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Figure S1. The photograph of AuCuNC@GSH (0.050 mg∙L-1) in the presence of different amounts of 

Al3+ (0 - 300 μM) in MES-NaOH buffer (pH = 6.0) under (a) UV light (365 nm) and (b) sunlight. 

 



 

Figure S2. (a) Fluorescence spectra of AuCuNC@GSH (0.050 mg∙L-1) in the absence and presence of 

different metal ions (200 μM) in MES-NaOH buffer (pH = 6.0); (b) the related emission changes at 

585 nm (λex = 350 nm). 

 

 

Figure S3. The emission intensity changes of AuCuNC@GSH (0.050 mg∙L-1) to Al3+ (200 μM) at 

different pH (5.0, 5.5, 6.0, 6.5, 6.8 and 7.0 ), respectively. 

 



 
Figure S4. (a) Dynamic light scattering (DLS) and (b) Zeta-potential changes of AuCuNC@GSH 

(0.050 mg∙L-1) in the presence of different amounts of Al3+ (0 – 200 μM) in MES-NaOH buffer (pH = 

6.0). 

 

 
Figure S5. (a) Typical TEM image and (b) particle size distribution statistics of AuCuNC@GSH. 

 



 
Figure S6. (a) Fluorescence spectra of AuCuNC-Al3+ (0.050 mg∙L-1, 200 μM) in the absence and 

presence of different amounts of myricetin (MYR) in MES-NaOH buffer (pH = 6.0); (b) the 

corresponding intensity ratio changes at 585 nm (the initial intensity over the measured value, λex = 

350 nm). 

 

 

Figure S7. The photograph of myricetin in MES-NaOH buffer (pH = 6.0) under sunlight. 

 

 

 

 

 

 



 

 

 

Figure S8. Chemical structures of myricetin, morin and apigenin, respectively. 

 

 
Figure S9. Fluorescence excitation (black) and emission (red) spectra of AuCuNCs-Al3+, and the UV-

Vis absorption (blue) spectrum of myricetin (MYR) in MES-NaOH buffer (pH = 6.0). 

 

 

 



 

Figure S10. UV-Vis absorption spectra of AuCuNC-Al3+ (0.050 mg∙L-1, 200 μM) in the presence of 

different amounts of myricetin (MYR; 0 - 50 μM). 

 

 

Figure S11. Time-dependent UV-Vis absorption spectra of AuCuNC-Al3+ (0.050 mg∙L-1, 200 μM) in 

the presence of myricetin (MYR, 20 μM). 

 

 

 

 

 

 



 

 
Figure S12. (a) Time-dependent fluorescence spectra and (b) corresponding intensity changes of 

AuCuNC-Al3+ (0.050 mg∙L-1, 200 μM) in the presence of myricetin (MYR, 20 μM).  

 

 

Figure S13. UV-Vis absorption spectra of myricetin (50 μM) in the presence of different amounts of 

Al3+ (0 - 50 μM). 

 

 

 

 

 

 



 

 
Figure S14. Fluorescence spectra of AuCuNC-Al3+ (0.050 mg∙L-1, 200 μM) in the presence of 

myricetin-Al3+ (1:1; 0 - 100 μM). 

 

 
Figure S15. (a) Fluorescence spectra and (b) the emission intensity changes of AuCuNC-Al3+ in the 

presence of different volume of grape juice (0 - 9 μL). 

 

 

 

 

 



 

Table S1. Comparison of the analytical performance of different methodologies towards myricetin 

determination. 

Materials Methodology LOD Linear range Ref. 

Carbon quantum dots fluorescence 18.4 nM 1–80 μM S1 

Imprinted APBA-functionalized 

CdTe QDs 
fluorescence 0.08 μM 0.30–40 μM S2 

Walnut septum sample HPLC-DAD 0.24 μg/g 1–10 μg/g S3 

Ternary nanocomposite electrochemical 3.0 nM 0.01–15 μM S4 

Ternary nanocomposite film electrochemical 67 nM 1–110 μM S5 

Ternary nanocomposite electrochemical 0.01 μM 0.050–50 μM S6 

AuCuNC-Al3+ fluorescence 8.7 nM 1.5–50 μM Present work 

 

Table S2. The parameters of the present method and standard method (HPLC) for myricetin 

determination in grape samples. 

Sample HPLC 

(mM) 

AuCuNC-Al3+ 

(mM) 
Added (mM) Found 

(mM) 

Recovery 

(%) 

RSD (%) 

n = 3 

grape 0.180 0.181 

0.50 0.625 98.48 3.631 

1.0 1.153 102.02 6.232 

2.0 2.087 97.72 3.673 
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