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Abstract: In drug discovery, compounds with well-defined activity against multiple targets (multitar-
get compounds, MT-CPDs) provide the basis for polypharmacology and are thus of high interest.
Typically, MT-CPDs for polypharmacology have been discovered serendipitously. Therefore, over the
past decade, computational approaches have also been adapted for the design of MT-CPDs or their
identification via computational screening. Such approaches continue to be under development and
are far from being routine. Recently, different machine learning (ML) models have been derived to
distinguish between MT-CPDs and corresponding compounds with activity against the individual
targets (single-target compounds, ST-CPDs). When evaluating alternative models for predicting
MT-CPDs, we discovered that MT-CPDs could also be accurately predicted with models derived
for corresponding ST-CPDs; this was an unexpected finding that we further investigated using
explainable ML. The analysis revealed that accurate predictions of ST-CPDs were determined by
subsets of structural features of MT-CPDs required for their prediction. These findings provided a
chemically intuitive rationale for the successful prediction of MT-CPDs using different ML models
and uncovered general-feature subset relationships between MT- and ST-CPDs with activities against
different targets.

Keywords: multitarget compounds; single-target compounds; machine learning; activity prediction;
model explanation; feature analysis

1. Introduction

In drug discovery, compounds with multitarget (MT) activity (also termed promiscu-
ous compounds) are required for the polypharmacology-driven treatment of multifactorial
diseases [1–4]. Polypharmacology refers to the MT engagement of small molecules and
the resulting in vivo effects [4–6]. MT compounds (MT-CPDs) form well-defined (pseudo-
specific) interactions with different targets. While polypharmacological compounds were
often serendipitously discovered, computational approaches are increasingly used to sup-
port the identification or design of desirable MT-CPDs [6–9]. For example, machine learning
(ML) models were derived on the basis of chemical structures to systematically distinguish
between MT-CPDs and corresponding single-target compounds (ST-CPDs) [10,11]. Fur-
thermore, random forest (RF) predictions on a molecular test system, comprising MT-
and ST-CPDs for 170 target pairs, have shown that structural features distinguishing MT-
and ST-CPDs depend on target pairs and have no potential for generalization [12]. This
complicates MT-CPD design because generally applicable design strategies will be difficult,
if not impossible to devise. On the other hand, the ability to develop ML models that are
capable of detecting MT-CPDs enables computational screening campaigns to prioritize
candidate compounds for polypharmacology. Although proof-of principle has been estab-
lished for predicting MT-CPDs, ML models are still subject to further refinement, especially
for specific target combinations of interest. This will also require a better understanding
of their learning characteristics. To these ends, explainable ML (XML) methods can be
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considered. The application of XML approaches makes it possible to understand how
compound activity predictions are determined for ML models of any complexity. This typi-
cally involves the identification of (molecular representation) features making the largest
contributions to correct predictions of, for example, active vs. inactive compounds or—as
in our current study—MT- vs. ST-CPDs. For different classification models, features that
are decisive for class label predictions can be compared to rationalize model decisions and
differences between them.

Herein, we have derived and compared different ML models for predictions of MT-
and the corresponding ST-CPDs, using a new compound test system covering functionally
related and distinct targets. These calculations yielded some surprising results. To ratio-
nalize these predictions and test hypotheses derived from them, an XML approach was
applied, providing detailed and chemically intuitive explanations for model decisions on
MT- and the corresponding ST-CPDs.

2. Results and Discussion
2.1. Compound Test System and Random Forest Models

To set up a test system for MT- and ST-CPD predictions, we carried out a systematic
search for functionally distinct target pairs (i.e., targets with unrelated biological functions;
see Section 3), for which sufficient numbers of MT- and corresponding ST-CPDs were
available for model building (see Section 3). In our current analysis, MT-CPDs refer to
compounds with confirmed activity against two targets. Pairs of distinct targets with
available MT-CPDs are generally rare. We were able to identify 10 qualifying pairs of
functionally distinct targets and complemented this set with 10 pairs of functionally related
targets. In this case, many qualifying pairs were available. To guide the search, we built
initial RF models for each pair to distinguish between MT- and ST-CPDs, and we selected
the target pairs with the highest prediction accuracy. The 20 target pairs comprising the
test system are reported in Table 1. The choice of RF and the prediction accuracy-oriented
selection of functionally related target pairs was motivated to provide a basis for XML
analysis, for which RF is particularly suitable; this is because an accurate XML algorithm
is available for this method (see Section 3). Furthermore, since XML generally benefits
accurate predictions and robust (stable) predictions, the simplest ML method that yields
high prediction accuracy should typically be selected for a given prediction task.

Table 1. Target pairs.

Functionally Related Functionally Distinct

Sodium/glucose cotransporter 1
Sodium/glucose cotransporter 2

Tumor necrosis factor
Nucleotide-binding oligomerization

domain-containing protein 1

Carbonic anhydrase 4
Carbonic anhydrase 7

5-hydroxytryptamine receptor
Sodium-dependent noradrenaline transporter

Carbonic anhydrase 4
Carbonic anhydrase 9

D2 dopamine receptor
Sodium-dependent serotonin transporter

Cathepsin B
Cathepsin S

Acetylcholinesterase
Amine oxidase B

Insulin-like growth factor 1 receptor kinase
ALK receptor tyrosine kinase

Acetylcholinesterase
Beta-secretase 1

Histone deacetylase 2
Histone deacetylase 6

Substance-P receptor
Sodium-dependent serotonin transporter

Histone deacetylase 3
Histone deacetylase 8

Amine oxidase B
Adenosine receptor A2a

Coagulation factor X
Plasminogen

D3 dopamine receptor
Sodium-dependent serotonin transporter

Prothrombin
Coagulation factor VII

Histamine H3 receptor
Sodium-dependent serotonin transporter

Intestinal collagenase
Collagenase 3

Histamine H1 receptor
Sodium-dependent serotonin transporter
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For each target pair, two final RF models were developed, including an (1) ST model
to distinguish ST-CPDs from randomly chosen compounds with other activity (assumed
to be inactive against the targets of a pair), and (2) MT model to distinguish MT- and
ST-CPDs. In addition, as a control, each ST model was also used to predict MT-CPDs for
the target pair. Accordingly, the primary prediction tasks included ST-CPDs vs. inactive
compounds and ST- vs. MT-CPDs, for which different models were derived. The model,
trained to distinguish between ST-CPDs and inactive compounds, was then also used to
predict MT-CPDs vs. inactive compounds. Features determining the predictions of each
model were then identified using the XML methodology, as detailed below.

2.2. ST and MT Model Performance

Figure 1 summarizes the results of our systematic predictions. Both the ST and MT
models achieved a high prediction accuracy on the basis of different performance measures.
Notably, a high prediction accuracy was not only observed for the pre-screened pairs of
related targets, but also for the pairs of distinct targets. The accuracy was only slightly
higher for related than distinct targets and was overall comparable for the ST and MT
models (Figure 1a). A balanced accuracy (BA), greater than 80 or 90%, high precision, and
Matthews correlation coefficient (MCC), with values between 0.7 and 0.9, were consistently
observed. The functionally related target pairs included closely related enzyme isoforms
(Table 1), for which it was not necessarily expected that MT- and corresponding ST-CPDs
were distinguished with high accuracy. Moreover, when the ST model from each pair was
used to predict its MT-CPDs, comparably high precision accuracy was achieved, for both
related and distinct targets. This finding was unexpected because the ST models were
trained to distinguish ST-CPDs from randomly selected compounds, without taking any
MT-CPDs into account.
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Figure 1. Performance of RF models for ST- and MT-CPD prediction. Boxplots report the distributions
of different performance measures for predictions on all target pairs averaged over 10 independent
trials. Performance measures included balanced accuracy (BA), precision, recall, F1, and Matthews
correlation coefficient (MCC). Compounds with activity against pairs of functionally related or
distinct targets were predicted. (a) ST model (red), trained for classification of randomly chosen vs.
ST-CPDs; MT model (green), trained for classification of ST- vs. MT-CPDs. (b) ST model, applied
to classify randomly chosen vs. ST-CPDs (same as in (a), red) and randomly chosen vs. MT-CPDs
(cyan). In boxplots, diamond symbols represent statistical outliers.
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As a plausible hypothesis, the ability of an ST model to accurately differentiate both
ST- and MT-CPDs from randomly selected compounds might indicate that many ST-
CPDs would be under-tested and also have MT activity. However, this conjecture was
not consistent with the ability of MT models to accurately distinguish between MT- and
corresponding ST-CPDs. Hence, further analysis of the ML results was required to better
understand the ability of ST models to distinguish between MT-CPDs and randomly
selected actives, and MT models to differentiate MT- from ST-CPDs.

2.3. Rationalizing Model Decisions

To better understand these findings, we applied the Shapley Additive exPlanations
(SHAP) approach (see Section 3), a model-agnostic XML method that we adapted for
explaining compound activity predictions (see Section 3). SHAP analysis quantifies the
contribution of representation features that are present or absent in a test instance to
individual predictions. Features that support or oppose a given prediction make positive
and negative contributions (quantified by SHAP values), respectively, and the sum of all
SHAP values gives the probability of the prediction. By summing feature contributions
over individual test instances and their predictions, feature importance can be quantified
across entire test sets, which is termed the cumulative SHAP analysis. In our predictions,
chemical structure was represented using layered atom environments (see Section 3), which
are topological structural descriptors.

Figure 2 shows the results of cumulative SHAP analysis for predictions of ST- and
MT-CPDs using the ST model, and differentiation between ST- and MT-CPDs via the
MT model.

For the prediction of ST- and MT-CPDs with the ST model, very similar feature contri-
bution patterns were detected. For functionally related target pairs (on the left in Figure 2),
ST-CPDs were distinguished from random (inactive) compounds based on features that
were present in ST-CPDs, making strong positive contributions to prediction probability;
however, these were absent in random compounds (making negative contributions). These
features largely determined the correct prediction of ST-CPDs. By contrast, features present
in random, and absent in ST-CPDs, made very little, if any contributions (with cumulative
SHAP values close to zero). Essentially, the same observations were made when MT-CPDs
were correctly predicted with ST models. Notably, the magnitude of positive and negative
feature contributions was very similar in both cases. A somewhat different picture emerged
for predictions with MT models. In this case, correct discrimination between MT- and
corresponding ST-CPDs was also mostly driven by features that were present in MT- and
absent in ST-CPDs. However, features absent in MT-CPDs also made smaller positive
contributions, while features present or absent in ST-CPDs made negative contributions.
Hence, prediction outcomes for MT models of related target pairs were determined by
more complex feature patterns than for the corresponding ST models (while prediction
accuracy was comparably high). For functionally distinct target pairs (on the right in
Figure 2), the feature patterns of MT models changed again. Here, features present in MT-,
but absent in the corresponding ST-CPDs, dominated correct predictions, very similar to
the observations made for predictions with ST models for related target pairs. Again, the
same trends were also observed for ST models of distinct target pairs, but the differences
between contributions of features that were present or absent in ST- or MT-CPDs and
random compounds were smaller.

Taken together, on the basis of the results in Figure 2, the cumulative SHAP analysis
provided meaningful explanations for correct predictions of all ST and MT models. The
analysis revealed a pivotal role for features present in ST-CPDs and MT-CPDs when they
were distinguished from random compounds using ST models, as well as for features
present in MT-CPDs when they were differentiated from the corresponding ST-CPDs
with MT models. While differences between feature contributions varied in magnitude,
depending on the target pairs, the interplay between feature presence and absence was a
constant factor in determining correct predictions.
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On the basis of these findings, a key question was how feature sets determining the
prediction of ST- and MT-CPDs might be related to each other; this was addressed in the
next step.

Molecules 2023, 28, x FOR PEER REVIEW 5 of 12 
 

 

 

Figure 2. Cumulative SHAP analysis. Contributions of features absent (red) or present (blue) in test 

compounds were quantified using SHAP values across all correctly predicted randomly collected 

compounds (designated inactive), ST-, and MT-CPDs. Feature contributions are reported for three 

prediction tasks: ST model prediction of randomly selected vs. ST-CPDs (top), ST model prediction 

of random vs. MT-CPDs (middle), and MT model prediction of ST- vs. MT-CPDs (bottom). 

Taken together, on the basis of the results in Figure 2, the cumulative SHAP analysis 

provided meaningful explanations for correct predictions of all ST and MT models. The 

analysis revealed a pivotal role for features present in ST-CPDs and MT-CPDs when they 

were distinguished from random compounds using ST models, as well as for features 

present in MT-CPDs when they were differentiated from the corresponding ST-CPDs with 

MT models. While differences between feature contributions varied in magnitude, de-

pending on the target pairs, the interplay between feature presence and absence was a 

constant factor in determining correct predictions. 

On the basis of these findings, a key question was how feature sets determining the 

prediction of ST- and MT-CPDs might be related to each other; this was addressed in the 

next step. 

Figure 2. Cumulative SHAP analysis. Contributions of features absent (red) or present (blue) in test
compounds were quantified using SHAP values across all correctly predicted randomly collected
compounds (designated inactive), ST-, and MT-CPDs. Feature contributions are reported for three
prediction tasks: ST model prediction of randomly selected vs. ST-CPDs (top), ST model prediction
of random vs. MT-CPDs (middle), and MT model prediction of ST- vs. MT-CPDs (bottom).

2.4. Comparative Feature Analysis

Sets of top-ranked features of increasing size that make the most important contribu-
tions to correct predictions with ST and MT models were compared, and their overlap was
determined. Figure 3 shows the results. Feature overlap was already detected for small sets
of top-ranked features and generally increased with the increasing size of the feature sets,
as one would expect. Correct predictions of MT-CPDs with the MT model and ST model
resulted in a larger overlap than predictions of MT-CPDs with the MT model, and ST-CPDs
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with the ST model. As expected, predictions for distinct target pairs yielded a smaller
feature set overlap than for related target pairs, reflecting a typically lower similarity of
compounds that are active against functionally distinct, rather than related, targets. The
findings in Figure 3 clearly indicated that (i) feature sets determining predictions of MT-
and ST-CPDs were overlapping yet distinct and (ii) MT- and ST-CPDs shared a subset of fea-
tures determining the accurate prediction of MT-CPDs. In addition, we found that feature
sets determining the prediction of ST- and MT-CPDs, using ST models, also had significant
overlap, consistently between 40% and 60% for different numbers of top-ranked features.
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Figure 3. Feature overlap. Density plots show the overlap of feature sets of MT-CPDs, correctly
predicted by the MT model, with feature sets of ST-CPDs, correctly predicted by the ST model (top)
and MT-CPDs, correctly predicted by the ST model (bottom) for increasing numbers of top-ranked
features. Feature overlap was calculated over all independent trials for related or distinct target pairs.

Taken together, these results provided an intuitive explanation for the ability of ST
models to differentiate between ST- or MT-CPDs and random compounds. MT- and
corresponding ST-CPDs shared structural features that distinguished them from random
compounds and were detected by ML. Furthermore, the results also explained why MT-
CPDs were successfully distinguished from corresponding ST-CPDs. This was the case
because MT- and corresponding ST-CPDs shared a subset of the features common to
MT-CPDs. The additional features shared by MT-CPDs, then, determined their correct
prediction using MT models.

2.5. Feature Mapping

Subset relationships between features of MT- and ST-CPDs determining their correct
predictions were further explored by mapping features on test compounds. As an example,
in Figure 4, features positively contributing to the correct prediction of MT-CPDs for target
pair (substance-P receptor/sodium-dependent serotonin transporter), using the MT model
(green), were mapped onto a correctly predicted test compound (top). In addition, the
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subset of features overlapping with those determining the prediction of ST-CPDs (pink) or
MT-CPDs (light blue), using the ST model, were mapped on the MT-CPD (middle left and
right, respectively). Feature mapping revealed that the correct predictions of both MT- and
ST-CPDs, using different models, were strongly supported by the di-substituted phenyl ring
on the right of the compound, with feature centers on the two tri-fluoro methyl substituents.
This was clearly indicated by the feature overlap for the ST model predictions. However,
to distinguish between MT- and corresponding ST-compounds, additional features were
required; these mostly encompassed the ether linker fragment adjacent to the ring. These
features represented the MT-CPD-specific difference mapped at the bottom of Figure 4.
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Figure 4. Feature mapping. For an exemplary MT-CPD that was correctly predicted using ST and
MT models, different sets of features were mapped onto the structure. Green features at the top are
from the MT models and the others represent overlapping features from the prediction of ST- and
MT-CPDs using the ST model. Additional features from the MT-CPD prediction form the difference
set at the bottom.

From the entire set of MT-CPDs for the target pair (substance-P receptor/sodium-
dependent serotonin transporter), we extracted the three structural features that were most
important for correct predictions using the MT model. In Figure 5 (top), these structural
fragments were mapped onto an MT-CPD that had the largest cumulative SHAP values
for these features. The three top-ranked features were also determined for predictions of
ST- or MT-CPDs, using the ST model, and mapped onto another MT-CPD containing them
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(Figure 5, bottom left and right, respectively). Top-ranked features for the three predictions
also overlapped, as illustrated in Figure 5. Additional features with positive contributions
were required to determine correct predictions, forming sets with subset relationships, as
discussed above.
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Figure 5. Most important features. At the top, the three most important features for correct predictions
with the MT model are shown for the same set of MT-CPDs as in Figure 4. The features were mapped
onto a compound with the largest cumulative SHAP values for them. Shown below are the top
three features for the prediction of ST-CPDs (lower left) or MT-CPDs (lower right) using the ST
model. These features were mapped onto another MT-CPD that contained them. The color code
and representation are according to Figure 4. The different predictions shared one or two individual
top-ranked features.

2.6. Conclusions

In this work, we investigated different ML models for their ability to distinguish
between MT- and ST-CPDs, or differentiate them from randomly selected active compounds.
The ability of a model trained on ST-CPDs to correctly predict MT-CPDs was unexpected,
especially because MT- and ST-CPDs were also distinguished with high accuracy. These
findings were further investigated using an XML approach to rationalize the predictions.
The analysis revealed that overlapping, yet distinct feature sets, were responsible for
differentiating ST- and MT-CPDs from random compounds and provided a chemically
intuitive explanation for the different prediction outcomes. Structural features, required to
correctly predict ST-CPDs, represented the subsets of those required to predict MT-CPDs.
Their prediction, using MT models, was then determined by additional features shared
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by MT-CPDs. Thus, MT-CPDs contained structural features of corresponding ST-CPDs
and additional characteristics that set them apart from ST-CPDs, consistent with their MT
activity. Thus, the XML analysis provided a general rationale for structural differences
between MT- and the corresponding ST-CPDs of different target pairs on the basis of
feature subset relationships. The ability of a ST models to correctly predict corresponding
MT-CPDs, and the rationalization of this ability, also has broader implications for ML.
For example, specifically derived ST models might also be tested on compounds with
activity against closely related targets (from the same family), or on others, where the
overlap of features determining predictions might be expected. In addition, the compounds
prioritized in prospective applications, using ST models, might also be further investigated
for MT activity, including related, as well as distinct, targets.

3. Materials and Methods
3.1. Compound Activity Classes and Target Pairs

Active compounds were extracted from CHEMBL (version 30) [13], based on different
selection criteria. Compounds were required to have standard potency measurements (Ki,
Kd or IC50) and a numerically specified potency value (standard relation: “=”). In addition,
only direct target interactions (target confidence score: 9) were considered. Potential assay
interference compounds were removed using publicly accessible filters [14–16]. Com-
pounds with interactions flagged as “not active”, “inactive”, “potential transcription error”,
“inconclusive”, and compounds with potency values lower than 10 µm or a molecular mass
of at least 1000 Da, were disregarded. The resulting compound dataset was analyzed to
identify target pairs containing MT-CPDs, with reported activity against both targets of
a pair, and the corresponding ST-CPDs, with reported activity against only one of these
targets. To enable the derivation of ML models, target pairs were selected, for which more
than 25 + 25 ST-CPDs (that is, 25 for each target) and 50 MT-CPDs were available. The
resulting target pair datasets were supplemented with an equal number of randomly se-
lected ChEMBL compounds. A total of 573 target pairs were obtained, representing 229,446
unique compounds. The 573 target pairs contained 10 pairs formed by functionally distinct
targets (that is, targets with unrelated biological functions), following the standard UniProt
target classification scheme [17]. For the remaining 563 pairs formed by functionally related
targets, RF models were derived to distinguish ST- and MT-CPDs from random compounds
(see below), and the top 10 pairs, for which highest prediction accuracy was achieved, were
selected. Thus, a test system comprising 10 + 10 pairs of functionally related and distinct
targets, respectively, was assembled (Table 1). For each pair, equal numbers of ST- and
MT-CPDs were obtained by random sampling of the majority class, yielding a total of
18,450 unique compounds.

3.2. Molecular Representation

As a molecular representation, the unfolded version of the Morgan fingerprint, corre-
sponding to the extended connectivity fingerprint [18], was generated using RDKit [15].
Layered atom environments, up to a bond radius of 2 (corresponding to a bond diameter
of 4), were generated for each atom in a compound. These molecule-specific layered atom
environments were used to generate hash values. Each unique hash value was assigned to
a single position in a feature vector, thereby avoiding potential bit collisions and creating
consistent bit-to-feature assignments for feature importance analysis.

3.3. Machine Learning

Classification models were developed using the RF implementation of scikit-learn [19].
RF is a supervised ML method that utilizes ensembles of decision trees, derived from
bootstrapped training data, to obtain majority votes for class label prediction.
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3.3.1. Model Training, Hyperparameter Optimization, and Predictions

For each target pair, MT and ST models were derived and tested on 10 randomly
selected partitions of 70% training and 30% test data. Model hyperparameters were opti-
mized using corresponding training data splits. Hyperparameters included the number
of decision trees (25, 50, 100, 200, 400), the minimal number of leaves required for a split
(2, 3, 5, 10), and the minimal number of samples for a leaf node (1, 2, 5, 10). For other
hyperparameters, default settings were used. The final model was built using optimized
hyperparameters and the entire training set.

ST and MT models were applied to predict their original test sets. In addition, ST
models were also applied to predict another test set comprising random compounds and
MT-CPD’s.

3.3.2. Performance Measures

The performance of the ST and MT models was assessed based on five measures,
including balanced accuracy (BA) [20], precision, recall, F1 score (F1) [21] and Matthew’s
Correlation Coefficient (MCC) [22].

BA =
1
2
(TPR + TNR)

precision =
TP

TP + FP

recall =
TP

TP + FN

F1 = 2 × TP
2TP + FP + FN

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

3.4. Model Explanation

To rationalize predictions, the ML adaptation of the Shapley value concept from game
theory [23] was applied. In ML, Shapley values quantify the contributions of individual
features that are present or absent in a test instance for its prediction. Therefore, a local
interpretation model is derived that approximates the ML model in a given region of feature
space for individual predictions. The local approximation is termed the Shapley Addi-
tive exPlanations (SHAP) [24], which has been adapted to rationalize compound activity
predictions [25]. The sum of all feature contributions, quantified by SHAP values, yields
the probability of a prediction. For RF and other decision tree methods, the TreeExplainer
algorithm has been introduced for the calculation of the exact SHAP values [26]. Thus,
RF is particularly suitable for XML analysis. TreeExplainer was used here with “interven-
tional” feature perturbation [26]. For each model, the entire training data served as the
background sample.

Feature overlap between models for different prediction tasks was determined using
all the correctly predicted test compounds. Here, only features that were present (bit
status = on) in test compounds and positively contributed to their correct prediction were
considered. To account for larger or smaller differences between the prediction probability
and expected value [24], the resulting SHAP values were normalized by dividing them by
the sum of the positive SHAP values for each compound. The overall weighted contribution
of normalized SHAP values to the class label assignment was then calculated by taking the
sum of each specific feature across all correctly predicted compounds and dividing it by
the occurrence of the feature. This method yielded a vector with the weighted contribution
values of each feature. To determine feature overlap, the intersection of the vectors for
different prediction tasks was calculated. The intersection was then divided by the total
amount of weighted positive features contributing to the prediction of a given class label.
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