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Abstract: Resolving small molecule mixtures by nuclear magnetic resonance (NMR) spectroscopy
has been of great interest for a long time for its precision, reproducibility, and efficiency. However,
spectral analyses for such mixtures are often highly challenging due to overlapping resonance lines
and limited chemical shift windows. The existing experimental and theoretical methods to produce
shift NMR spectra in dealing with the problem have limited applicability owing to sensitivity issues,
inconsistency, and/or the requirement of prior knowledge. Recently, we resolved the problem by
decoupling multiplet structures in NMR spectra by the wavelet packet transform (WPT) technique.
In this work, we developed a scheme for deploying the method in generating highly resolved WPT
NMR spectra and predicting the composition of the corresponding molecular mixtures from their 1H
NMR spectra in an automated fashion. The four-step spectral analysis scheme consists of calculating
the WPT spectrum, peak matching with a WPT shift NMR library, followed by two optimization
steps in producing the predicted molecular composition of a mixture. The robustness of the method
was tested on an augmented dataset of 1000 molecular mixtures, each containing 3 to 7 molecules.
The method successfully predicted the constituent molecules with a median true positive rate of
1.0 against the varying compositions, while a median false positive rate of 0.04 was obtained. The
approach can be scaled easily for much larger datasets.

Keywords: NMR; shift spectra; wavelet packet transform; automated small molecule mixture analysis

1. Introduction

Identification of the components of small molecule mixtures is a crucial and challenging
step in the research and development activities in the pharmaceutical drug discovery [1–3],
metabolomics [4–6], natural product synthesis [7–9], food quality control [10,11], and environ-
mental sciences [12,13]. Different types of nuclear magnetic resonance (NMR) spectroscopic
methods, high-performance liquid chromatography (HPLC), and mass spectrometry (MS)
are widely used across the associated industries for this purpose. The main advantages
of NMR over the other techniques are that (1) its results are highly reproducible, (2) it re-
quires very little sample preparation effort, and (3) it is a nondestructive method [14–16].
However, its relatively poor resolution and sensitivity often make NMR an essential, but
non-exhaustive analytic tool [5,9]. While recent developments for sensitivity improvement
have largely been successful [17–19], limited progress has been made towards achieving
the desired resolution. This is primarily due to the limited range of chemical shift windows
(∼10 ppm) and overlapping resonance lines of small molecules. It is possible to enhance
the resolution in homonuclear decoupled 1H NMR spectroscopy by producing pure shift
spectra [20–24]. The technique has failed to gain wide applicability owing to its experimental
complexity and poor sensitivity [20,25]. While multi-dimensional NMR can improve the
resolution by revealing some of the overlapped components, it comes at the cost of a high
signal acquisition time and experimental noise, which makes it unsuitable for automated
high-throughput studies. To overcome the limited chemical shift window of 1D 1H NMR,
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pseudo-2D NMR methods are employed using diffusion coefficients, relaxation parameters,
and other suitable molecular parameters for spectral simplification and differentiation in
NMR [26–29]. However, the accuracy of the extraction of such molecular parameters and,
hence, the efficiency of separating spectral components for a mixture depends heavily on the
molecular size distribution, the extent of spectral overlapping, and the magnetic properties
of the molecules in a mixture [29]. Therefore, these methods are often complementary to
each other and cannot be applied without user interference or prior knowledge about the
mixture or data pre-processing, which adds further limitations to the applicability of the
methods [26,30]. In order to resolve the problem theoretically, the maximum entropy method
has been used in converting NMR to pure shift spectra by deconvolution [31,32]. One of its
major drawbacks is the requirement of prior knowledge about the scalar coupling patterns
and the coupling constants, which is reasonable for 13C NMR, but unsuitable for 1H NMR
spectroscopy. Apart from this, a series of spectral analysis tools has been developed, which
include peak matching strategies [33–35], spectral editing [36,37], similarity measure [38,39],
and deep-learning-based tools [40–42], for identifying small molecule mixture constituents
from the corresponding NMR spectra. However, those applications can be seldom gener-
alized, often suffer from low reliability, and/or require extremely large and specifically
designed training datasets. As a result, none of the methods are suitable for high-throughput
analysis of small molecule mixtures using 1H NMR as the primary tool.

In a recent work, we showed that the wavelet packet transform (WPT) can work as a
multi-resolution signal processing tool in transforming an 1H NMR to a pure shift spec-
trum [43]. Successive decomposition of a spectrum by WPT yields pairs of approximation
and detail components at each level, which contain some of the low- and high-frequency
spectral features from the chemical shift domain, respectively. The approximation com-
ponent produced at the final level of decomposition of an 1H NMR spectrum produces
only singlet structures, while the multiplet structures are transferred to the various detail
components. We illustrate that the former can be used to calculate a simple pure shift
spectrum, and the robustness of the WPT-based NMR spectral analysis method against a
significant level of noise has been established [43]. An overview of the wavelet transform
theory is provided in the Appendix A.

Automating the task of molecular identification in the study of metabolites and other
small molecule mixtures without a priori knowledge remains a major challenge, especially
using 1D NMR as the primary analytical tool [44–46]. In absence of an automated mixture
analysis, the study time increases significantly, while the accuracy of the analysis varies
widely based on the user inputs and interpretations, as well as the nature of the molecular
mixtures [44,47,48]. In this work, we developed an automated method for predicting molecu-
lar compositions from the corresponding 1D 1H NMR spectra without a priori knowledge and
demonstrate its applicability across a wide range of molecules. The problem of the automated
identification of mixture components from the corresponding 1D 1H NMR spectra can be
divided into two parts: (1) predicting the number of molecules in a mixture and (2) predicting
their identities. For this purpose, we created an extensive database of 1000 augmented NMR
spectra of molecular mixtures, each containing 3 to 7 spectra of the constituent molecules. A
library of WPT shift NMR was created from the 500 MHz NMR spectra of 74 molecules. The
mixed NMR spectra were analyzed in an automated fashion by implementing a four-step
algorithm. The algorithm in its first two steps calculates a WPT shift spectrum from an NMR
spectrum and obtains a potential molecular composition by matching the peaks in the shift
spectrum with those of the spectral library. Next, the composition is optimized by employing
a gradient descent method to minimize the mean-squared error in predicting the WPT shift
spectrum of the mixture. The top 15 entries from the potential composition are forwarded to
the next step, where another gradient-descent-based minimization in predicting the WPT
spectrum of the mixture produces the final list of molecules.

In analyzing the performance of the method, we used the true positive and false positive
rates, which represent the number of accurate and false predictions with respect to the actual
compositions of a molecular mixture, respectively. After the first optimization step, we ob-
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tained an average true positive rate of 1.0, while the average false positive rate was very high
(0.3). This elimination step removed the molecules (choices) with zero or very low probability
to be present in the composition from the probable list. Among the remaining choices, the top
entries by their calculated probability of existence describe the true compositions for all the
cases in the augmented dataset. In fact, we observed that, for mixtures with 3 to 4 molecules,
a true positive rate of 1.0 could have been obtained considering only the top 6 to 8 entries,
respectively. Therefore, selecting the optimal number of entries from the potential list of
molecules without a priori information requires a second optimization. In this identification
step, the top 15 entries obtained at the end of the elimination step were optimized by another
gradient descent method, which resulted in a median true positive rate of 1.0, while reducing
the false positive rate to 0.04 for the analysis.

2. Results and Discussion

As a benchmark, we analyzed the dataset of mixed spectra by matching them with the
pure NMR spectra of the individual molecules, which is the most commonly used strategy
at present [33,34]. From the summary of the analysis shown in Figure 1, it can be seen that
the average true positive rate is ∼0.7 for the entire dataset, as well as for the mixtures with
different numbers of constituent molecules in them. Both subplots in the figure show large
variations in the true positive rate, which demonstrates the high uncertainty involved in
the analysis. The false positive rate for all the cases was equal to 0. It should also be noted
that this kind of direct matching may not be feasible for much larger libraries than the one
with 74 molecules used in this work.

Figure 1. The distribution of the true positive rates for the entire dataset (A) and against the size of
the mixture (B) is shown. The circles in (B) emphasize the median for each of the distributions.

The results obtained in Step (3) of our scheme (Figure 2) are summarized in Figure 3. At
this stage of our analysis, a median true positive rate of 1.0 was obtained for the entire spec-
tral dataset. This observation demonstrates the robustness of the WPT shift representation
of a NMR spectrum and its ability to enhance the resolution [43]. However, the impressive
true positive rate was associated with a very high false positive rate across all the cases, with
a median value of 0.3. Both the average false positive rate and its variations increased with
the size of the mixtures or the increasing complexity of the corresponding spectra.

Looking at the individual analyses and the corresponding mixture compositions, we
noticed that, while ∼30 molecules were present in each prediction on average, leaving a few
outliers, the top 6 to 15 entries by their probability of existence contained all the components
of the mixtures. Hence, in the final step of our spectral analysis scheme, we employed
another optimization, which used the top 15 entries from a predicted molecular composition
in Step (3). This step resulted in a massive reduction in the false positive rate from 0.3 in
Step (3) to 0.04, shown in Figure 4, while the true positive rate remained mostly unaffected,
except for the case with molecular mixtures comprising seven molecules. Even for the latter
case, we obtained a median true positive rate of 1.0 with a standard deviation of 0.08.
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Figure 2. Schematic representation of the spectral analysis algorithm.

Figure 3. Summary of the results obtained in Step (3) of the analysis. Distributions of the true positive
(A) and the false positive rates (B) for the entire dataset along with those against the size of the
mixtures (C) are shown. The circles in (C) emphasize the median true positive rate (blue) and false
positive rate (gray) for each of the distributions. For all the cases, a true positive rate of 1.0 was
achieved (standard deviation = 0).

For visualization purposes, we plot the predicted NMR spectra from the component
analysis for a set of four representative cases and compared those with the corresponding
mixed NMR spectra, shown in Figure 5. The descriptions for the representative mixtures
are given in Table 1. In Figure 5A, a simple visual inspection could remove the false entries:
astaxanthin, indolelactive acid, and L fucose. The probable cause for their inclusion in
the final prediction was partial overlap between the molecular and mixed NMR spectra.
In contrast, the top four molecules of the prediction in Figure 5B corresponded to the
composition of the molecular mixture 23. Two of the three false positives, nicotinuric acid
and linalyl acetate, could be discarded by visual inspection, and the probability of the
third one, sulcatone, is less than half of that of 1,8-cineole. Figure 5C illustrates a similar
analysis for a mixture containing five molecules, predicted by the top five molecules in
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the analysis. An easy elimination of the false positives, nicotine and catechin, by visual
inspection is achievable in this case as well. In the last example, Figure 5D, the top seven
molecules in the prediction capture all six molecules in the corresponding mixture. The
false positive, shikimic acid, shows up in this list because of its high degree of overlap with
the mixed spectrum. However, the missing peak in the mixed spectrum between 7 and
8 ppm could be used to remove it from the predicted composition. The rest of the false
positives, nicotine and sucrose, can be eliminated by visual comparison of the actual and
the predicted spectra. Our method’s performance summary is given in Table 2.

Figure 4. Summary of the results obtained after Step (4) in the analysis. Distributions of the true
positive (A) and false positive rates (B) for the entire dataset along with those against the size of the
mixtures (C) are shown. The circles in (C) emphasize the median true positive rate (blue) and false
positive rate (gray) for each of the distributions.

Table 1. Representative set of molecular mixtures and the corresponding prediction summary.

Mixture No. Number of
Molecules

Molecules
(Proportions %)

True Positive
Rate

False Positive
Rate

5 3
Caffeine (39),
ribitol (33),

cis-jasmone (28)
1.0 0.04

23 4

Nerolidol (35),
1,8-cineole (22),
leaf alcohol (22),
furfuryl alcohol

(21)

1.0 0.04

35 5

Sorbitol (28),
eugenol (26),
ribitol (18),

ascorbic acid
(15), salicylic

acid (13)

1.0 0.03
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Table 1. Cont.

Mixture No. Number of
Molecules

Molecules
(Proportions %)

True Positive
Rate

False Positive
Rate

20 6

Ribitol (20),
eugenol (19),

cis-jasmone (18),
5-methylfurfural

(17), ascorbic
acid (15),

1,8-cineole (12)

1.0 0.04

Figure 5. Mixed NMR spectra (black) and the predicted components (color coded) for Mixture
Numbers 5 (A), 23 (B), 35 (C), and 20 (D), containing 3, 4, 5, and 6 molecules, respectively.

Table 2. Summary of the automated molecular mixture analyzer’s performance for the augmented
NMR dataset.

Parameters True Positive Rate False Positive Rate

Mean 0.97 0.05
Median 1.0 0.04

Standard Deviation 0.09 0.03

3. Materials and Methods
3.1. NMR to WPT Spectral Conversion

Recently, we utilized the properties of wavelet transforms for two different types of
magnetic resonance spectroscopies, extracting hidden features from continuous wave elec-
tron spin resonance (cw-ESR) spectra [49] and producing highly resolved shift spectra from
standard 1H NMR spectra [43]. In the latter case, the input NMR spectrum is decomposed
by WPT, yielding a pair of approximation and detail components, effectively separating
the low- and high-frequency components in the chemical shift domain. The term frequency
is used in a generic sense here, and for a particular multiplet structure, the decomposition
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is continued until the derived approximation component produces a broad singlet encom-
passing the spectral domain. Subsequently, the multiplet in the original NMR spectrum is
replaced by the peak position and height of the approximation component in obtaining the
shift spectrum. This process is continued for an entire spectrum to obtain the corresponding
WPT shift spectrum, while the approximation component itself is called the WPT spectrum.
An example of such a spectral conversion for glutathione is shown in Figure 6.

Figure 6. Conversion of the 500 MHz 1H NMR spectrum of glutathione (left) to WPT and WPT shift
spectra (right). In calculating the WPT shift from the WPT spectrum, only the peaks above a threshold
were taken into consideration. The wavelet decomposition at Level 1 and Level 7 by the Daubechies-9
wavelet (Db9) is shown, and the maximum amplitudes of each of the components are given in blue.
A decomposition at Level 7 was selected, where all the multiplets in the original NMR spectrum were
reduced to singlets.

A detail description of the method and wavelet transforms can be found in [43,50].

3.2. Spectral Library and Augmented Dataset Creation

We built a spectral library with the NMR spectra of 74 small molecules. Both experi-
mental and predicted NMR spectra were used in the library based on data availability from
a peer-reviewed publication [40] and the Human Metabolome Database [51]. The corre-
sponding WPT spectral library for the molecules was computed using the Daubechies-9
(Db9) wavelet, and a full reduction of all multiplets to singlets in a spectrum was used
as the criterion to select the optimal decomposition level. We mixed the NMR spectra of
20 molecules from the library to create an augmented dataset of 1000 spectra, shown in
Figure 7. Only 20 molecules were chosen in creating the augmented spectra for two reasons,
(1) setting a known list of true negatives and (2) making the analysis realistic, because the
mixtures in most applications usually contain structurally related molecules. Each mixed
spectrum was calculated by mixing 3 to 7 randomly selected molecules’ NMR spectra in
varying proportions from 0.15 to 0.4. In creating a mixed spectrum, the component spectra
were added in such a way that the number of data points in the mixed spectrum equaled
the mean length of the individual spectra [43].



Molecules 2023, 28, 792 8 of 14

Figure 7. Summary of the augmented NMR spectral dataset with the fraction of samples against the
number of constituent molecules in the mixtures (left) and the structure of the 20 molecules used in
creating the augmented dataset (right).

3.3. Automated Spectral Analysis Algorithm

The algorithm used can be seen as a four-step process, (1) the conversion of an NMR
spectrum to its WPT and WPT shift versions, (2) matching peaks with the WPT shift NMR
library and producing a sorted list (L I) of potential components, (3) optimizing L I to L II
by applying a linear gradient descent algorithm, and (4) optimizing the top 15 entries of L
II to produce the final prediction of the molecular composition of a mixture. The scheme is
summarized in Figure 2. Both optimization steps used linear gradient descent algorithms,
but the targets (Y) were taken to be WPT shift spectra for Step (3) and the WPT spectra
for Step (4). WPT shift spectra are much simplified versions of the corresponding WPT
spectra, where only the peak positions and peak heights from the latter are used [43]. The
design matrices (X), whose columns correspond to the potential molecules in L I or L II,
were constructed from the intersections of the chemical shift values from Y and the WPT
shift/WPT spectral intensities for the individual molecules. The cost function, J [52], and
the gradient descent minimization are given by

J(Θ) = ∑(Y− X ·Θ)2/m

Θi+1 = Θi − α∇Θ J(Θi)
(1)

where m is the dimension of Y, Θ contains the probabilities for a set of molecules to be present
in a mixture,∇Θ J(Θ) represents the gradient of the cost function, and α is the learning rate.
For our method, the target Y and the design matrix X are described in Table 3. The chemical
shift and intensity values from the WPT shift spectrum (in Step 3) and the WPT spectrum
(in Step 4) of an experimental NMR spectrum of a small molecule mixture were used to
define Y1 and Y2. Each of the columns in X corresponds to the molecules in our database,
(Molecule1, . . . , Moleculen). The matrix elements, xij, were calculated by matching the WPT
shift (Step 3) and WPT (Step 4) spectrum intensity of Moleculej to the chemical shift value of
δi, assigning xij = 0 if δi fell outside of the spectral domain of Moleculej.
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Table 3. Calculation of a target Y and the corresponding design matrix X.

Chemical Shift Target, Y
Design Matrix, X

Molecule1 Molecule2 . . . Moleculen

δ1 y1 x11 x12 . . . x1n

δ2 y2 x21 x22 . . . x2n

...
...

...
... . . . ...

δm ym xm1 xm2 . . . xmn

The value of α in Equation (1) was chosen to be 0.1 in Step (3), and for each iteration in
Step (4), α was selected randomly from a uniform distribution in the range of 0.01 and 0.1.
The steps in the algorithm are summarized as follows:

1. Calculate WPT and WPT shift spectrum from an NMR spectrum;
2. Match the WPT shift spectrum with the WPT shift spectral library:

(a) p = count the number of matches for each molecule in the library;
(b) The probability for a molecule to be in the mixture = p/the number of peaks in

the WPT shift spectrum of the molecule;
(c) Continue for all the molecules in the library, and short-list the ones with non-zero

probabilities into the list, L I.

3. Optimize the short-listed molecules by a gradient descent method:

(a) Define the WPT shift NMR spectrum of a molecular mixture as the target
variable, Y1;

(b) Create a design matrix, X1, from the intersection of the chemical shift values
from Y1 and the intensities of the spectra for the molecules in L I;

(c) Minimize ∑ (Y1 − X1 ·Θ)2/n1, where n1 is the dimension of Y1 and Θ is the
probabilities associated with the molecules in L I, using a gradient descent
method with a learning rate, α = 0.1;

(d) An optimized list of molecules, L II, associated with non-zero probabilities
is obtained.

4. The top 15 entries from L II are used as the input to another optimization step:

(a) Define the WPT NMR spectrum of a molecular mixture as the target variable, Y2;
(b) Create a design matrix, X2, from the intersection of the chemical shift values

from Y2 and the intensities of the spectra for the molecules in L II;
(c) Minimize ∑ (Y2 − X2 ·Θ)2/n2 using a gradient descent method with the learn-

ing rate chosen randomly from a uniform distribution between 0.01 and 0.1;
(d) An optimized list of molecules associated with probabilities greater than 0.1

is obtained.

We used thew true positive and false positive rates as the metrics in evaluating the
performance of our spectral analysis method, defined as follows:

True positive rate =
True assignments

Actual composition

False positive rate =
False assignments

Spectral library − True assignments

3.4. An Example of How the Scheme Works

For an illustration, we selected the molecular mixture 82, which contains 7 molecules:
lactic acid, caffeine, citral, geraniol, 2-heptanone, furfuryl alcohol, and benzyl acetate. The
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NMR spectrum of the mixture is shown in Figure 8, followed by the analysis. The analysis
started with the calculation of the WPT spectrum (Y2) such that all multiplets in the original
spectrum were collapsed to singlets, and subsequently, the algorithm identified the peak
positions and heights from Y2 in producing the WPT shift spectrum (Y1). An automated
sorting of molecules followed, where the peaks in Y1 were matched with the library of the
WPT shift spectra of pure molecules, which picked 64 molecules for what we call List I.
In the next step, a design matrix, X1, was created as per the description in Table 3, and
the minimization of the quantity, ∑ (Y1 − X1 · θ)2, by a gradient descent was performed,
where θ denotes the probability of the molecules in List I to be present in the mixture.
The minimization was initiated by using a null vector of length 64 as θ. In this particular
example, the minimization reduced the potential list of molecules to 62 (List II). In the
next step, the top 15 molecules from List II were used to create another design matrix, X2,
and another gradient descent minimization of the quantity, ∑ (Y2 − X2 · θ)2, yielded an
optimum θ. The final list of molecules corresponded to non-zero θ values, which in this
case resulted in 8 molecules. The molecular composition matched the first 7 molecules in
the prediction (true positives), while the last entry in the prediction was a false positive.

Figure 8. An illustration of how an NMR spectrum is analyzed in predicting the corresponding mixture
composition. After calculating the WPT shift (Y1) and WPT (Y2) spectra from the NMR spectrum, an
automated sorting selected 64 molecules (List I) from the library of 74 molecules by matching the
WPT shift spectral peaks of Y1 and that of the pure molecules from the library. An optimization of
List I followed, yielding List II with 62 molecules. Another optimization of the top 15 entries from
List II produced the final prediction, containing 8 molecules, with 7 of those corresponding to the true
molecular composition of the mixture.
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4. Conclusions

Composition analysis of small molecule mixtures is essential across a wide range of
biological and organic research activities. While 1H NMR spectroscopy is a very powerful
and effective technique in identifying small molecules, the NMR spectra of molecular
mixtures are often poorly resolved due to spectral overlapping and the presence of multiplet
structures. In this work, we presented an automated spectral analysis algorithm, which
enhances spectral resolution by the application of the wavelet packet transform and predicts
the associated molecular composition in a probabilistic manner. An augmented dataset of
1000 NMR spectra, corresponding to molecular mixtures containing 3 to 7 molecules, was
used to test the efficiency of our method. We obtained a median true positive rate of 1.0 for
all the mixtures with zero variation for the mixtures containing up to six molecules; the
true positive rate for mixtures with seven molecules had a median and standard deviation
of 1.0 and 0.08, respectively. A reasonably low false positive rate of 0.04 was achieved
for the dataset. In addition, we demonstrated that the precision of the analysis could be
further improved by visual inspection of the actual and predicted NMR spectrum of a
molecular mixture, which can be automated as well. We believe that this method can enable
high-throughput analysis of small molecule mixture compositions using 1H NMR as the
primary or only spectroscopic tool.
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Abbreviations
The following abbreviations are used in this manuscript:

WPT Wavelet packet transform
DWT Discrete wavelet transform
NMR Nuclear magnetic resonance

Appendix A. Overview of Wavelet Transform

A continuous wavelet transform can be defined as [53]

F(τ, s) =
1√
|s|

∫ +∞

−∞
f (δ)ψ∗

(
δ− τ

s

)
dt (A1)

where s is the inverse frequency (or frequency range) parameter, τ is the signal localization
parameter, δ represents the chemical shift, f (δ) is the spectrum, F(τ, s) is the wavelet-
transformed signal at a given signal localization and frequency, and ψ∗

(
δ−τ

s

)
is the signal

probing function called “wavelet”. Different wavelets are used to vary the selectivity
or sensitivity of adjacent frequencies with respect to signal localization. They are not
dependent on a priori information of the signal or its characteristics.

https://github.com/Signal-Science-Lab/Unsupervised_Molecular_Mixture_Analysis
https://github.com/Signal-Science-Lab/Unsupervised_Molecular_Mixture_Analysis
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Discrete wavelet transform (DWT) is expressed by two sets of wavelet components
(detail and approximation) in the following way [53]:

Dj[n] =
p−1

∑
m=0

f [δm]2
j
2 ψ[2jδm − n] (A2)

Aj[n] =
p−1

∑
m=0

f [δm]2
j
2 φ[2jδm − n] (A3)

where f [δm] is the discrete input spectrum, p is the length of the input signal f [δm], Dj[n] and
Aj[n] are the detail and approximation components, respectively, at the jth decomposition
level, and ψ[2jδm − n] and φ[2jδm − n] are wavelet and scaling functions, respectively. The
maximum number of decomposition levels that can be obtained is N, where N = log2 p
and 1 ≤ j ≤ N. The scaling and wavelet functions, at a decomposition level, are orthogonal
to each other, as they represent non-overlapping frequency information. Similarly, wavelet
functions at different decomposition levels are orthogonal to each other.

The detail component Dj[n] is the discrete form of Equation (A1), where j and n are
associated with s and τ, respectively. The approximation component Aj[n] represent the
remaining frequency bands not covered by the detail components until the jth level. The
signal f [δm] can be reconstructed using the inverse discrete wavelet transform as follows:

f [δm] =
p−1

∑
k=0

Aj0 [k]φj0,k[δm] +
j0

∑
j=1

p−1

∑
k=0

Dj[k]ψj,k[δm] (A4)

where j0 is the maximum decomposition level from which the input signal needs to be re-
constructed. Compared to that, both the approximation and detail components at each level
are further decomposed into a set of approximation and detail components. A schematic
diagram of DWT and WPT decomposition against increasing levels is shown for comparison
in Figure A1 [43].

Figure A1. A schematic diagram of data decomposition in discrete (A) and packet wavelet transform
(B) methods. The approximation and detail components at level k are denoted as Ak and Dk in (A). In
the case of the wavelet packet transform, the approximation and detail components at a decomposition
level are denoted by the component name of the previous level followed by Ak or Dk, respectively [43].
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