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Abstract: Co-free layered LiNi0.5Mn0.5O2 has received considerable attention due to high theoretical
capacity (280 mAh g−1) and low cost comparable than LiCoO2. The ability of nickel to be oxidized
(Ni2+/Ni3+/Ni4+) acts as electrochemical active and has a low activation energy barrier, while the
stability of Mn4+ provides a stable host structure. However, selection of appropriate preparation
method and condition are critical to providing an ideal layered structure of LiNi0.5Mn0.5O2 with
good electrochemical performance. In this study, Layered LiNi0.5Mn0.5O2 has been synthesized by
sol-gel and solid-state routes. According to the XRD, the sol-gel method provides a pure phase, and
solid-state process only minimize the secondary phases to certain limit. The Ni2+/Mn4+ content in
the sol-gel process was higher than in the solid-state reaction, which may be due to the chemical
composition homogeneity of the sol-gel samples. Regarding the electrochemical behavior, sol-gel
process is better than solid-state reaction. The discharge capacity is 145 mAh/g and 91 mAh/g for
the sol-gel process and solid-state reaction samples, respectively.

Keywords: LiNi0.5Mn0.5O2; Co-free; layer structure

1. Introduction

High-capacity cathode materials typically contain a certain amount of Cobalt for sta-
bilization and promoting their electrochemical properties. The role of cobalt as transition
metal changes its oxidation state to maintain the electrically stay neutral when the lithium
ion is taken out from the cathode. However, Cobalt price has gone up significantly so
high that Co-free cathode materials have been proposed and investigated recently [1–3].
Layered-structure lithium nickel manganese oxide (LiNi0.5Mn0.5O2) is a candidate Co-free
cathode material that possesses high theoretical capacity (280 mAh/g), good cycling stabil-
ity, and small volume changes [4,5]. Ohzuku and Makimura successfully demonstrated
the synthesis of 1:1 solid solution of LiNiO2 and LiMnO2, namely LiNi0.5Mn0.5O2 using
solid-state synthesis technique by heating at 1000 ◦C for 15 h. LiNi0.5Mn0.5O2 is one of the
most attractive materials [6].The structure of LiNi0.5Mn0.5O2 consists of layers of transition
metal (Ni and Mn) separated from Li layers by oxygen. Li and transition metal (TM)
coordinated octahedrally by oxygen but diffuses from site to site by hopping through
intermediate tetrahedral sites. The Li migration during the charge-discharge process has
a diffusion rate, which has an activation energy barrier. The energy required for a Li-ion
to cross the activated state is likely to depend on the size of the tetrahedral site, which
also calls as strain effect. However, the exchange of Ni/Li (or Ni/Li disordering) usually
happens between the layer and TM layer in these materials during synthesis and elec-
trochemical cycling [7]. Several amount of Li+ that occupy the transition metal slab or
vice versa for transition metal and other indication of Li+/Ni2+ mixing is the Li2MnO3
like phase formation. The impact of Li+/Ni2+ disorder increases the possible formation
of Li-dumbbells which causes it causes the high voltage process involving removal of the
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tetrahedral Li-ions [8].Furthermore, the transition metal of Ni acts as electrochemically
active and has a low activation energy barrier due to the valence state is low, which cam
promote the Li ion diffusion. On the other hand, manganese act as electrochemically
passive, which the primary role is to maintain the host crystal stability. During synthesis
layered LiNi0.5Mn0.5O2 has a possible cation anti-site contains approximately 8–10%, which
mean it obtain 10% Li+ will occupy the transition metal slab and vice versa for transi-
tion metal [7]. This cation mixing promotes by two factor that must investigate during
research, the first assumption caused by a Ni2+ substitution in the lithium layers due to
the closely cationic size between Li+ (0.76 Å) and Ni2+ (0.69 Å). The second consideration
is the formation of Li+/Mn4+ which form Li2MnO3-like phase ordering. Li2MnO3-like
was suggested can provide a driving force for the Li+/Ni2+ exchange [9,10]. The selection
of appropriate preparation method and condition are critical to obtain an ideal layered
structure of LiNi0.5Mn0.5O2 showing good electrochemical performance. There are several
methods for synthesis LiNi0.5Mn0.5O2 cathode material such as solid-state method [11],
hydrothermal synthesis [12] and co-precipitation [13] have been used by other groups to
synthesize this material. Furthermore, the precipitation agents require several purification
steps to be removed and their residues can promote the negative impact for electrochemical
performance. This difficulty when producing in term batch-to-batch during large-scale
production. Nevertheless, the hydrothermal synthesized promoted the cation anti-site
defect which determined electrochemical properties of cathode materials. Even worse,
impurities have often been found along with hydrothermally due to the oxidizing circum-
stance in aqueous solution. To produce LiNi0.5Mn0.5O2 with a superior electrochemical
performance, there still are challenges to be overcome. Sol-gel method is the common
method for synthesis of the multi-cation cathode materials due to high purity, high homo-
geneity, and low synthesis temperatures. In this study, a sol-gel process is proposed to
fabricate layered LiNi0.5Mn0.5O2 with good electrochemical performance. For comparison,
LiNi0.5Mn0.5O2 was also synthesized by a conventional solid-state reaction. The samples
were characterized by XRD, SEM, XPS and galvanostatic charge–discharge tests.

2. Experimental
2.1. Materials and Preparation

The sol-gel method preparation was prepared according to the procedure:
0.105 mole lithium acetate (Li(CH3COO) ·2H2O, MACKLIN, 99.9%) with an excess of
5 mol % to compensate for Li-loss during high temperature treatment, 0.05 mole nickel
acetate (Ni(CH3COO)2·4H2O, Sigma Aldrich, St. Louis, MO, USA, 98 %), and 0.05 mole
manganese acetate(Mn(CH3COO)2·4H2O, Sigma Aldrich, St. Louis, MO, USA, ≥99%)was
dissolved in distilled water, and the same time the citric acid was dissolved with distilled
water in the different beaker. The citric acid was added drop by drop in to the transition
metal solution afterward adding the ethylene glycol. The temperature setting at 60–70 ◦C
and stirring for gelation overnight. Furthermore, increased the temperature at 150 ◦C until
getting a dry gel. The resulting dry gel was continued to pre-calcine in Al2O3 crucibles at
600 ◦C for 12 h and calcined at 900 ◦C for 12 h.

Solid-state method was used for comparing the sol-gel method. A stoichiometric
amount of nickel oxide (NiO, Sigma Aldrich, St. Louis, MO, USA, 99.8%), manganese oxide
(MnO2, Sigma Aldrich, St. Louis, MO, USA, ≥ 99%) and lithium hydroxide (LiOH, Sigma
Aldrich, St. Louis, MO, USA, 98%) as raw materials. The raw materials were placed in a
50 mL ball mill jar to homogenized by roller milling for 24 h at 500 r.p.m using zirconia
milling media with ethanol (Sigma Aldrich, St. Louis, MO, USA, 95%) added as a carrier
fluid. The mass ratio of the starting materials and the zirconia balls was 1:90. After milling,
ethanol was evaporated under mixing at 85 ◦C. After drying, each powder was sieved
using a 325 mesh to obtain uniform particle sizes. Finally, the powders were calcined at
900 ◦C for 12 h to obtain LiNi0.5Mn0.5O2 powders.
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2.2. Basic Characterization

The thermal behavior of the as-prepared powder was carried out using (SETSYS
Evolution TGA-DTA/DSC SETARAM) up to 1000 ◦C at the scan rate of 20 ◦C/min. The
phase purity and crystal structure of the LiNi0.5Mn0.5O2 samples were investigated using
X-ray diffraction (Rigaku Multi Flex) with Cu-Kα radiation. The two thetas range from 10
to 80 degree with 0.5 deg./min rate. The operating voltage and current were 30 kV and
20 mA, respectively. Phase identification of the sample was analyzed using MDI Jade 6 and
identify the phase using ICDD database. The date result calculated to determine the value
of lattice parameter, average volume crystal size and amount of impurities phase. Scanning
electron microscopy was performed using a Hitachi S3000 to identify the morphology
and particle size of the samples. The particle size of powder synthesized was determined
using Zetasizer 3000 HSA.X-ray photoelectron spectroscopy confirms the valence state of
transition metal due to the important initial condition of nickel state and correction binding
energy using C1s peak (285 eV).

2.3. Electrochemical Characterization

The electrodes were prepared by mixing the LiNi0.5Mn0.5O2 powder with carbon
black and polyvinylidene fluoride at a weight ratio of 80:10:10 in N-methyl pyrrolidine.
The slurry was coated on aluminum current collect using the doctor blade, keeping the
thickness of the coated electrode around 25 µm and dried at 100 ◦C in vacuum for 24 h.
The foils were rolled into thin sheets and cut into disks with a diameter of 13 mm. The
cathode loading was estimated to be ∼2 mg/cm2. Lithium foil was used as the anode and
polypropylene microporous films were used as separators. The electrolyte consisted of
1 M LiPF6 in a mixture of ethyl carbonate (EC, Sigma Aldrich, St. Louis, MO, USA) and
diethyl carbonate (DMC, Sigma Aldrich, St. Louis, MO, USA) at a 1:1 volume ratio. CR2032
coin cells were assembled in an argon-filled glove box. The galvanostatic charge-discharge
curves were performed using an Arbin Battery Tester 2043 in the potential range 2.5–4.3 V.

3. Results
3.1. Weight Loss Decomposition

Figure 1 shows the thermogravimetry and differential scanning calorimetry of the two-
precursor powder for solid state method and the sol gel method. For solid state precursor,
there show no big changes in weight loss curve. The high slope around 200–550 ◦C probably
the weight of loss (17.30%) is attributed from thermal dehydration of LiOH.H2O and also
CO2 releasing from carbonate decomposition [14]. Another weight-loss contribution also
comes from MnO2 by releasing oxygen [15]. The weight loss above than 550 ◦C around
(2.10%) probably attributed by formation phase compound such as spinel, rock-salt and
layered phase. However, the theoretical and practical weight loss is slightly different,
19.73% and 24.75%, respectively. It is assumed the unseen of weight loss because of water
vapor from LiOH.H2O. Attributing CO2 for kinetically can promote the vapor to occur at
60 ◦C [14]. This reason makes sense around 5.02% practical weight loss it does not appear.
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For sol-gel precursor, in the begin observation at low temperature range up to 200 ◦C
the weight loss (32.40%) has occurred, probably corresponding to the physically adsorbed
water and weakly bound ligand molecules. The second stage of weight loss (42.28%)
was occurred between 200–400 ◦C, that attributed to the pyrolysis of residential organic
functional group such as glycerol in low temperature of this stage [16] and decomposition
of acetate into oxides by accompanied releasing water by dehydration of vinyl alcohol
(-CH-CHOH-) to leave (-CH=CH-) in the high-level temperature of this stage [17]. This
phenomenon confirms by Nowak-wick et. al., the citric acid will decompose become an
aconitic acid at 240 ◦C. The decomposition compound is a complex process leading through
dehydration and decarboxylation reaction to different intermediate product [18]. The third
stage shows a flat curve with small weight change about (1.49%), this weigh lost probably
referred to the transformation of crystalline, rock-salt until had been formed the layered
phase structure [19]. The weight loss of 2.1% between 500 and 950 ◦C has attributed to the
release of O2.

3.2. X–ray Diffraction Analysis

The crystal formation during calcination was confirmed using X-ray diffraction based
on temperature difference and synthesis routes process. Figure 2 demonstrate the phase
transformation between sol-gel and solid-state does occur, respectively. The differences
between sol-gel and solid state showed in the magnification (104) as shown in (b) and (e).
The smoothed peak owns by sol-gel, indicate the layered structure well formed, while the
solid state showed a broad region peak and accompany by the complex pattern with a few
overlapping peaks. The complete splitting peak reflection from the layered phase can be
clearly shown in (c) and (d). Those index (006)/(102) and (018)/(110) are considered to
be indicator the well-organized of layered structure which mean the order distribution of
lithium and transition metal ion in the lattice site. As increasing temperature, the enhances
the splitting phenomenon.
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3.3. Morphology

The sample prepared by sol-gel and solid-state were observed, there seems not to be a
significant difference for the morphology, but slightly larger particle size for a solid-state
sample as shown in Figure 3. There also observed the bigger particle size in solid-state, the
agglomeration probably it is attributed by melted of particle together as shown in Figure 3e.
This result is an agreement with the synthesis result from Kos et al., that the particles
of samples synthesized by solid state shown larger sizes and are not as well separated
compared to those from the sol-gel method [20]. This result consistent with the particle
size distribution that shown in the Figure 3c,f the broad peak of sol-gel is narrower than
solid state, indicates the sol-gel particle size is more homogeneous size and well distributed
than solid-state.

Molecules 2023, 28, x FOR PEER REVIEW 5 of 9 
 

 

3.3. Morphology 
The sample prepared by sol-gel and solid-state were observed, there seems not to be 

a significant difference for the morphology, but slightly larger particle size for a solid-state 
sample as shown in Figure 3. There also observed the bigger particle size in solid-state, 
the agglomeration probably it is attributed by melted of particle together as shown in Fig-
ure 3e. This result is an agreement with the synthesis result from Kos et al., that the parti-
cles of samples synthesized by solid state shown larger sizes and are not as well separated 
compared to those from the sol-gel method [20]. This result consistent with the particle 
size distribution that shown in the Figure 3c,f the broad peak of sol-gel is narrower than 
solid state, indicates the sol-gel particle size is more homogeneous size and well distrib-
uted than solid-state. 

 
Figure 3. SEM morphology, TEM image and Particle size distribution of powder sample which cal-
cine in the same temperature at 900 °C with different synthesis routes (a–c) sol-gel method and(d–
f) solid state reaction method. 

3.4. XPS 
The XPS spectra of Ni 2p3/2 for sol-gel and solid-state sample show in Figure 4a,b. 

The Ni 2p3/3 spectrum consists of the main peak and accompanies by broad satellite peak. 
The main peak could be assigned to the nickel ion with the divalent state. As can be seen 
from this figure, Binding Energies (BEs) from the main peak are located at 854.27 and 
854.61 eV for sol-gel and solid-state sample, respectively. However, the peak position of 
BEs Ni 2p3/2 for sol-gel shifted to the lower BEs than solid-state sample which indicate 
the Ni2+ were dominant valence state than Ni3+. However, the main peak Mn2p3/2 position 
of solid-state showed a shift toward lower BEs than sol-gel, further the broad width-peak 
of sol-gel showed slightly larger than solid-state peak. This mean the Mn4+ were dominant 
for sol-gel. This result, also confirm by ratio of splitting peak. The total Mn4+ and LEP area 
divide Mn3+ are 61.64 and 56.21 for sol-gel and solid-state, respectively. 

 Size distribution(s)

5 10 50 100 500 1000
Diameter (nm)

50

100

%
 in

 cl
as

s

 Size distribution(s)

5 10 50 100 500 1000
Diameter (nm)

10

20

%
 in

 cl
as

s(c)

100 nm

100 nm

200 nm

200 nm

100 nm

(b)

(d)

Agglomeration

100 nm

(a)(a) (b) (c)

(d) (e) (f)

Figure 3. SEM morphology, TEM image and Particle size distribution of powder sample which calcine
in the same temperature at 900 ◦C with different synthesis routes (a–c) sol-gel method and(d–f) solid
state reaction method.

3.4. XPS

The XPS spectra of Ni 2p3/2 for sol-gel and solid-state sample show in Figure 4a,b.
The Ni 2p3/3 spectrum consists of the main peak and accompanies by broad satellite peak.
The main peak could be assigned to the nickel ion with the divalent state. As can be seen
from this figure, Binding Energies (BEs) from the main peak are located at 854.27 and
854.61 eV for sol-gel and solid-state sample, respectively. However, the peak position of
BEs Ni 2p3/2 for sol-gel shifted to the lower BEs than solid-state sample which indicate the
Ni2+ were dominant valence state than Ni3+. However, the main peak Mn2p3/2 position of
solid-state showed a shift toward lower BEs than sol-gel, further the broad width-peak of
sol-gel showed slightly larger than solid-state peak. This mean the Mn4+ were dominant
for sol-gel. This result, also confirm by ratio of splitting peak. The total Mn4+ and LEP area
divide Mn3+ are 61.64 and 56.21 for sol-gel and solid-state, respectively.

3.5. Electrochemical Performance

The galvanostatic investigation was performed on the Li/ LiNi0.5Mn0.5O2 cell assem-
bled between sol-gel and solid-state sample calcine at 900 ◦C. The first charge-discharge
curve record at 2.7 to 4.3 V under constant current 0.05 C, as shown in Figure 5. The
illustration of the charge-discharge curve for sol-gel sample looks smooth and monotonous.
Upon charge, the voltage curve steeply increases at 3.75 V followed by a lower slope
as decreasing x-Li content in LixNi0.5Mn0.5O2, is clear that the sample consists of pure
layered phase. From the charge, capacity indicates that 0.57 lithium can be removed from
the layered LixNi0.5Mn0.5O phase below the voltage range 4.3 V. However, the discharge
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capacity of 145 mAh/g, corresponding with re-insertion of 0.51 lithium in the host crystal.
According to the XRD and XPS, the sol-gel method provides a pure phase material and
more completely forming hexagonal ordering crystal of layered LiNi0.5Mn0.5O2.
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Figure 4. XPS spectra for the Ni2p3/2 photoemission line of the layered LiNi0.5Mn0.5O2 sample
(a) Sol-gel and (b) Solid state. The Mn2p3/2 photoemission line of the layered LiNi0.5Mn0.5O2 sample
(c) Sol-gel and (d) Solid state.

To investigate the voltage fade would be better discus using the differential discharge
capacity versus potential (dQ/dV). An anodic peak at 3.75 V which associated with the
oxidation of Ni2+ to Ni4+ was showed in the Figure 6. It should be noted that the anodic
peak of solid-state sample is slightly shifted towards a lower potential and its intensity is
lower than that of the sol-gel, indicating a worse electrochemical activity and resulting a
lower capacity of discharge platform in solid state result, which are perfectly coincident
with the XPS observations.

Figure 7 shows the rate capability of the layered LiNi0.5Mn0.5O2 synthesized via the sol-
gel method and the solid-state method. The capacity of the layered LiNi0.5Mn0.5O2 prepared
by sol-gel method is higher than that solid-state method, and this difference increases under
various rates increases. This result could be attributed to particles agglomerate resulting in
the decrease in its specific surface area, which makes increases the Li diffusion path, so the
deceased discharge capacity of the layered LiNi0.5Mn0.5O2 synthesized via the solid-state
method. The capacity fading in solid state method is attributed to the average Mn valence
is equal to or less than 3.5. The disordering cation leads to the cracking of particles and loss
of electric contact while cycling.
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be obtained by the sol-gel method at low temperature, due to the short distance among
lithium and transition metal formed in the precursor. Conversely, incompletely tree-phase
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deficient of energy. The larger particles from raw materials may need longer annealing time
or higher temperature to complete the required reaction. Layer LiNi0.5Mn0.5O2 prepared
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