt% sample J-incorporated carbon paste. In this case, we used a typical
laminating process using the gravure method of SH Korea Co. The typical thickness of the
coated layer using carbon paste was approximately 50 µm. Basically, a single des-HF was
composed of two electromagnetic wave shielding layers located at the front and back sides
among eight different functional individual thin layers. Therefore, we estimated a total
thickness of 100 µm for the coated layers using 5 wt% sample J-incorporated carbon paste.

Figure 7 shows the total SE values for the conventional heating film using native
commercial carbon paste, des-HF manufactured by 5 wt% sample E-incorporated carbon
paste, and des-HF manufactured by 5 wt% sample J-incorporated carbon paste. As dis-
cussed in the results depicted in Figure 6, the total SE values of the native conventional
heating film using commercial carbon paste were enhanced by the incorporation of 5 wt%
sample E, and further enhanced by the incorporation of 5 wt% sample J. The cause for the
improvement of the SE values seems to be largely attributable to the fact that numerous
small CNFs intersected with one another and/or the intrinsic characteristics of CMCs;
however, the electrical conductivity of the coated PET film using the commercial carbon
paste was decreased by the incorporation of controllable CMCs, or hybrids of CNFs–CMCs
in the commercial carbon paste (see Table 1).
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Figure 8 shows the total SE values, the SE values for the absorption loss, and the SE
values for the reflection loss of the des-HF manufactured by 5 wt% sample J-incorporated
carbon paste across the operating frequencies in the 1.5–40 GHz range. Above the 4.0 GHz
frequency range, the absorption SE values of the des-HF manufactured by 5 wt% sample
J-incorporated carbon paste increased and approached the values of the total SE values,
as shown in Figure 8. This confirms that the higher total SE values of the hybrids of
CNFs–CMCs in this work are mainly attributable to the enhanced absorption loss across
the operating frequencies in the 4.0–40 GHz range. Therefore, the enhanced total SE
values obtained using the hybrids of CNFs–CMCs were mainly ascribed to the enhanced
absorption shielding loss, contributed by the intrinsic characteristics of CMCs and the
aspect of numerous small-sized CNFs intersecting with one another in sample J.
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3. Materials and Methods

As a catalyst for the formation of CMCs, approximately 0.1 g of bunch-type Ni powder
(99.7%), with particle diameters ranging from 1 µm to 10 µm, was spread onto a 2 mm-thick,
boat-like stainless steel (SUS304) substrate. A thermal chemical vapor deposition (CVD)
system was employed for the formation of CMCs, using C2H2 as the source gas and SF6
as the additive gas. The deposition reaction conditions for the formation of the various
CMCs-related samples are listed in Table 3. Ten samples (samples A–J) with different
combinations of gas flow rate, gas flow injection time, and gas type were prepared.

Regarding the application of SF6 gas in sample J, the cyclic process was conducted by
simply switching the SF6 flow on and off continuously. The gas flow sequence mirrored
the iterative order of the reaction processes: C2H2 + H2 + SF6 flow (C2H2 flow-on, H2
flow-on, and SF6 flow-on) followed by C2H2 + H2 flow (C2H2 flow-on, H2 flow-on, and
SF6 flow-off), as shown in Figure 9. The cycle period was defined as the sum of the time
the source gases were composed of C2H2 + H2 + SF6 flow, and the time the source gases
consisted solely of C2H2 + H2 flow. For sample J, the on and off times for the SF6 flow
injection were set at 1.5 min, resulting in a total duration of 3.0 min for one cycle. Because
the total cyclic on/off modulation of the SF6 flow was 15 min, five cycles were performed
during the reaction.
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Table 3. Experimental conditions for Samples A–J.

Sample
C2H2Flow

Rate
(sccm)

H2
Flow Rate

(sccm)

SF6
Flow Rate

(sccm)

SF6Flow
Injection

Time (min)

No. of SF6
Flow

On/Off
Cycles

Total
Reaction

Time (min)

Total Gas
Pressure

(Torr)

Substrate
Temp.
(◦C)

Remarks

A 500 - 20 5 - 60 100 750 Without
cyclic process

B 500 - 20 15 - 60 100 750 Without
cyclic process

C 500 - 20 30 - 60 100 750 Without
cyclic process

D 500 - 50 5 - 60 100 750 Without
cyclic process

E 500 - 50 15 - 60 100 750 Without
cyclic process

F 500 - 50 30 - 60 100 750 Without
cyclic process

G 500 - 100 5 - 60 100 750 Without
cyclic process

H 500 - 100 15 - 60 100 750 Without
cyclic process

I 500 - 100 30 - 60 100 750 Without
cyclic process

J 500 60 50 15 5 60 100 750
With cyclic
process of
SF6 flow
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The morphologies of the CMCs samples were investigated in detail by field emission
scanning electron microscopy (FESEM; S-4200 Hitachi, Tokyo, Japan). The thickness of
the sample was measured using a micrometer (406-250-30 Mitutoyo, Nakagawa, Japan)
and corrected using cross-sectional FESEM images. Resistivity values were obtained by
using a four-point probe (labsysstc-400 Nextron, Busan, Republic of Korea) connected
to a source meter (2400 Source Meter Keithley, Cleveland, OH, USA) and by performing
calculations using Ohm’s law with a correction factor, according to the method proposed
by Smits [32]. The four-point probe system consisted of four, straight-lined probes with an
equal inter-probe spacing of 3.0 mm. A constant current (I) was supplied through the two
outer probes, and the output voltage (V) was measured using the two inner probes [31].
Correction factors (C and F) were obtained from Smits et al. [32]. Surface and volume
resistivities were calculated using the following equations [32,33]:

Surface resistivity : ρs =
V
I

C
(

a
d

,
d
s

)
, volume resistivity : ρv = ρs w F

(w
s

)
where a, d, w, and s denote the length, width, and thickness of the sample and the inter-
probe spacing, respectively.

The final product of the heating films, namely dual electromagnetic shielding premium
heating films (des-HFs), were prepared by a typical laminating process with the gravure
method of SH Korea Co. (see Figure 10) using the blends of CMCs-related samples and
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commercially supplied carbon paste. 2-butoxyethyl acetate was used as the diluting
solution during the gravure coating process with these blends.
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Figure 10. The production of heating film: (a) the coating equipment used to perform the gravure
method and (b) the actual gravure coating process of carbon paste on the base film.

A single des-HF film was composed of eight different functional individual thin films,
as shown in Figure 11.
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The SE values of the des-HFs were measured using a waveguide method with a vector
network analyzer (VNA; 37369C Anritsu, Kanagawa, Japan), as shown in Figure 12. The
results were compared with those of a heating film made using commercially available
carbon paste (CKC-300 AF Electrochem, Incheon, Republic of Korea). The setup for the
VNA system consisted of a sample holder with its exterior connected to the system. A
coaxial sample holder and a coaxial transmission test specimen were set up according to
the waveguide method. The scattering parameters (S11 and S21) were measured in the
frequency range of 1.5−40 GHz using the VNA [34–38]. The power coefficients, namely
reflectivity (R), absorptivity (A), and transmissivity (T), were calculated using the following
equations: R = PR/PI = |S11|2 and T = PT/PI = |S21|2, where PI, PR, PA, and PT are
the incident, reflected, absorbed, and transmitted powers of an electromagnetic wave,
respectively [38]. The power coefficient relationships were expressed as R + A + T = 1. The
SE of the electromagnetic waves was calculated from the scattering parameters using the
following equation:

SETot = −10 log T, (1)

SER = −10 log (1 − R), (2)
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SEA = −10 log{T/(1 − R)}, (3)

where, SETot, SER, and SEA denote the total, reflection, and absorption SE values, respec-
tively [37,38].
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4. Conclusions

Controllable CMCs, especially the controlled-diameter size of CMCs, could be achieved
by manipulating the injection gas parameters under C2H2 + SF6 gas flow in a thermal
chemical vapor deposition system. The diameters of the CMCs were independent of the SF6
flow rate, but strongly dependent on the SF6 flow injection time. The cyclic process of SF6
flow with the injection of H2 flow could produce the formation of CNFs–CMCs hybrid. The
formation of the hybrids of CNFs–CMCs by the cyclic process of SF6 flow with the injection
of H2 flow was explained by the generation of a large number of tiny Ni catalysts to over-
come the deficiency of tiny Ni catalysts on the surfaces of the CMCs. This was attributed
to the facile diffusion of Ni catalysts into the interior of the CMCs during the reaction.
Systematic diagrams were deployed to assist the different formation of the controllable
CMCs and hybrids of CNFs–CMCs, according to the different gas injection aspects.

For one batch reaction, approximately 20 g of the hybrids of CNFs–CMCs with nu-
merous small-sized CNFs around the CMCs was obtained by about 0.6 g Ni catalyst onto a
2mmthick, boat-like stainless steel (SUS304) substrate.

Compared with the total SE values of the PET film coated with 30 wt% controllable
CMCs-incorporated carbon paste, the values of the PET film coated with 30 wt% hybrids of
CNFs–CMCs incorporated carbon paste were more than two-fold higher in dB scale across
the entire operating frequency range. This dramatic increase in the total SE values was
partly ascribed to the enhanced electrical conductivity, due to the hybrid formation between
the numerous small CNFs and the CMCs. Furthermore, the intrinsic characteristics of
CMCs and the behavior of numerous small-sized CNFs intersecting with one another in
the CNFs–CMCs hybrids can enhance the magnetic field and absorb incoming EM waves.
Consequently, they can improve the absorption loss of electromagnetic waves. Therefore,
the SE values of the PET film coated with the hybrids of CNF-CMCs incorporated carbon
paste were much higher than those with 30 wt% controllable CMCs incorporated carbon
paste across the entire operating frequency range.

Although the electrical conductivity of the coated PET film using the commercial
carbon paste was decreased by the incorporation of the hybrids of CNFs–CMCs in the
commercial carbon paste, the total SE values of the conventional heating film using the
commercial carbon paste were significantly enhanced by the incorporation of 5 wt% hybrids
of CNFs–CMCs. The cause for this dramatic enhancement of the SE could be attributable
to the fact that numerous small-sized CNFs intersect with one another and the intrinsic
characteristics of CMCs.
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