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Abstract: Glucagon-like peptide-1 receptor (GLP-1R) is a critical therapeutic target for type 2 diabetes
mellitus (T2DM). The GLP-1R cellular signaling mechanism relevant to insulin secretion and blood
glucose regulation has been extensively studied. Numerous drugs targeting GLP-1R have entered
clinical treatment. However, novel functional molecules with reduced side effects and enhanced
therapeutic efficacy are still in high demand. In this review, we summarize the basis of GLP-1R cellular
signaling, and how it is involved in the treatment of T2DM. We review the functional molecules
of incretin therapy in various stages of clinical trials. We also outline the current strategies and
emerging techniques that are furthering the development of novel therapeutic drugs for T2DM and
other metabolic diseases.

Keywords: GLP-1R signaling; functional molecules; incretin therapy; drug discovery; type 2
diabetes mellitus

1. Introduction

Diabetes is considered the fastest-growing global health problem, affecting about
10% of adults around the world [1,2]. The diabetic population will reach 783 million
globally in 2045 according to an estimate from the International Diabetes Federation [2].
All types of diabetes share the common clinical manifestation of hyperglycemia and several
characteristic symptoms, including thirst, polyuria, constant hunger, fatigue, weight loss,
and blurred vision [2]. As the disease progresses, complications such as retinopathy,
nephropathy, and neuropathy may occur, and the risk of cardiovascular diseases, obesity,
and nonalcoholic fatty liver disease will increase, which significantly affects the quality
of life.

T2DM accounts for more than 90% of diabetes cases [1,2], although this percentage
might be higher since approximately one-third of people living with T2DM are undiag-
nosed [2]. Adopting a healthy lifestyle and taking metformin are the cornerstone for T2DM
management. A combination of sulfonylureas, alpha-glucosidase inhibitors, thiazolidine-
diones, and insulin injections can be added when the single antidiabetic medication is
insufficient. However, these drugs can cause side effects such as hypoglycemia, weight
gain, and cardiovascular risk [3].

Pancreatic β-cell dysfunction and resultant insulin deficiency are the key features of
T2DM [4], however, most medications do not target β-cell and become less effective as
diabetes progress [5]. Fortunately, a couple of gut-derived natural peptides termed incretins
that can stimulate insulin secretion [6] have inspired novel T2DM treatments. Incretins
were first discovered upon observing that oral glucose administration leads to greater
insulinotropic effects than intravenous administration [7]. Since then, researchers began
to investigate gut-derived insulin secretagogues; and incretin-based therapies currently
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have become the preferred first injection therapy for T2DM treatment, due to their strong
glycemic control effect and remarkable safety profile [8]. Incretins include glucagon-like
peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Although both
GLP-1 and GIP could promote insulin secretion in a healthy state, the therapeutic potential
of GIP alone is controversial [9,10]. In contrast, the GLP-1 receptor (GLP-1R) is thought to
be one of the most important potential drug targets for glucose-dependent T2DM treatment,
lowering hypoglycemia risk compared to insulin and sulfonylureas [11].

GLP-1, as the endogenous agonist of GLP-1R [12–14], is a promising natural antidi-
abetic product due to its anorexigenic, insulinotropic, and weight-reducing effects [15].
However, in vivo GLP-1 can be cleaved by dipeptidyl peptidase 4 (DPP-4) immediately
after secretion at the second amino acid (alanine) from its N-terminal [16]. This will lead to
an instant degradation of GLP-1 and a short circulation time in the human body. Although
GLP-1 has many potential advantages, its short circulation time of about 2 min [17] limits
its application in treatment since such frequent administration is incompatible with patient
compliance and thereby reducing drug effectiveness.

DPP-4 inhibitors and GLP-1 analogs with prolonged circulation time have already
been applied in incretin therapy and have performed well. However, GLP-1R agonists
are favored because they have superior body weight control [18] and cardiovascular out-
comes [19]. In this review, we discuss the current GLP-1R signaling and ligand development
strategies, trends in incretin therapy, and perspectives on T2DM treatment.

2. GLP-1R Signaling
2.1. The Structural Basis of GLP-1R

G protein-coupled receptors (GPCRs) are widely distributed in various tissues and
play key roles in a diversity of physiological activities. As the largest receptor family, GPCRs
are important drug targets for a broad range of indications [20]. GPCRs share a conserved
seven-transmembrane helix bundle (Figure 1) with three extracellular loops (ECLs) and
three intracellular loops (ICLs). The ECLs form an extracellular surface that interacts
with orthosteric ligands. While the ICLs, to large extent, determine downstream receptor
signaling. GLP-1R, together with four other glucagon receptors (GCGR, GLP-2R, GIPR,
and GHRHR), belongs to the secretin (class B1) GPCR family, whose endogenous ligands
are peptide hormones [21,22]. Class B1 GPCRs have a large and structurally conserved
extracellular domain (ECD) of 120–160 residues at the N-terminal, forming a three-layered
α-β-β-α fold that is stabilized by three interlayer disulfide bonds [23].

The endogenous ligands of GLP-1R are GLP-1 (7-36) and GLP-1 (7-37), products from
the post-translational processing of proglucagon [24]. Proglucagon also produces several
other peptide hormones for receptors in the glucagon receptor family, such as glucagon,
oxyntomodulin (OXM), and GLP-2. On binding with endogenous peptides, the glucagon
receptor family shares a similar recognition mode, which is described as a “two-domain”
binding mode. The C-terminal α helix of peptide ligand initiates peptide recognition by
binding to the ECD, then the peptide N-terminal can activate the receptor and trigger its
downstream signaling cascade by binding to the transmembrane domain (TMD) ligand-
binding pocket [25]. Recently released cryo-EM structures of GLP-1R in complex with a
peptide ligand revealed that peptides form a single helix in binding post, which is a unique
feature shared in class B1 GPCRs [26–28].

2.2. Signaling Pathways of GLP-1R

Researchers have been pursuing functional studies of GLP-1R for many years to
illuminate the mechanism of GLP-1R signaling. GLP-1R downstream signaling pathways
network can be activated through coupling with the intracellular transducers [29]. The
diverse protein-binding forms will lead to complex downstream pathways.
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Figure 1. Signaling pathways of GLP-1R in pancreatic β-cell [15,30]. Three downstream signaling
pathways initiated from Gαs (blue), Gαq (pink), and β-arrestin (green) are shown in the left half
of the β-cell. The GLP-1R internalization process and insulin secretion after GLP-1R activation are
also shown. Colored circles show mono-agonists targeting GLP-1R (red), GIPR (green), and GCGR
(blue), and multi-agonists targeting GLP-1R/GIPR (red/green), GLP-1R/GCGR (red/blue), and
GLP-1R/GIPR/GCGR (red/green/blue). The top left inset shows the structure of GLP-1R with
a seven-transmembrane helix bundle and a large ECD. Abbreviations: VDCC, voltage-dependent
calcium channel; TRPM, the transient receptor potential melastatin; GCGR, glucagon receptor; GIPR,
gastric inhibitory polypeptide receptor.

Currently, it is believed that GLP-1R predominantly signals through the Gαs/cAMP
pathway; however, there is evidence that GLP-1R couples with Gαq and other G proteins.
After activation, GLP-1R undergoes phosphorylation at the C-terminal, which further
recruits β-arrestin, leading to internalization and desensitization of the receptor (Figure 1).
The Gαs/cAMP pathway directly leads to the glucose-induced secretion of insulin gran-
ules [31,32]. After activation by full agonists such as GLP-1, GLP-1R couples with Gαs,
activates adenylate cyclase (AC), and causes the accumulation of cAMP [33]. With increas-
ing cAMP levels, protein kinase A (PKA) [31] and the exchange protein directly activated
by cAMP-2 (Epac-2) [34] are also activated. PKA and Epac-2 trigger the closure of KATP
and KV channels, which depolarizes the cell membrane, opens voltage-dependent calcium
channels (VDCC), and causes Ca2+ influx [35,36]. In addition to the classical function of
cAMP, the cAMP/CREB pathway could also induce the expression of insulin receptor
substrate 2 (IRS2) and promote β-cell survival, demonstrating the protective effects of
GLP-1 analogs on β-cells [37].

In addition to the Gαs/cAMP pathway, GLP-1R is also able to couple with other G
protein subtypes including Gαi, Gαq, Gαo, and Gα11 [38,39]. Recent research has demon-
strated the importance of the Gαq pathway in the pancreatic β-cell. First, the Gαq pathway
initiates from the coupling of phospholipase-C (PLC), transforming phosphatidylinositol
4,5-bisphosphate (PIP2) to inositol triphosphate 3 (IP3) and diacylglycerol (DAG), and
accompanies the activation of protein kinase C (PKC) and intracellular Ca2+ influx produc-
tion via IP3 receptor [39]. PKC also triggers the closure of the KATP channel and activation
of TRPM4/5 [40]. Gαs and Gαq regulate the cAMP and Ca2+ levels, respectively; however,
variational mechanisms exist in the complex network of G protein signaling pathways.
A switch of Gαs and Gαq pathways has been found under certain conditions, including
persistent depolarization of cell membrane [30], and reduction in GLP-1 concentration to
picomolar [41]. The switch of G protein pathways clarifies a possible mechanism for basal insulin
secretion under drug treatment and provides important direction for incretin therapy in T2DM.

Two types of β-arrestin, β-arrestin-1 and β-arrestin-2, mediate the GLP-1R down-
stream signaling in β-cells, and also elicit the receptor internalization process. β-arrestin-1
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mediates the phosphorylation of CREB and ERK1/2 [42], further phosphorylating Bad
(Bcl-xL/Bcl-2-associated death promoter homolog) and inhibiting cell apoptosis [43]. β-
arrestin-2 functions as an indispensable insulin regulator. Knocking out β-arrestin-2 in
the mice model and leading to impaired insulin secretion [44]. With the treatment of
sulfonylureas, direct interaction between β-arrestin-1 and Epac-2 can upregulate the Ca2+

concentration [45].
GLP-1R is a fast-internalized and recycling receptor [46]. After activation, GLP-1R-

ligand complexes enter the endosome [32]. A portion of that is eventually transported
to lysosomes for degradation, while the other portion returns to the cell membrane [46].
Different agonists may show different effects on GLP-1R internalization and recycling. For
example, GLP-1 is apt to receptor recycling, while exendin-4 may favor slower recycling
and lysosome targeting [47]. The latest study suggested that internalized endosomal GPCR-
Gαs complexes are the origin of induced ERK activity [48], but the detailed mechanism
remains implicit.

Due to advantageous physiological effects and rapid response in GLP-1R signaling pathways,
functional molecules targeting GLP-1R are attracting increasing attention in drug discovery.
Optimization of the current molecules and discovery of novel compounds are highly demanded.

3. Functional Molecules Targeting GLP-1R
3.1. Peptide-Based Mono-Agonists

The short circulation time of endogenous GLP-1R agonists, such as GLP-1, limits its
potential for T2DM treatment. Fortunately, exendin-4, a 39-amino acid peptide from Gila
monster (Heloderma suspectum) venom, showed similar characteristics to the mammalian
incretin hormone [49,50]. It naturally has better resistance to DPP-4 cleavage due to its
different amino acid sequence (Figure 2A), and thus has a much longer circulation time
than GLP-1. Eventually, exendin-4 was developed as the first marketed twice-daily GLP-1R
peptide agonist, exenatide [51]. Although exenatide represents a huge step forward, antidiabetic
drugs with even longer circulation times for better patient compliance are still in demand.Molecules 2023, 28, 751 5 of 22 
 

 

 

Figure 2. Development strategies for GLP-1R ligands [16,52,53]. (A) Amino acid sequences of GLP-

1 (7-36) amide, exendin-4, and oxyntomodulin. Different residues from GLP-1 are in bold type. DPP-

4 deactivates the GLP-1 (7-36) amide by cleaving it after the second amino acid (alanine) from the 

N-terminal and leads to the short circulation time of GLP-1 (7-36) in human body. (B) Several chem-

ical modifications and their combinations can be applied in GLP-1R peptide agonist development, 

including C-terminal amidation, acylation, PEGylation, and substitution. (C) GLP-1R peptide lig-

ands can fuse to Fc region of antibody, antibody, and albumin. (D) Three typical small-molecule 

agonists for GLP-1R: LY-3502970 and PF-06882961 are under clinical trials, while TT-OAD2 has 

failed. 

Peptide optimization strategies for GLP-1R peptide agonists include sequence alter-

ation, chemical modification, and fusion. The most obvious approaches to resist degrada-

tion are sequence alteration (Figure 2A) and amino acids substitution with α-amino iso-

butyric acid (Aib) at the cleavage site [54–56] (Figure 2B). As for chemical modification, 

C-terminal amidation, PEGylation, fatty acid acylation, and amino acid substitution are 

the main methods to improve peptide stability in vivo (Figure 2B). C-terminal amidation 

can not only limit proteolytic degradation, thus extending the circulation time of the pep-

tide, but also improve the binding affinity with the receptor [57]. PEGylation attaches pol-

yethylene glycol (PEG) units to the peptide [58], while fatty acid acylation allows the co-

valent attachment of a fatty acid chain on the peptide [59] (Figure 2B). PEGylation and 

fatty acid acylation can increase the molecular mass of peptides, improving resistance to 

renal filtration and enzymatic degradation due to steric hindrance [53,60]. Beyond that, 

Figure 2. Development strategies for GLP-1R ligands [16,52,53]. (A) Amino acid sequences of GLP-1
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deactivates the GLP-1 (7-36) amide by cleaving it after the second amino acid (alanine) from the N-
terminal and leads to the short circulation time of GLP-1 (7-36) in human body. (B) Several chemical
modifications and their combinations can be applied in GLP-1R peptide agonist development,
including C-terminal amidation, acylation, PEGylation, and substitution. (C) GLP-1R peptide ligands
can fuse to Fc region of antibody, antibody, and albumin. (D) Three typical small-molecule agonists
for GLP-1R: LY-3502970 and PF-06882961 are under clinical trials, while TT-OAD2 has failed.

Peptide optimization strategies for GLP-1R peptide agonists include sequence alter-
ation, chemical modification, and fusion. The most obvious approaches to resist degra-
dation are sequence alteration (Figure 2A) and amino acids substitution with α-amino
iso-butyric acid (Aib) at the cleavage site [54–56] (Figure 2B). As for chemical modification,
C-terminal amidation, PEGylation, fatty acid acylation, and amino acid substitution are
the main methods to improve peptide stability in vivo (Figure 2B). C-terminal amidation
can not only limit proteolytic degradation, thus extending the circulation time of the pep-
tide, but also improve the binding affinity with the receptor [57]. PEGylation attaches
polyethylene glycol (PEG) units to the peptide [58], while fatty acid acylation allows the
covalent attachment of a fatty acid chain on the peptide [59] (Figure 2B). PEGylation and
fatty acid acylation can increase the molecular mass of peptides, improving resistance to
renal filtration and enzymatic degradation due to steric hindrance [53,60]. Beyond that,
fatty-acid acylated peptides can spontaneously oligomerize at the subcutaneous injection
site and delay absorption due to their amphiphilicity, resulting in a sustained-release
effect [61–63]. The fatty acid chain can also protect the peptide monomer by reversibly
binding to albumin [53]. These strategies are usually undertaken in conjunction with each
other to generate a better protective effect.

In addition to chemical modifications, we can also fuse the peptide to a long-circulating
and low immunogenic protein, such as an antibody fragment (Fc region), antibody, and
albumin (Figure 2C). This strategy can prolong the peptide half-life in two ways. First, like
PEGylation and fatty acid acylation, the increased molecular mass can improve resistance
to enzymatic degradation and renal filtration. Second, the fusion protein can go through
the neonatal Fc receptor (FcRn) recycling pathway [64].

Table 1. Peptide-based mono-agonists targeting GLP-1R.

Name Trade Name Administration Indications Status 1 Ref.
Byetta SC, bid T2DM 2005 [51,65,66]

Exenatide Bydureon SC, qw T2DM 2012 [67]

Liraglutide Victoza
Saxenda

SC, qd
T2DM

Obesity
2010
2014

[68,69]
[70]

Dulaglutide Trulicity SC, qw T2DM 2014 [71]

Albiglutide Tanzeum SC, qw T2DM 2014 (withdrawal
2018) [72,73]

Lixisenatide Adlyxin SC, qd T2DM 2016 [74]
Beinaglutide Yishengtai SC, tid T2DM 2016 [75]

[76]
[77]Semaglutide

Ozempic
Rybelsus
Wegovy

SC, qw
PO 2, qd
SC, qw

T2DM
T2DM

Obesity

2017
2019
2021 [78]

PEG-Loxenatide Fulaimei SC, qw T2DM 2019 [79]
PEGylated Exenatide (PB-119) / SC, qw T2DM Phase 3 [80]

Efpeglenatide (SAR439977) / SC, qw T2DM Phase 3 [81,82]
Vurolenatide / SC, bim SBS Phase 2 /

JY09 / SC, qw T2DM Phase 2 /
1 Year of approval, or the final phase reached. So far, all approved GLP-1R agonists are derived from peptides such
as GLP-1 or exendin-4. 2 Rybelsus is the only approved oral peptide-based drug. Abbreviations: SC, Subcutaneous
injection; bid, twice daily; qw, once weekly; qd, once daily; PO, oral administration; bim, twice monthly; T2DM,
type 2 diabetes mellitus; SBS, short bowel syndrome. Data were manually collected from clinicaltrials.gov and
Drugs@FDA database on 15 December 2022.
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3.2. Peptide-Based Multi-Agnosits

Rather than single agonists targeting only GLP-1R, dual or triple agonists targeting
additional receptors (GIPR, GCGR, and GLP-2R) involved in the incretin axis and/or other
pathways (Table 2) are expected to have stronger glucoregulatory, weight-reducing, and even
cardiovascular protective effects [4]. Although the mechanism by which multi-agonists have
superior effects is unknown, many clinical results have shown their therapeutic potential.

Thus far, GIPR/GLP-1R is the most attractive target combination. Instead of playing a
redundant role, GIP may protect β-cells from dysfunction and destruction independently
of GLP-1 [83]. Although the therapeutic potential of GIPR agonists is debatable, clinical
trials of dual GIPR/GLP-1R agonists have produced promising results. The combination
of these two GPCR pathways is assumed to increase glucose-dependent insulin secretion,
decrease energy consumption, improve white adipose tissue function, and increase insulin
sensitivity [84]. Tirzepatide, the first dual agonist for the treatment of T2DM and obesity
targeting GIPR and GLP-1R, was approved by the U.S. FDA in 2022. Compared with
existing drugs such as semaglutide, once-weekly tirzepatide showed better results in
glycated hemoglobin A1c (HbA1c) [85] and body weight reduction [86] with a similar
safety profile.

GCGR/GLP-1R dual agonists have also received much attention. OXM can naturally
activate both GCGR and GLP-1R with lower potency than their primary ligands [87].
Although glucagon and GLP-1 have distinct effects on glucose levels, their effects on food
intake may be additive [88], leading to more significant body-weight reduction. Several
OXM derivatives are under clinical trials, for example, cotadutide, a once-daily GCGR/GLP-
1R dual agonist, has shown promising impacts on glycemic control, body weight, and liver
fat reduction [89].

Table 2. Dual/triple-agonists targeting GLP-1R and other GPCRs.

Name Trade Name Administration Indications Status 1 Ref.
GLP-1R/GIPR

Tirzepatide Mounjaro
/ SC, qw T2DM

Obesity
2022

2022 FTD 2
[90,91]

[86]
CT-868 / SC, qd T2DM Phase 1 /

NNC0090-2746 (RG7697) / SC, qd T2DM Phase 2 [92]
GLP-1R/GLP-2R

Dapiglutide (ZP7570) / SC, qw SBS Phase 1 /
GLP-1R/GCGR

SAR425899 / SC, qd T2DM Phase 2
(discontinued) [93]

Pemvidutide (ALT-801) / SC, qw Obesity
NASH

Phase 1
Phase 1

/
/

Pegapamodutide
(LY2944876) / SC, qw T2DM Phase 2

(discontinued) /

Cotadutide (MEDI0382) / SC, qd

T2DM
NASH
CKD

Obesity

Phase 2
Phase 2
Phase 2
Phase 1

[94]
[95]
[96]
[97]

Efinopegdutide (MK-6024) / SC, qw NASH Phase 2 /

Mazdutide (IBI-362) / SC, qw T2DM
Obesity

Phase 2
Phase 1

/
[98]

BI456906 / SC, qw T2DM
Obesity

Phase 2
Phase 2

/
/

MK-8521 / SC, qd T2DM Phase 2 /
PB-718 / SC, qw NASH Phase 1 /
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Table 2. Cont.

Name Trade Name Administration Indications Status 1 Ref.

NN9277 (NNC 9204 1177) / SC, qw Obesity Phase 1
(discontinued) /

MOD6031 / SC, qw Obesity Phase 1 /
GLP-1R/GCGR/GIPR

HM-15211 / SC, qw NAFLD Phase 1 /
LY-3437943 / SC, qw T2DM Phase 1 [99]

1 Year of approval, the final phase reached. 2 The U.S. FDA granted fast track designation (FTD) to Tirzepatide in
October 2022. Among these drug candidates, only tirzepatide has been approved. Abbreviations: SC, subcuta-
neous injection; bid, twice daily; qw, once weekly; qd, once daily; T2DM, type 2 diabetes mellitus; SBS, short bowel
syndrome; CKD, chronic kidney disease; NASH, non-alcoholic steatohepatitis; NAFLD, non-alcoholic fatty liver
disease. Data were manually collected from clinicaltrials.gov and Drugs@FDA database on 15 December 2022.

Clinical trial failures may occur in some cases of dual or triple agonists, caused by
their side effects. In order to develop safer therapeutic drugs, it is essential to study
the mechanism of these dual and triple agonists [88] from structural, functional, and
pharmacologic aspects.

3.3. Small Molecule Agonists and Positive Allosteric Modulators (PAM)

So far, all marketed GLP-1R agonists are peptide-based and were developed from
natural products such as GLP-1 and exendin-4 (Table 1). Although their half-lives can be
prolonged by the strategies discussed above, problems or limits such as cost, side effects,
and subcutaneous injection remain [100]. In the expectation of improving these deficiencies,
many groups and major pharmaceutical companies have long been pursuing the devel-
opment of non-peptide drugs. Due to a poor understanding of the ligand binding mode
and activation mechanism prior to the first GLP-1R structure being solved in 2017 [101],
high-throughput screening was adapted in many studies to identify promising candidates,
followed by massive structure–activity relationship (SAR) studies to improve the chemical
and pharmacokinetic properties of compounds.

Table 3. Small molecule agonists and PAM targeting GLP-1R.

Name Frequency Indications Status 1 Ref.

Danuglipron (PF-06882961) bid T2DM
obesity

Phase 2
Phase 2 [102]

TTP-273 qd/bid T2DM Phase 2 /

LY3502970 (OWL833) qd T2DM
obesity

Phase 2
Phase 1 [103]

PF-07081532 qd T2DM Phase 1 [104]
RGT-075 qd T2DM Phase 1 [105]

TT-OAD2 / / Preclinical (discontinued) [106]
1 Year of approval, or the final phase reached. All these small molecules are designed for oral administration.
Abbreviations: bid, twice daily; qd, once daily; T2DM, type 2 diabetes mellitus. Data were manually collected
from clinicaltrials.gov on 15 December 2022.

Currently, none of the small molecule GLP-1R agonists have been approved. However,
several candidates are under clinical trial (Table 3). There are fewer small molecule agonists
and PAMs targeting GLP-1R than peptide-based drug candidates, and most of them are
still in the early stage of development. One of the first small-molecule agonists, Boc5,
is a substituted cyclobutane identified by HT screening [107]. However, it has not been
launched into clinical study. PF-06882961, based on diazabenzimidazoles, is a full agonist
in cAMP elevation, but a partial agonist in other signaling pathways [108,109]. TTP-273,
which has completed phase 2 trials, is an azoanthracene derivative reported in several
patents [110,111]. Another compound in the same series as TTP-273, TT-OAD2, is a partial
agonist with slow kinetics in promoting cAMP [106]. LY3502970 is a pyrazolopyridine
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derivative and is a biased agonist that abolished β-arrestin signaling [103,112]. The chemical
structures of PF-07081532 and RGT-075 have not yet been disclosed.

Several GLP-1R structures in complex with different small molecules have been re-
leased later, and revealed dramatic diversity in the binding mode of each compound
(Figure 3A). TT-OAD2 forms a U-shape conformation in the GLP-1R helical bundle near
the ECD where it interacts with residues within the transmembrane helix 1 (TM1) to TM3
and ECLs [106]. LY3502970 sits in a similar position as TT-OAD2, while both its arms
insert into slits between helixes, clamping around TM2. PF06882961 stays in the orthosteric
binding pocket in the TMD, almost overlapping with the binding sites of the N-terminal of
GLP-1 [28]. Additionally, both PF06882961 and LY3502970 have vital π–π interactions with
W33 in the ECD, which abolished their effects on GLP-1R in rodents [103]. Finally, a Boc5
binding structure is published recently, which shows that Boc5 adapts a claw shape in its
binding pocket, with three fingers stuck into the slits between TM1-TM3 and TM7 [113].
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Figure 3. Comparison of peptide and small molecule binding pockets. (A) Structures of GLP1R in
complex with GLP1 (PDB: 6X18), tirzepatide (PDB: 7RGP), danuglipron (PDB: 6X1A), LY3502970
(PDB: 7E14), and TT-OAD2 (PDB: 6ORV) are shown in the separated ECD and TMD. GLP-1R is
shown as a gray surface model. Residues within 4 Å of the corresponding ligand are colored in
blue. (B) Specific residues that interact with corresponding ligands in a fingerprint array. Ligands in
(A) and their interaction fingerprints in (B) appear as follows: GLP-1 (orange), tirzepatide (yellow),
danuglipron (green), LY3502970 (red), TT-OAD2 (magenta). N/A, not applicable. ECD was not
resolved in TT-OAD2 binding structure.

Many allosteric modulators have also been reported in the past few years. As one of
the first reported small molecules, compound 2 was extensively studied over the years and
was characterized as an ago-PAM [114,115], a type of molecule that possesses functions
of both agonist and PAM. Another set of ago-PAMs based on pyrimidines represented
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by BETP was identified by screening a small library generated through a pharmacophore
model [116]. Recently, a new ago-PAM, LSN3318839, was reported to restore the activity of
GLP-1 (9-39) [117]. However, none of these allosteric modulators has entered clinical study.

To mimic peptide interaction and to obtain sufficient affinity when occupying the
peptide pocket, most small molecules end up having a relatively large molecular weight,
which could affect the physical properties and pharmacokinetics of compounds. Though
most PAMs or ago-PAMs have lower molecular weight, none of them has entered clinical
trial. As revealed by the structures, TT-OAD2, LY3502970, and PF-06882961 have quite
different binding pockets: only three residues interact with all three compounds, 13 residues
interact with two out of three, and 22 residues interact with only one of them (Figure 3B).
Different binding modes of each compound may contribute to differences in efficacy and
biased agonism. As peptide-based drug development has entered the era of dual agonists,
a clearer understanding of the activation and biased signaling mechanism of GLP-1R is
needed to aid the design of ideal compounds.

4. Incretin Therapeutic Studies
4.1. GLP-1R Agonists Based T2DM Therapy in Clinical Trials

In the early stage of diabetes, metformin monotherapy is widely applied as the first-line
drug and is generally sufficient for glycemic control in T2DM [118]. With the progression
of the disease, metformin alone cannot maintain blood glucose at the desired level, and
combination therapies become necessary. The selection of combined medication, including
sulfonylureas, alpha-glucosidase inhibitors, thiazolidinediones, dipeptidyl peptidase 4
inhibitors (DPP4i), GLP-1 agonists, and sodium-dependent glucose transporters 2 inhibitors
(SGLT2i) [2,119], is based on clinical characteristics and patients’ preferences.

Among these drugs, thiazolidinediones and sulfonylureas are commonly used and
cost-effective. However, they can cause congestive heart failure and hypoglycemia, respec-
tively, thus limiting their further application. GLP-1R agonists and SGLT2i both have fewer
side effects and are recommended for patients with comorbidities. Meta-analysis showed
that the combination of a GLP-1R agonist and metformin could effectively reduce blood
glucose levels [120]. Insulin injection is inevitable for glycemic control after the dysfunction
of non-insulin treatment.

Among the non-insulin medication, incretin therapy is an advanced treatment for
T2DM patients. The therapeutic potential of incretin in T2DM has been explored for more
than one hundred years. In 1906, Moore et al. used extracts from the duodenal mucous
membrane to treat T2DM [121]. Half a century later, Nauck et al. discovered an impaired
incretin response in T2DM patients, leading to a decrease in incretin-stimulated insulin
release [122]. A further study identified that the reduction in GLP-1 accounted for the
diabetic state [6]. A 6-week pilot study investigated the long-term effect of GLP-1 in T2DM
by continuous administration of this peptide hormone. Patients had lower fasting glucose
(4.3 mmol/L) and HbA1c (−1.3%) under the administration of GLP-1 [123]. However, due
to the short circulation time of native GLP-1, it is infeasible to continuously administrate
native GLP-1 for long-term blood glucose management [124]. Some GLP-1 analogs were
developed to overcome this problem.

Exenatide, the first approved GLP-1 analog, has significant effects on HbA1c level
reduction [125], weight loss, and glycemic control [125], but no cardioprotective effect [67].
As the plasma drug concentration could be maintained for 12 h, the method of adminis-
tration was by subcutaneous injection twice a day. Liraglutide was another novel GLP-1
analog that was approved by the FDA in 2010. A series of phase 3 trials (Liraglutide Effect
and Action in Diabetes, LEAD) was launched to compare the efficacy and safety between
liraglutide and other oral antidiabetic drugs [69,126,127]. In the LEAD-3 study, a significant
reduction in HbA1c level was found with a dosage of 1.8 mg liraglutide compared with
glimepiride monotherapy [126]. Moreover, compared with exenatide, liraglutide carries
a lower risk of cardiovascular death [120]. Throughout the LEAD trials, patients showed
high tolerance to the drug, with the most frequently reported side effects being GI events
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such as nausea and vomiting. Liraglutide was found to maintain a maximum plasma drug
concentration for about 12–14 h, so the period of administration became once daily. Most
recently, the GLP-1 analogs have continuously improved, representing great advances in
treating T2DM, obesity, and cardiovascular diseases. Semaglutide Unabated Sustainability
in Treatment of Type 2 Diabetes (SUSTAIN) trials showed the positive effects of subcu-
taneous semaglutide on glycemic control [128]. Weekly 2.4 mg semaglutide, compared
with daily 3 mg liraglutide, shows a superior effect on weight loss [129]. Oral semaglutide
administered once per week showed favorable efficacy and safety in the treatment of T2DM
patients and the large, randomized control clinical trial is ongoing [130].

In addition to GLP-1R agonists, the discovery of multi-agonists is also ongoing in
recent years. The first approved dual agonist, tirzepatide, is a potent agonist for both GLP-
1R and GIPR. At dosages of 5, 10, and 15 mg, tirzepatide showed non-inferior treatment in
glycemic control and superior behavior in weight loss than 1 mg semaglutide [85], further
demonstrating the therapeutic efficacy of multi-agonists. Many other multi-agonists have
emerged and are in the process of early-stage clinical trials (Table 2).

4.2. Adverse Effects of Current Available GLP-1R Agonists

Although GLP-1R agonists possess multiple beneficial effects and are a promising
next-generation therapy for T2DM, their application still has many contraindications. Due
to initial concerns about potential risks in preclinical studies [8], they are not recommended
for T2DM patients with diseases such as severe gastrointestinal disease, medullary car-
cinoma of the thyroid [131], multiple endocrine neoplasm syndrome type 2, and history
of pancreatitis [126]. Specifically, the following adverse effect profiles of GLP-1R agonists
should be taken into consideration when formulating a clinical treatment plan. Firstly,
among all the adverse effects of GLP-1R agonist treatment, nausea and related gastroin-
testinal responses, such as vomiting and diarrhea, are the most common [132,133]. These
unwanted gastrointestinal responses reduce patient compliance and are important reasons
for discontinuing T2DM treatment [134,135]. Secondly, the roles of GLP-1R agonists in
promoting the proliferation of β-cells and reducing their apoptosis could increase the risk
of pancreatic cancer [136,137]. Further, several concerns remain about the correlation of
GLP1R agonist treatment with many other adverse events, including eye disorders such as
retinopathy [138–140], and gallbladder- or biliary-related events [141]. In the case of Efpe-
glenatide, retinal safety, severe gastrointestinal events, and kidney function have attracted
sustained attention [82]. Although not all the above adverse effects related to GLP-1R
agonists treatment have been supported by recent evidence [142,143], further research and
rigorous clinical trials examining the incidence of these events are still needed.

4.3. Strategies for Optimizing GLP-1R Agonists

Despite the numerous anti-hyperglycemic agents that are already available on the
market for T2DM treatment, there are still a surprising number of drug candidates in clinical
trials, of which no less than 40% are with novel therapeutic molecules or targets [144,145].
With this rapid development of clinical therapeutic solutions for treating diabetes, a burst
of potential first-in-class drugs is expected that would further reduce adverse effects while
maintaining or even enhancing the efficacy of current drugs. Such advances would provide
more choices for diabetes management and would be beneficial to personalize medicine
with better patient compliance.

Many strategies have been conducted to further optimize GLP-1R agonists. For
example, in the quest for longer-lasting peptides, a series of GLP-1R G-protein biased
agonists have been developed via backbone modifications with normal or enhanced G-
protein signaling, but significantly reduced β-arrestin response, leading to the improved
duration of action of the peptides [133]. Compared with “nonbiased” agonists, these biased
GLP-1 agonists would lead to reduced receptor desensitization, prolonged availability of
GLP-1R at the cell surface, enhanced insulinotropic and glucose-lowering properties, and
greater therapeutic value. Among all these agents, replacing the first eight amino acids of
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exendin-4 (HGEGTFTS) with novel sequence ELVDNAVGG, the modified agent named
P5, was a potent and selective biased GLP-1 agonist that was investigated, which was
found to have a higher acute anti-hyperglycemia efficacy than exendin-4 [135]. A recent
study reported that PX17, an updated agent based on P5, shows greater blood glucose
modulation and body weight reduction compared with semaglutide [146]. Exendin-phe1,
with minimal substitutions within the N-terminus of exendin-4, was found to promote
glycemic benefits without decreasing tolerability [147]. Structure and functional studies,
aided by molecular dynamics simulation, illustrate that the peptide agonist conformation
plasticity, especially the dynamic interaction of the receptor with the N-terminal activation
domain of the peptide, may be an essential determinant for agonist efficacy [148]. Thus,
biased GLP-1R agonists generated via backbone modification provide a powerful strategy
for improving therapeutic efficacy and have led to novel treatments for T2DM.

Recent studies have reported strategies, which altered the brain penetration property of
GLP-1R agonists, to mitigate nausea or other unwanted gastrointestinal responses, the most
prominent adverse effects of GLP-1R agonist treatment [134,149]. The adverse and glucose-
lowing effects probably possess at least partially different signaling response profiles.
Thus, researchers could rationally design for separating these two signaling pathways
to tune down the unwanted adverse effects via directed modifications. Nausea, or other
unwanted gastrointestinal responses, may be triggered by the effects of GLP1R agonists
targeting the receptors expressed in the central nervous system (CNS). Blood glucose
regulation effects mainly depend on the targeting of the pancreas or other peripheral
systems. One possible strategy would be to downregulate the effects of GLP1R agonists
on the CNS. Since all the agents gain access to the brain by penetrating the blood–brain
barrier, this protection mechanism could be utilized as a key step to filter out unwanted
agents. Studies utilizing the corrination method, conjugating GLP1R agonists with vitamin
B12 or related compounds containing corrin ring, affect pharmacokinetics and modify the
solubility of GLP1R agonists and prevent them from penetrating into the CNS. Specifically,
covalent conjugation of extendin-4 to vitamin B12, which possesses a corrin ring structure,
forms B12-exendin-4 with reduced brain penetrance, leading to glucose lowering while
significantly abolishing the unwanted emetic events [134]. Conjugation of extendin-4 with
Dicyanocoinamide, the B12 precursor, could also exhibit similar glucoregulatory capability
and nausea reduction effect [149]. These approaches have effectively reduced emetic effects,
while retaining efficient glycemic control.

5. Conclusion and Perspective

In summary, the importance of incretin in blood glucose modulation has been fully
recognized [119]. Incretin therapy is the focus of significant drug development and has
become one of the most promising therapies for T2DM. GLP-1R agonists, as the most
prominent glucose-lowering agents in incretin therapy, possess unique advantages in
T2DM treatment, with low hypoglycemic risk, clear cardioprotective effects, superior body
weight loss, and other associated clinical benefits [8].

Currently, all marketed GLP-1R agonists are derived from natural peptides, including
GLP-1, OXM, and exendin-4. Several strategies, such as chemical modification, antibody or
albumin fusion, multi-agonist design, etc., have been applied to improve the efficacy and
pharmacokinetics of GLP-1R agonists. However, the demand for novel agents with better
therapeutic efficacy and attenuated adverse effects remains strong.

The complexity of downstream GLP-1R signaling pathways determines both the
antidiabetic and potential adverse effects of GLP-1R agonists. A comprehensive under-
standing of GLP-1R structure and its functional pathways is critical for novel drug/therapy
development for T2DM treatment. The increasing availability of high-quality GLP-1R
structures in different states can help us decipher the factors that alter cell signaling, re-
ceptor trafficking, and biased agonism. This insight is essential for the rational design of
drugs that can selectively activate certain signaling pathways. Notably, combinational
computational approaches may accelerate this process. Furthermore, novel screening
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technology, such as affinity selective mass spectrometry (ASMS), could promote the discov-
ery of lead compounds from natural products that act as reservoirs of novel therapeutic
agents [29,150,151].

As a chronic complex metabolic disease, T2DM requires long-term management. How-
ever, the inconvenience of injection administration as well as the difficulties of managing
multiple drugs for treating complications can lead to poor adherence. Novel oral GLP-1R
agonists can overcome this problem, to a certain extent, and we are glad to see many
small-molecule oral drug candidates under clinical trials. With transcellular permeation en-
hancers, peptide-based GLP-1R agonists may also be taken orally [152]. Moreover, polypill
(fixed-low-dose combination drug) can also help by simplifying medication [153–156] and,
if oral antidiabetic drugs were included in the polypill formulation, diabetic patients would
further benefit [157,158].

It is critical to implement incretin therapy before severe pancreatic β-cell mass de-
struction or dysfunction. Unfortunately, in recent decades, the population of adolescents
and young adults with T2DM is increasing [159], which highlights the urgency of early
diagnosis. Although conventional diabetes diagnostic indicators such as fasting plasma
glucose and HbA1c are simple and practicable, they do not provide the specificity to dis-
tinguish pathways related to pancreatic β-cell mass destruction or dysfunction [160,161].
Noninvasive imaging tools (such as PET and MRI) and novel biomarkers can provide
abundant pathological characteristics about β-cells [162–166] or related diagnostic infor-
mation [140,167–173], which may help improve monitoring disease progress and severity,
support the development of diabetes management strategies, evaluate and even guide
drug development [174,175]. Artificial intelligence (AI) is likely to play an increasingly
important role in diabetes diagnosis (such as medical image analysis and subtype classifica-
tion), clinical decision support, management, risk identification, prevention [133–136], and
prognosis [176]. These applications in incretin therapy could bring better treatment efficacy.

The significance of incretin therapy based on GLP-1R and its future potential has
been clearly shown. While successful advances have been made in solving structures,
developing/optimizing drugs, and decoding downstream signaling pathways of GLP-
1R, integration of the progress on novel GLP-1R agonists development, early diagnosis,
treatment, management, prevention, and personalized medicine will ultimately lead to the
resolution of T2DM globally.
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