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Abstract: High-voltage potassium-based batteries are promising alternatives for lithium-ion batteries
as next-generation energy storage devices. The stability and reversibility of such systems depend
largely on the properties of the corresponding electrolytes. This review first presents major challenges
for high-voltage electrolytes, such as electrolyte decomposition, parasitic side reactions, and current
collector corrosion. Then, the state-of-the-art modification strategies for traditional ester and ether-
based organic electrolytes are scrutinized and discussed, including high concentration, localized
high concentration/weakly solvating strategy, multi-ion strategy, and addition of high-voltage
additives. Besides, research advances of other promising electrolyte systems, such as potassium-
based ionic liquids and solid-state-electrolytes are also summarized. Finally, prospective future
research directions are proposed to further enhance the oxidative stability and non-corrosiveness of
electrolytes for high-voltage potassium batteries.

Keywords: potassium-based batteries; high-voltage electrolytes; electrochemical window; cathode
electrolyte interphase (CEI); ion solvation structures

1. Introduction

Potassium-based batteries, including potassium-ion batteries (PIBs), potassium metal
batteries (PMBs), and potassium-based dual ion batteries (P-DIBs), have gained steadily
growing research input due to their vast potential for next-generation large-scale energy
storage, as an alternative to lithium-based technologies [1–3]. The choice of potassium
originates from its large abundance in the Earth’s crust and its environmental benignity as
a natural recyclable element [4]. From the aspect of electrochemistry, the standard potential
of the potassium-based redox couple, i.e., K+/K (−2.93 vs. SHE) is close to that of Li+/Li
(−3.04 vs. SHE), suggesting a possibly high operation voltage and high energy density [5].
As shown in Figure 1a,b, despite its large atomic radius, K+ possesses the smallest and most
flexible solvation structure among Li+ and Na+ in traditional carbonate electrolytes [6,7].
With its lower solvation energy, K+ also promises higher diffusivity and ionic conductivity,
resulting from its fast and easier extraction from the solvation structures. Apart from the
inherent benefits bestowed by the very nature of K, potassium-based batteries also hold
prospects in terms of various available electrode materials and similar electrolyte systems
with that of lithium-ion batteries (LIBs).

Intensive research on PIBs started in 2015, marked by the demonstration of graphite
anode for electrochemically reversible K+ storage [8]. Subsequently, in the pursuit of high
energy density (as stated by the formula: E (Wh/g) = Q (mAh/g) × voltage (V)), efforts
were made towards optimization of electrodes and electrolytes [9,10]. On the negative
side, metals with high capacity and appropriately low working voltages were investigated,
such as bismuth (Bi), stibium (Sb), and potassium (K) [11–13]. On the positive side, high
working plateaus over 4.0 V (vs. K+/K, as the standard reference hereafter unless else
stated) were proven in polyanionic compounds such as KVPO4F and KVOPO4 [14,15].
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Within the configuration of P-DIBs, an even higher working voltage of over 4.5 V could
be achieved for graphite cathode, relying on the reversible intercalation of anions [16]. To
match the electrodes, electrolytes with wide electrochemical windows (EWs) are highly
demanded. As depicted in Figure 1c, the EW of a given electrolyte is determined by the
energy difference (Eg) between the lowest unoccupied molecular orbital (LUMO) and the
highest occupied molecular orbital (HOMO). In an ideal situation, the thermodynamic
stability of the system could be maintained with the electrochemical potential of the anode
(µa) below the LUMO and that of the cathode (µc) above HOMO [17,18]. However, in
practice, traditional carbonates usually suffer from restrained windows, leaving three
major formidable challenges for electrolyte systems. First, the electrolyte will be oxidized
and reduced on the cathode and anode side, respectively, for the first few cycles of a cell,
along with the formation of passivation layers on both sides, namely, the solid electrolyte
interphase (SEI) for the anode and the cathode electrolyte interphase (CEI) for the cathode,
to re-gain thermodynamic equilibrium. Electrolyte decomposition could be suppressed
if the passivation layer is stable and resilient. In addition to electrolyte decomposition,
intense parasitic oxidation reactions take place at high potentials, resulting in continuous
consumption of electrolytes and the release of gaseous contaminants such as O2, CO2,
and CO [19]. The by-products of side reactions will impact the as-formed CEI, altering its
component and thickness. The re-generation of effective CEI calls for successive electrolyte
decomposition and interferes with the ongoing electrochemical reactions on the cathode
side. Limited and declining Coulombic efficiency (CE) is thus seen. At the same time, CEI
should be reasonably thin and uniform to withstand repeated expansion and shrinking of
electrode materials and to allow fast and smooth ion migrations. Another issue concerning
high voltage operation is current collector corrosion, since passivation layers often fail to
protect the Al or stainless-steel current collectors over 4.5 V [20].
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To break this predicament, the development of new potassium-based electrolyte
systems suitable for high-voltage operation is imperative. Previous reviews have discussed
the progress of electrolyte research for PIBs either from a broad view or focusing on a key
point, such as effective SEI-formation-oriented electrolyte design, ester, and ether-based
electrolyte design [3,6,9,10]. This review summarizes the research endeavors from the aspect
of high-voltage applications, and two major study paths are introduced: (i) modify the
traditional electrolyte systems via salt-solvent chemistry alteration, including concentration
adjustment, the introduction of weakly solvating agents, applying multi-ion strategy
and addition of additive; (ii) adopt new forms of electrolytes such as ionic liquids (ILs),
polymer/gel-based solid-state-electrolytes (SSEs) systems. Meanwhile, the effect of CEI
composition on high-voltage performance and the effectiveness to suppress Al corrosion
by various methods are discussed.

2. Design Strategies for High-Voltage Organic Electrolytes

An electrolyte system consists of three key components, i.e., solvent, salt, and additive.
The choice of solvent species sets its essential physical/chemical properties in the first
place. Initial trials of solvents for PIBs begin with carbonates, as enlightened by their
success in the commercialization of LIBs. The most studied carbonates include ethylene
carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate
(DMC), and ethyl methyl carbonate (EMC). Among them, EC and PC with cyclic structures
are characteristic of high dielectric constant, which effectively inhibits electron migration
into the electrolyte, as summarized in Table 1. By contrast, linear-type DEC, DMC, and
EMC have low dielectric constant but low viscosity.

Table 1. Molecular structure, viscosity (η), dielectric constant (ε), melting point (Tm), boiling point
(Tb), and low flash point (Tf) of most used carbonate- and ether-based solvents for PIBs.

Solvent Structure 1 η/cP (25 ◦C) ε (25 ◦C) Tm/Tb/Tf (◦C)

EC
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Table 1. Molecular structure, viscosity (η), dielectric constant (ε), melting point (Tm), boiling point 

(Tb), and low flash point (Tf) of most used carbonate- and ether-based solvents for PIBs. 

Solvent Structure1 η/cP (25 °C) ε (25 °C) Tm/Tb/Tf (°C) 

EC 
 

1.09 (40 °C) 89.78 36.4/248/160 

PC 
 

2.53 64.92 −48.8/242/132 

DMC 
 

0.59 3.107 4.6/91/18 

DEC 
 

0.75 2.805 −74.3/126/31 

EMC 
 

0.65 2.958 −53/110/- 

DME 
 

0.409 7.03 −58/85/−2 0.409 7.03 −58/85/−2

1 Atoms of molecular structures: carbon(C)—dark grey; hydrogen(H)—light grey/white; oxygen(O)—red.

For high-voltage operation, the thermodynamic stability of solvents is rather crucial.
Figure 2 compares the LUMO and HOMO energy levels of different solvents [6]. As seen,
EC shows more negative HOMO among carbonates, which predicts better anti-oxidation
capability. When paired with a glassy carbon cathode, pure EC or PC has an oxidation limit
of over 6.0 V [21]. When tested in a lithium system, it predicts an oxidation window of 5.5,
5.3, and 5.15 V (vs. Li+/Li) for EC, DMC, and DEC, separately [22]. However, EC-based
electrolytes with a normal concentration of potassium salts, say, 0.8~1.0 mol/L (M), still
face inevitable decomposition at high potentials in practice. This is particularly typical in
the case of P-DIBs, where the intercalation/extraction of anions into/from graphite cathode
takes place at over 5.0 V, resulting in limited CEs [23,24]. Table 2 summarizes the oxidation
stability windows of typical normal-concentrated potassium-based electrolyte systems. As
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seen, the stability window ranges from 4.3~4.8 V for most ester-based systems. Moreover,
compared with KFSI, KPF6 performs as a more promising salt for high-voltage operation,
and more details will be discussed in Section 2.3. For ether-based electrolytes, the oxidation
limit resides from 4.0~4.5 V. Taking account of the working potentials for high-voltage
cathodes, which often exceed 4.7~4.8 V, current potassium-based organic electrolyte systems
cannot meet the requirements. Therefore, several optimization strategies are proposed,
such as adjustment of concentration, ion solvation structures and salt species, and addition
of additives.
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Table 2. Summary of oxidation limits for normal-concentrated potassium-based electrolytes with
different solvents.

Electrolytes Examples Working
Electrodes Oxidation Limit (vs. K+/K) Ref.

Carbonates 1.0 mol/L KFSI in EMC Pt 4.8 V [25]
0.8 mol/kg KFSI in EC-DMC (1:1 by vol.) Al 4.5 V [26]
1.0 mol/L KFSI in EC-DEC (1:1 by vol.) Al 4.6 V [27]

0.8 mol/L KFSI in EC-DMC-EMC (1:1:1 by wet.) Tungsten (W) 4.5 V [28]
0.7 mol/L KPF6 in EC-DMC-EMC (1:1:1 by wet.) W 5.5 V [28]

Phosphates 0.8 mol/kg KFSI in TMP Al 4.3 V [29]
1.0 mol/L KFSI in TEP C-coated Al 4.4 V [30]

Ethers 1.0 mol/L KFSI in DME Al 4.5 V [27]
1.0 mol/L KFSI in DME Al 4.0 V [31]

1.0 mol/L KFSI in DEGDME Al 4.2 V [32]
1.0 mol/L KFSI in DEGDME Al 4.0 V [33]
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2.1. High Concentration

To push the limit, a high-concentration strategy is proposed. The solubility of the most
used potassium salt KPF6 in carbonates is quite limited, with a saturated concentration
of less than 1.0 M, stemming from the strong interaction between K+ and PF6

− and the
consequent high solvation energy [6]. To reach a higher concentration, KFSI is selected as
the salt due to the weaker interactive force between K+ and FSI− and the lower dissociation
energy of KFSI. A saturated 5.0 M KFSI-based electrolyte is then prepared using EC/DMC
(1:1, v/v) as solvents, which proves an oxidation limit of 5.25 V [34]. When cycled with
a graphite cathode in the range of 3.2–5.25 V, complete charge/discharge plateaus are
evidenced indicating full FSI− intercalation/de-intercalation (Figure 3a). By contrast,
electrolytes with a concentration below 2.0 M cannot be charged over 5.0 V. Another merit
of using high-concentration electrolytes in a dual-ion system is that it remarkably increases
the cell-level energy density, since the electrolyte functions as an active material (Figure 3b).
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Figure 3. (a) Voltage profiles of KFSI−graphite P-DIB within 3.2–5.25 V; (b) Relationship between
cell-level energy density and molarity of KFSI/EC-DMC electrolytes (The star represents the as-
selected concentration, i.e., 5.0 M KFSI in EC/DMC (1:1, v/v)). Reprinted with permission from
Ref. [34]. Copyright 2018, Springer Nature. (c) Normalized Raman spectra of KFSI/EMC electrolytes
with a concentration of 0.5 M to 4.0 M; (d) Oxidative stability of KFSI/EMC electrolytes at different
concentrations. Reprinted with permission from Ref. [25]. Copyright 2019, John Wiley & Sons.
(e) Raman spectra of KFSI salt, EC−DMC solvent mixture, and KFSI/EC-DMC electrolytes by
concentrations of 0.8 M, 4.0 M, and 8.0 M; (f) Solvation structures of K+ in KFSI/EC−DMC electrolytes
with a concentration of 0.8 M (up) and 4.0 M (below) (Atoms in molecular structures: K−purple;
S−green; N−blue; F−orange; O−red; C−grey; H−white.). Reprinted with permission from Ref. [26].
Copyright 2022, Elsevier.

The mechanism behind the expanded window with high concentration is then inves-
tigated. Anion–xK+ ion pairs existing in the electrolyte can be divided into three groups
according to the number of surrounding ions: (i) solvent-separated ion pairs (SSIPs, x = 0),
contact ion pairs (CIPs, x = 1) and aggregates (AGGs, x ≥ 2). Placke et al. probed the
ion-coordination change of the KFSI-EMC electrolyte system with varied concentrations
using Raman spectroscopy [25]. As shown in Figure 3c, the Raman band at 731 cm−1

representing FSI− anion undergoes a continuous blue shift to 740 cm−1 when the concen-
tration gradually changes from 0.5 M to 4.0 M, along with an obvious increase in intensity.
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Taking into account the estimated individual vibration frequency of SSIPs (730 cm−1), CIPs
(737 cm−1), and AGGs (744 cm−1), it can be readily exposed that the dominated ion pairs
change from SSIPs to CIPs, and ultimately to AGGs as salt concentration increases. For
the solvent, the band at 931 cm−1 slowly collapses accompanied by the strengthening of
the band at 939 cm−1, indicating apparent cation complexation with EMC molecules at
high concentrations. The strong interactions of both FSI−–K+ ion pairs and K+–solvent
complexes give rise to enhanced stability of such a system, enabling an oxidative limit
up to 5.6 V (Figure 3d). A similar situation is also found in highly concentrated 4.0 M
KFSI/EC-DMC electrolytes [26]. Researchers confirmed the strong interaction between K+

cations and FSI− anions to form K+–FSI pairs and the aggregation of K+–FSI–EC–DMC
complexes at high concentration, via analysis of 17O-nuclear magnetic resonance (NMR)
spectra and Raman spectra (Figure 3e). As K+–FSI−–carbonate complexes form, the amount
of free EC and DMC is evidently reduced (Figure 3f), making the electrolyte less susceptible
to oxidation at high voltage.

Another group of solvents showing promising properties is phosphates in the ester
family. Except for their comparable wide EWs to those of carbonates (Figure 2), phosphates
are bestowed with non-flammability for better safety. Tang et al. examined the solubility
of KFSI in trimethyl phosphate (TMP) and found that it is able to reach a maximum
concentration of 6.6 M [29]. At such high concentrations, nearly all the TMP molecules
participate in solvating with K+ and FSI− and minimal free ones remain. The oxidation
ability of 6.6 M KFSI-TMP is as high as 5.4 V. Except for their enhanced anti-oxidation
performance, phosphate-based concentrated electrolytes are inclined to present high affinity
with both cathode and anode. Liu et al. discovered that triethyl phosphate (TEP)-based
electrolyte with 2.6 M KFSI is capable of stabilizing the K2MnFe(CN)6 cathode as well
as retaining high reversibility on the graphite anode, whereas 0.6 M KPF6/EC-DMC
undermines the Coulombic efficiency of the K2MnFe(CN)6 cathode in the same cycling
protocol [30].

Besides esters, ether-based solvents are also intensively studied. The most studied
dimethyl ether (DME) is featured with low viscosity and the capability to facilitate the
formation of thin, uniform, and robust SEI layers on the anodes. Such merit makes it an ideal
solvent for graphite and K metal anodes in PIBs. Nonetheless, the charge limit voltages
of ethers are fairly limited, as indicated by their high HOMO energy levels (Figure 2).
Encouragingly, the high-concentration method also works for ether systems [35]. For
example, the highly concentrated 7 mol/kg (m) KFSI/DME electrolyte demonstrates no
apparent current flow upon anodic scan to 6.0 V by cyclic voltammetry (CV), whereas the
2 m one shows irreversible current flow above 3.5 V [36]. In addition, the Al current collector
with 7 m KFSI/DME succeeds in maintaining its surface morphology after three cycles,
which serves as corroborative proof for the wide EW of such concentrated electrolyte. Later
on, concentrated diethylene glycol dimethyl ether (DEGDME)-based electrolyte is reported.
Zhai et al. reveal the solvation structure change of K+ and FSI− in DEGDME by means
of Raman spectroscopy [32]. A similar evolution pattern is disclosed with that of KFSI in
carbonates (Figure 4a). As the concentration of KFSI increases, more CIPs and AGGs arise
with the K+ cation being the solvated core, instead, together with scarce free DEGDME
left (Figure 4b). The intensified coordination of both K+–ether pairs and K+–anion–ether
complexes are thus attributed to the enhanced oxidation limit. Moreover, FSI− anions
preferentially decompose upon the anodic process in concentrated ether-based systems,
which promotes the formation of F-containing thin CEI with high ionic conductivity and
shows prospects when matching with high-voltage cathodes [27].
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Figure 4. (a) Raman spectra of KFSI/DEGDME electrolytes with different concentrations (Fitting de-
tails: 805 cm−1 (light green line)/852 cm−1 (pink line) − gauche and trans conformation of C−C bond
of DEGDME, respectively; 838 cm−1 (blue line) and 866 cm−1 (light blue line) – solvation of DEGDME
molecules with K+ and FSI–) and corresponding (b) solvation structures. Reprinted with permission
from Ref. [32]. Copyright 2021, Royal Society of Chemistry. (c) Raman spectra of KFSI, DME, HFE,
1.45/2.76 m KFSI/DME−HFE and 1.15/6.91 m KFSI/DME electrolytes (Fitting details: 820 and
850 cm−1 (blue line) – CH2 rocking and C−O stretching vibration for free DME molecules; 836 and
860 cm−1 (orange line) – solvation of DME molecules with K+ and FSI–); (d) comparison of solvation
structures of low−concentration, high−concentration, and localized high−concentration electrolytes.
Reprinted with permission from Ref. [37]. Copyright 2019, John Wiley & Sons. (e) Distributions of
possible solvation compositions of 1.0 M KFSI/DME and 1.0 M KFSI/DEE by molecular dynamics
simulations; radial distribution function (solid lines) and coordination number plots (dashed lines) of
(f) K−OFSI- and (g) K−ODME/K−ODEE. Reprinted with permission from Ref. [31]. Copyright 2022,
John Wiley & Sons.

2.2. Localized High Concentration/Weakly Solvating Strategy

Although high concentration brings improved thermodynamic stability, it also pro-
duces high viscosity and poor wettability. To overcome this dilemma, researchers con-
structed a localized high-concentration electrolyte (LHCE) by introducing co-solvents with
low polarity. The 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether (TFETFE), which is a
highly fluorinated ether (HFE) with abundant -CF2 and -CF3 groups, is utilized as the
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functional co-solvent by Wu et al. [37]. The inclusion of proper-proportioned HFE endows
the newly formed 2.76 m KFSI/DME-HFE electrolyte with high permeability and ionic
conductivity. Interestingly, despite the decrease of the literal concentration, the as-formed
LHCE reserves the K+/FSI−-centered CIPs and AGGs as uncovered in concentrated 6.91 m
KFSI/DME, in partial areas, whilst HFE works more like a lubricant smoothing the channels
between solvated groups and barely engages in solvating K+ or FSI− (Figure 4c,d). Even-
tually, a high anodic limit of 5.3 V is achieved. Recently, Zhai et al. formed a new LHCE
system by applying the same HFE as a co-solvent for a concentrated KFSI/DEGDME sys-
tem [33]. Likewise, localized concentrated areas are present with all DEGDME molecules
coordinating to K+ and FSI−, contributing to high voltage resistivity above 5.0 V. Free
TFETFE molecules dilute the whole electrolyte system and help to guarantee high ionic
conductivity. With 2.3 M KFSI in DEGDME/TFETFE, a 4 V-class PMB can be demonstrated.
Given that HFEs hardly participate in the solvating reactions, they act as weakly solvating
agents to tune the solution environments, making the LHCEs mildly solvating electrolytes.
Such electrolyte systems are typical of low de-solvation energy for the cations, which
is conducive to realizing smooth and fast cation storage on the anode side. In another
respect, the weakened interaction between cations and solvent molecules allows reinforced
cation-anion coordination, leading to an anion-induced type of SEI/CEI and enhanced
anti-oxidation ability [38–41]. Via adopting an ether-based solvent, i.e., 1,2-diethoxyethane
(DEE), Lu et al. constructed a weakly solvating electrolyte, the 1.0 M KFSI/DEE [31]. As
shown in Figure 4e,g, through simulating the solvation structures of 1.0 M KFSI/DEE and
1.0 M KFSI/DME, researchers found that the K+-FSI− clusters (K+(FSI−)x, x ≥ 2) over-
whelmingly outnumber the K+-DEE structure (K+(FSI−)x, x = 0) and K+-FSI− single pair
(K+(FSI−)x, x = 2) in 1.0 M KFSI/DEE, with a ratio of 91.6%, 6.7%, and 1.7%, respectively.
In comparison, the value obtained in 1.0 M KFSI/DME is 18%, 66%, and 16%, respectively,
which is indicative of the close K+-solvent interaction but the weak connection between
K+ and FSI−. The dominated K+-FSI− clusters in 1.0 M KFSI/DEE help achieve better
oxidative stability. As a result, the charge cut-off limit of a DEE-based electrolyte exceeds
that of a DME-based one by 0.3~0.4 V under the same concentration.

2.3. Multi-Ion Strategy

The underlying mechanisms of the aforementioned methods reside in the re-arrangement
of cation–anion and cation–anion-solvent solvation structures. Another approach to meet such
a goal is combining different cations or anions by adding two or more salt species, scilicet the
multi-ion strategy. By taking advantage of the merits of different components, the modified
electrolytes demonstrate improved properties in various aspects, such as diffusivity, conduc-
tivity, reversibility, and electrochemical stability [42]. The “multi-ions” is usually related to
the solvating processes by different ions. Typically, salts with different saturation concen-
trations could be used to expand the molarity upper limit to achieve a highly concentrated
environment, especially in aqueous systems [43]. For example, the 1.0 M Zn(OAc)2 + 31.0 M
KOAc, 21.0 M LiTFSI + 3.0 M ZnTfO2 and 20.0 M KCF3SO3 + 30.0 M KFSI hybrid formulae
all produce the water-in-salt electrolytes (WISE), which assist in widening the EWs [44–46].
In non-aqueous systems, ion solvation structures could be readily altered by introducing a
strongly solvating salt specie. Zhang et al. integrated 1.0 M NaClO4 in 0.5 M ZnOTf/TMP
to dimmish free TMP molecules and form Na+/Zn+-based strongly solvated structures [47].
While extensively studied in lithium, sodium, and zinc-based batteries, the multi-ion concept
is seldom implemented in potassium-based systems, partially as a consequence of the num-
bered optional potassium salts. In addition, this modification method is not fully understood,
and more fundamental works to be addressed.

KFSI, KTFSI, and KPF6 are frequently used salts in organic solvents, with a decreasing
solubility by sequence, whereas KClO4 and KBF4 hardly dissolve in carbonates. Due to
the high dissociation energy, KPF6 only holds an utmost concentration of 0.9 m in PC.
Conversely, KFSI with less de-solvation energy could reach a saturated concentration of
10 m in PC [36]. From another aspect, the study by Ming et al. revealed that the solubility
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difference between KPF6 and KFSI stems from the number of solvent molecules needed to
solvate K+ ions [48]. As FSI− shows higher coordinate capability with K+, fewer solvents
will be necessarily demanded for the solvation process, thus leading to a significantly higher
solubility of KFSI in carbonates and ethers. More importantly, the variation of solvating
capability by two salts holds prospects once combining them in a single electrolyte system.
Komaba et al. systematically studied the effect of xKPF6-yKFSI ratios on the performances
of the KPF6/KFSI/EC/DEC electrolyte system [49]. The first finding states that with more
KFSI in the formula, higher ionic conductivity is obtained, thanks to the intrinsic high
ionic conductivity of KFSI (Figure 5a). Secondly, via tuning the mol ratio of KPF6/KFSI
to 3 (0.75 KPF6–0.25 KFSI), the electrolyte with 1 m concentration demonstrates high
oxidation ability and provides effective shielding on Al current collectors at 4.6 V (Figure 5b).
The binary xKPF6-yKFSI formula is then investigated in the configuration of P-DIBs by
Zhang et al. [28]. By fixing the total salt concentration at 0.8 M, different KPF6/KFSI ratios
are tested with a ternary EC/DMC/EMC electrolyte system. Upon first anodic scan using
a tungsten electrode, electrolyte with single anion KPF6 shows a high oxidation limit over
5.5 V, whilst that with pure KFSI displays an apparent decomposition current over 4.5 V. It
is noteworthy that upon subsequent scans, KPF6-containing electrolytes exhibit a reinforced
anti-oxidation capability. Further investigation reveals that it results from the formation
of robust CEI with abundant F-containing species such as CHF-CH2 and CF2-CF2 species,
which effectively passivate the cathode and prevent parasitic electrolyte oxidation owing to
the high electron negativity of F element (Figure 5c). Combined with the high diffusivity of
FSI−, the 0.8 M binary 0.5 KPF6–0.3 KFSI achieves a holistic electrochemical performance
with graphite cathode when cycling from 3.0–5.5 V.
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Figure 5. (a) Ionic conductivities of binary xKPF6−yKFSI/EC−DEC electrolytes with dif-
ferent KPF6/KFSI ratios and total molarities; (b) chronoamperograms of Al electrodes in
xKPF6−yKFSI/EC−DEC electrolytes at 4.6 V. Reprinted with permission from Ref. [49]. Copy-
right 2020, American Chemical Society. (c) C 1 s and F 1 s surface XPS profiles of graphite electrodes
cycled with 0.8 M KFSI, 0.5 KPF6−0.3 KFSI and 0.7 M KPF6. Reprinted with permission from Ref. [28].
Copyright 2021, Elsevier. (d) LUMO and HOMO of KNO3, KFSI and DME (Atoms in molecular
structures: K−purple; N−blue; O−red; S−yellow; F−white; C−brown; H−pale pink); (e) LSV
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energy of KNO3, KFSI, and DME molecules by Al2O3 surface. Reprinted with permission from
Ref. [50]. Copyright 2021, Elsevier.
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2.4. High-Voltage Additive

Introducing high-voltage additives into electrolytes is a tried-and-true method in LIBs
towards the stabilization of cathodes with high cut-off voltages [51,52]. Additives with
less negative HOMO than base solvents serve as sacrificing agents. They preferentially
decompose at high potentials to form effective passivation layers, thus suppressing elec-
trolyte oxidation and dissolution of transition metals from cathode materials. Given the
numerous available studies in LIBs, additive research for PIBs is comparatively lagging.
Among those, fluoroethylene carbonate (FEC) is a promising one. With an extra F atom
bonding to the carbon atomic ring, FEC has lower HOMO than the original EC, implying
its higher oxidation limit. Moreover, the inclusion of F within the solvent formulation
facilitates the formation of F-containing species in CEI, which effectively restrain electrolyte
degradation on the cathode side. Liu et al. found that the inclusion of FEC in EC/DMC can
effectively stabilize the K2MnFe(CN)6 cathode at 4.5 V, along with an improved CE [30]. Via
investigation of charge impedance on KVPO4F cathode with pure FEC, researchers found
that the as-constructed CEI has a relatively high RCEI value of ca. 1.5 kΩ/cm2, indicating
high anti-oxidation ability [53]. By contrast, the Rct representing the rest interfacial part
other than CEI holds a value of 0.4 kΩ/cm2, which facilitates charge transfer through
the interface.

However, FEC seems to impair the reversibility on the anode side [30]. Despite being
frequently used in Li and Na-based systems, the effectiveness of FEC in K-based systems
calls for further investigation. Via analyzing the compositions of FEC-induced SEI on hard
carbon and potassium metal, it is found that insoluble KF and K2CO3 are dominating
species in the passivation layers, which give rise to the increase in interfacial impedance on
the anode side [54,55]. Apart from that, the existing KF is prone to defects, which makes the
SEI less dense and susceptible to consecutive reduction. Considering the non-salt nature of
additives, an excessive dosage might harm the overall electrolyte performance. Research by
Yun et al. indicates that a key factor determining the efficacy of FEC is its concentration in
the solution [56]. With a high fraction, say 5.0 wt%, the carbonate-based electrolyte tends to
form SEI with densely distributed inorganic species, which induces high charge resistance.
On the contrary, electrolyte with less FEC proportion, e.g., 0.2 wt%, produces thin SEI
film with a proper proportion of inorganics such as KF, which enhances the reversibility
of anode compared with that in the base carbonates. Therefore, with delicate control of
FEC percentage, it could simultaneously stabilize the interface on both the cathode and
anode sides.

Another potential high-voltage additive for PIBs is potassium nitrate (KNO3), as
demonstrated by Kang et al. [50]. Regarding its less negative HOMO compared with that
of KFSI and DME, KNO3 tends to decompose prior to KFSI and DME when charged to
high voltage (Figure 5d). By adding 50 mM KNO3 into 2.3 M KFSI/DME, the upper EW
expands from 3.9 V to 4.5 V (Figure 5e). Additionally, NO3

− will be preferentially adsorbed
on Al current collector upon charging, as a result of the more negative adsorption energy of
KNO3 than that of KFSI and DME, thus preventing Al corrosion by FSI− anions (Figure 5f).

3. Adoption of Other Electrolyte Systems

Beyond traditional organic electrolytes, there are other promising alternatives for
high-voltage applications, such as ILs and SSEs.

3.1. Ionic Liquids

ILs are liquids at room temperature composed of a pair of cation and anion-like salts.
They usually feature low vapor pressure, high ionic conductivity, non-flammability, and
wide EWs [57,58]. In particular, the exclusion of solvents ingeniously avoids obvious con-
centration gradients when both cations and anions are concurrently involved in electrode
reactions. This feature finds its use in the prototype of P-DIBs in the first place. Winter et al.
constructed a dual-graphite cell using N-butyl-N-methyl bis(trifluoromethanesulfonyl)imide
(Pyr14TFSI) + 0.3 M KTFSI as electrolyte [59]. The as-built cell demonstrates a high rate



Molecules 2023, 28, 823 11 of 16

to 5 C (1C = 50 mA/g) without capacity loss thanks to the high ionic conductivity of
Pyr14TFSI/KTFSI electrolyte. Furthermore, with the addition of 2.0 wt% ethylene sulfite as
an SEI-forming additive, the dual-ion cell exhibits ultra-stable cycling in the voltage range
of 3.4–5.0 V for 1500 cycles, in conjunction with a high CE of over 98%. Another merit of
ILs is that they can stabilize cathode materials at high potentials. Shikano et al. matched
a high-voltage cathode K2Ni1.75Co0.25TeO6 with 1-propyl-1-methylpyrrolidinium TFSA
(Pyr13TFSI) + 0.5 M KTFSI electrolyte [60]. When cycling within 2.7–4.5 V, it proves high
reversibility in the structural evolution of K2Ni1.75Co0.25TeO6 and thus the corresponding
electrochemical reactions. Moreover, an astonishing upper oxidative limit of over 6.0 V can
be achieved for the Pyr13TFSI/KTFSI system. Besides dual-cation ILs, single K+ cation-based
ILs are also proposed. The mixture of KFSI and potassium (fluor sulfonyl) (trifluoromethyl-
sulfonyl)imide (KFTI) by a molar ratio of 55:45 (KFSI/KFTI) exhibits a melting point of
67 ◦C [61]. When scanned at 90 ◦C against a K metal counter electrode, the KFSI/KFTI
electrolyte shows an oxidation voltage of 5.6 V. However, the drawback of such a system is
evident, high operation temperature brings about additional safety concerns.

3.2. Solid-State Electrolyte

The development of SSEs is motivated by the demand for safer and more flexible cells,
especially in the presence of metal-based electrodes, where the natural high mechanical
strength of SSEs effectively suppresses the dendrite growth [62–64]. In this regard, several
SSEs have been reported for PMBs, including gel polymer electrolytes (GPEs), composite
gel polymer electrolytes (CGPEs), and crystalline organic electrolytes (COEs) [65–67]. For
GPEs, the free-standing crosslinked polymer membrane containing salt species works
as an electrolyte and separator at the same time. The properties of such an EES system
depend largely on its ingredients. Liu et al. synthesized a CGPE using poly(vinylidene
fluoride-hexafluoropropylene) (PVDF-HFP), KFSI, and polyacrylonitrile (PAN), where
PAN functions as a membrane skeleton with reasonable strength and endows the CGPE
with high-voltage capability thanks to its oxidation resistance [65]. As a result, the PVDF-
HFP-KFSI@PAN has higher tensile strength and a wider EW than pristine PVDF-HFP-KFSI.
Poly(methyl methacrylate) (PMMA) is another promising base polymer for high-voltage
operation, owing to its high oxidation potential and a strong affinity with the absorbed
organic liquids [66]. The as-formed PMMA-based GEP is proven to remain stable up to
4.9 V. Still, SSEs usually suffer from poor contact with an electrode on both sides due to their
“solid” nature. In order to lower the interfacial resistance and keep a high CE, close contact
between the electrode and SSEs is desired. Lee et al. designed a COE consisting of dimethyl
sulfone (DMS) and KFSI [67]. By delicately adjusting the molar ratio of KFSI/DMS to 1/9,
the as-prepared 1-KFSI/9-DMS shows anodic stability up to 5.8 V and a melting point
below 94 ◦C. Intimate contact with the cathode is then realized by pouring the 100 ◦C-melt
1-KFSI/9-DMS onto high-voltage KVPO4F. When matched with K metal anode to form a
KVPO4F/1-KFSI-9DMS/K solid state full cell, it demonstrates excellent cycling stability
without capacity decay after 100 cycles within 2.5–5.0 V, thanks to the superb compatibility
of 1-KFSI/9-DMS with both sides.

4. Summary and Perspectives

In summary, this review has discussed state-of-the-art modification methods for tradi-
tional organic electrolytes, ILs, and SSEs to expand their EWs for high-voltage potassium
batteries. It is noteworthy that the requirements of high-performance electrolytes for either
high-voltage potassium-based or lithium-based systems stay the same. That is, (i) high
ionic conductivity to allow fast ion transfer; (ii) low electronic conductivity to hinder the
migration of electrons; (iii) wide EWs; (iv) chemical stability over a normal operating
temperature range, say 25 ± 20 ◦C; and (v) chemical stability in terms of formation of
effective CEI and SEI [18]. For most studied traditional electrolytes based on esters and
ethers, the mainstream way is to tune the ion-solvent interactions by controlling salt concen-
tration, adding weakly solvating agent/co-solvent, and introducing different salt species
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with distinguished solvating capabilities. Enhancement of oxidative stability of such elec-
trolytes is then realized through suppression of electrolyte decomposition, formation of
effective CEI, and prevention of Al corrosion. Besides organic electrolytes, ILs and SSEs also
hold prospects due to their intrinsic wide EWs and flexibilities towards safer and greener
high-potential devices. Despite that, the research of high-voltage potassium batteries is
in its nascent stage compared with high-voltage LIBs, where plenty of novel solvents and
additives with remarkable anti-oxidative capabilities are available. The intrinsic difference
between K and Li electrolyte systems originates from the variation of atomic sizes and
Lewis acidity of K and Li, which bestows K systems with lower de-solvation energy and
smaller volumes of solvated structure, thus higher ionic conductivity and diffusivity. While
learning from the well-established knowledge from LIBs, a deep understanding of the
very nature of K continues to be needed to design better high-voltage potassium-based
electrolytes. Future explorations may focus on the following aspects:

(1) Designing new high-voltage potassium salts. Due to the large size of K+ and its low
Lewis acidity, the solubility of potassium salts is usually limited in most used carbon-
ates. Even when utilizing high-concentration or multi-ion strategies, there are only a
few choices stemming from that solubility limit, as summarized in Table 3. Therefore,
adopting those with effective CEI-forming capabilities seems rather important. Lu
et al. synthesized a new potassium salt based on cyclic anion hexafluoropropane-
1,3-disulfonimide (HFDF−) [68]. By ingeniously incorporating three -CF2- groups in
a single anion, the newly formed KHFDF facilitates the formation of thin, uniform,
and F-abundant CEI together with a high oxidation resistance against Al up to 4.7 V
(illustrated in Figure 6). This trial offers considerable inspiration for the development
of high-voltage potassium salts.

(2) Developing high-voltage solvents. Solvents are indispensable components setting the
keynote of EWs for traditional organic liquid electrolytes. There are many high-voltage
candidate solvents for LIBs, such as sulfone, nitrile, and fluorinated esters, which
serve as significant references for the screening of proper solvents for potassium-
based systems [69–74]. Among those, employing fluorinated solvents could be a
promising way. One of the frequently fluorinated carbonates, FEC, possesses a higher
anti-oxidative capability and is effective in forming robust F-abundant CEI when
serving as the solvent for high-voltage PIBs. Moreover, the searching circle could be
extended outside esters and ethers. For example, recently, a glyoxal-based electrolyte
with an oxidative limit of 5.0 V has been reported for PIBs [75].

(3) Modification of high-voltage battery components. Current collectors and cell cases
are non-negligible factors affecting batteries’ reversibility, CE, and life when cycling
in a wide range of EW. Some scientists have devoted themselves to understanding
the formation mechanisms and compositions of passivation layers on typical current
collectors, such as Cu, Al, and stainless steel [76]. Still, the dissolution and corrosion of
current collectors cannot be fully eliminated. To ensure the long life of battery compo-
nents, especially for stationary energy storage configurations, innovative modification
methods for effective passivation are needed.

Table 3. Solubility (M (mol/L)/m (mol/kg) at 25 ◦C) of most used potassium salts in typical solvents.

Solubility KPF6 KFSI KTFSI KClO4 KBF4

PC 0.9 m [36] >10.0 m [36] <0.5 M [36] <0.5 M [36]
EMC - >4.0 M [25] - -

EC/PC 1.0 M [36] - -
EC/DEC 0.8 M [23] >4.0 M [77] - -
EC/DMC - >5.0 M [34] - -

EC/DMC/EMC 0.7 M [28] >5.0 M [28] - -
DME 0.9 m [36] 7.0 m [36] 6.0 m [36] - -

DEGDME >4.0 M [32] - -
TMP - 6.6 M [29] - -
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