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Abstract: Arthrospira is one of the most studied cyanobacteria and has been reported with practical ap-
plications. Among the substances derived from Arthrospira, polysaccharides have received relatively
less attention than phycocyanins, though they have more abundant structural variations and specific
properties. Herein, a new Arthrospira-derived sulfated polysaccharide was explored for its potential
bioactive functions. The ability of this sulfated polysaccharide to promote the behavior of neural stem
cells (NSCs) in three-dimensional hydrogel was examined for the first time. NSCs encapsulated in the
sulfated polysaccharide-containing hydrogel showed better proliferation than the control hydrogel as
well as a unique cell clustering behavior, i.e., formation of multicellular spherical clusters (40–60 µm).
The sulfated polysaccharide, in an appropriate range of concentration (5 mg/mL), also maintained
the stemness of NSCs in hydrogel and facilitated their differentiation. In addition, the potentials
of the new sulfated polysaccharide as a coating material and as a component for drug carrier were
verified. The sulfated polysaccharide-modified substrate exhibited superhydrophilicity (contact angle
~9◦) and promoted cell adhesion to the substrate. Composite nanoparticles composed of the sul-
fated polysaccharide and other differently charged polysaccharides were produced with an average
diameter of ~240 nm and estimated drug loading of ~18%. The new Arthrospira-derived sulfated
polysaccharide is a promising candidate for cell culture, surface-modification, and drug-delivery
applications in the biomedical field.
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1. Introduction

Natural polysaccharides are usually complex polymers consisting of a group of
monosaccharide units linked by glycosidic bonds isolated from renewable resources [1].
Natural polysaccharides are often linear or branched structures with molecular weights
greater than 100 kDa, which maintain unique biological activity [2]. Besides their basic
functions as structural support materials in plants and as energy substances in living
organisms, i.e., cellulose and starch, respectively, polysaccharides have a wide range of
pharmacological effects, including anticoagulation, antibacterial, immunoregulatory, and
antiviral effects [3]. A sulfated polysaccharide (SP), as a common, functional naturally
derived polysaccharide, is a heterogeneous group of macromolecules with sulfate groups
in its sugar residues that usually contains glyoxylates [4]. Due to the mature preparation
method, SP is mainly extracted from aquatic plants such as Arthrospira [5].

Arthrospira, a tiny filamentous cyanobacterium, is one of the most studied cyanobacte-
ria and is mostly grown commercially; it is also used as a food supplement [6]. Moreover,
Arthrospira has been considered for many years as an important source of valuable eco-
based extracts such as proteins and polysaccharides, which constitute 55–70% and 15–25%
of the dry weight of Arthrospira, respectively [7,8]. Phycocyanins are the most common
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derivatives of Arthrospira and have applications in healthcare, cosmetics, and pharmaceu-
ticals [9]. In contrast, polysaccharides have received relatively less attention. However,
polysaccharides from Arthrospira sources, especially SP, have been reported to have poten-
tially specific physico-chemical properties and a variety of important biological activities,
including antiviral, immunomodulation, and antioxidant properties [10]. The activity of
Arthrospira polysaccharides varies with the available forms and structure. Therefore, the
development of a new Arthrospira-derived SP (AdSP) and related applications is still of
great potential in biomedical applications.

The application of AdSP is usually as a drug, which is independent of the material
system [11]. The difficulty of AdSP to associate with other polymers or material surfaces
may be related to the abundant hydrophilic groups, obscuring the small number of func-
tional groups that can form bonds with other materials. Meanwhile, published articles
on the effects of AdSP on cell behavior are mainly focused on the inhibition of tumor
cell proliferation, anti-angiogenesis, enhancement of hematopoietic stem cells, etc. [12–14].
Only one study focuses on the effects of AdSP on the behavior of neural stem cells [15].
Meanwhile, there are many recent studies on the preparation of composite materials, espe-
cially nanomaterials and hydrogels, with AdSP or modified AdSP [16]. Hydrogels with
the addition of AdSP can be endowed with the characteristic properties of SP [17–19]. This
also offers the possibility to utilize AdSP in cell culture and tissue engineering.

In recent years, some studies exist on the preparation of composite nanomaterials
using AdSP [20], but they are mostly on nanoemulsions prepared by phase transforma-
tion [21,22] and rarely on aqueous synthesis systems or the role of AdSP as a modifier on
nanoparticles [23,24]. Meanwhile, multifunctional AdSP has not been used as a surface
coating material alone, probably due to its strong hydrophilicity and good water solubility.
In the present study, we propose a new promising AdSP and explore its ability to pro-
mote the behavior of neural stem cells in three-dimensional hydrogels. The prospective
formulation from the new AdSP, including the preparation of composite nanoparticles with
other polysaccharides at room temperature with a potential drug-delivery function, and
the coating materials for material surface properties were also evaluated.

2. Results and Discussion
2.1. Basic Properties of AdSP

The AdSP in the present study is a natural polysaccharide with a broad molecular mass
distribution and a variable monosaccharide arrangement, which could be concluded from
the previous studies discussing the diversity of Arthrospira-derived polysaccharides [25].
The molecular weight (Mw) distribution of AdSP was confirmed through high-performance
size-exclusion chromatography with refractive-index detection (HPSEC-RI), as shown in
Figure S2 (Supplementary Materials). The AdSP presented a single-peak distribution with
an average molecular weight of ~272 kDa, indicating the high homogeneity of the polysac-
charide. Although there could be reasonable variations in the structure of AdSP, the purity
of the polysaccharide should be clarified. As an attempt to decipher the structure of AdSP
and confirm its purity, two-dimensional diffusion-ordered spectroscopy (DOSY), along
with classic nuclear magnetic resonance spectroscopy (1H NMR), was employed, and the
results are shown in Figure 1. From the classical 1H NMR (upper part of Figure 1), the
arrangement of the monosaccharides of AdSP appeared to be promiscuous, so that the
characteristic peaks overlapped considerably, which made it unlikely to justify a specific
structure. However, the purity of the AdSP was verified by DOSY, excluding the effect
of the residual solvent (D2O and HDO, as shown in Figure 1). The structural heterogene-
ity of AdSP may account for the irregular shape in the diffusion pattern of the DOSY
result. These findings indicated that the AdSP developed in this work was a high-purity
bio-sourced polymer.

An important feature of AdSP, i.e., the zeta potential, was investigated to provide a
basis for further design of the materials. The zeta potential of AdSP was −42.87 ± 1.80 mV.
Such a negative value indicates the good stability of AdSP in aqueous solution. The
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negative potential may be attributed to the rich hydroxy groups on the polysaccharide
chain. In addition, the strong negatively charge of AdSP may allow it to readily interact
with other molecules by electrostatic interaction. The electrostatic interaction can offer an
effective way for AdSP to combine with other polymers to create composite materials.
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Figure 1. The two-dimensional DOSY spectrum of AdSP. The X-axis corresponds to the chemical
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The small-angle X-ray scattering (SAXS) technique was used to characterize the struc-
tural feature of AdSP. The scattering profile is shown in Figure S3 (Supplementary Materi-
als). AdSP did not show a specific shape in the nanoscale. In addition, AdSP had various
structures within two different scales (separated by 0.03 Å−1 in the curve). Due to the
complexity of the monosaccharide composition and the uncertain spatial structure of AdSP,
the characteristics of AdSP may deserve further investigation.

2.2. Bioactivity of AdSP-Loaded Hydrogels on Cell Behavior

Gelatin methacryloyl (GelMA) was successfully synthesized, and the degree of
substitution (DS) of GelMA was verified through 1H NMR spectroscopy (Figure S4,
Supplementary Materials). The DS was about 95%. GelMA hydrogel as a biocompati-
ble and biodegradable hydrogel matrix has been widely used in biomedical fields [26].
Moreover, many previous works certified that GelMA hydrogel was a good supporting
matrix for cell proliferation [27]. To examine the bioactivity of AdSP on cell behavior,
three different AdSP-loaded GelMA hydrogels and a control hydrogel (GelMA hydrogel
without AdSP) were produced for cell experiments, of which the component ratios and
abbreviated names are listed in Table 1. The proliferation of neural stem cells (NSCs)
encapsulated in hydrogel was analyzed by a Cell-counting Kit-8 (CCK-8) assay over a
period of 14 days to assess the effects of AdSP on the behavior of NSCs. The results are
shown in Figure 2. After 14 days, the G1 hydrogel group (with 1.0 mg/mL AdSP) and
G3 hydrogel group (with 3.0 mg/mL AdSP) demonstrated a better proliferation rate of
NSCs than the control hydrogel group (without AdSP) and the G5 hydrogel group (with
5.0 mg/mL AdSP). No significant difference existed between the G1 and G3 groups. All
three AdSP-containing groups showed obvious promotion on the proliferation of NSCs
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compared to the control group. As the concentration of AdSP in the hydrogel increased, the
proliferation rate of NSCs in the hydrogel did not show a completely positive correlation.
When the concentration of AdSP in the hydrogel was greater than 3 mg/mL, the effect
of AdSP in promoting the proliferation of NSCs in the hydrogel was reduced. Previously
reported AdSP has not been investigated individually for its proliferative effects on NSCs,
and only one study showed that Arthrospira exhibited some proliferative effects on human
NSCs [15]. Our finding on AdSP is consistent with the latter observation on Arthrospira.

Table 1. Abbreviated names and compositions of the hydrogels.

Abbreviated Name Concentration of GelMA
(wt%)

Concentration of AdSP
(mg/mL)

Control 7.5 0
G1 7.5 1.0
G3 7.5 3.0
G5 7.5 5.0
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Figure 2. The proliferation of neural stem cells (NSCs) encapsulated in different hydrogels for a
period of 14 days. * p < 0.05, ** p < 0.01, and *** p < 0.001 between the indicated groups.

The potential clustering behavior of NSCs encapsulated in the hydrogels was observed
by microscopy, as displayed in Figure 3. After 14 days, for all three AdSP-containing groups,
cellular aggregation to variable extents was observed in the encapsulated NSCs. Eventually,
cells were aggregated and formed multicellular spherical clusters. The average diameters
of the NSC clusters in three AdSP-loaded hydrogels were ~58 µm, ~56µm, and ~39 µm
for the G1 hydrogel, G3 hydrogel, and G5 hydrogel, respectively. The size of the single
NSC used in this study was ~11 µm. However, the NSCs in the control group without
AdSP did not show significant aggregation behavior. In the literature, AdSP has not
been reported to present cell-aggregation-promoting activities. Meanwhile, such spherical
clusters may have the potential to prolong stemness and maintain the multi-lineage of
NSCs rather than separate cells [28,29]. Further gene expression assays were performed to
verify the promotive effect of AdSP on cell behavior in hydrogel as well as its influence on
gene expression.

NSCs encapsulated in AdSP-loaded hydrogels and the control hydrogel (non-AdSP-
containing) after a 14-day culture were investigated for their gene-expression profiles, to
determine the differentiation status. The results are displayed in Figure 4. The expression
levels of all genes, including the nestin (stemness marker), glial fibrillary acidic protein
(GFAP, glial marker), β-tubulin (early neuronal marker), and microtubule-associated pro-
tein 2 (MAP2, mature neuronal marker) genes, showed significant differences between the
AdSP-loaded hydrogels and the control group. No obvious difference existed among three
AdSP-loaded hydrogels for the expression of nestin, indicating that spherical neuro-clusters
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probably maintain stemness longer than the the non-clustered NSCs in the control hydrogel.
All AdSP-loaded hydrogels demonstrated no specific inclination for the differentiation
direction of NSCs. The AdSP-loaded hydrogels tended to induce the differentiation of
NSCs more toward neurons (β-tubulin and MAP2 genes) rather than glial cells (GFAP
gene). This finding is consistent with the relevant literature, reporting that SP can promote
neurosphere formation and may not influence the stemness and multi-lineage potential
of neurospheres [30,31]. In addition, the high concentration of AdSP in the hydrogel
(>5 mg/mL) decreased the expression level of neuron-related genes, though it remained
higher than that of the control group. Therefore, an optimal concentration of AdSP for
bioactivity on NSCs may exist, agreeing with the conclusion drawn by a cell-proliferation
study. In the literature, a different type of AdSP was observed to possess possible neuro-
protective effects in a Parkinsonian mouse model [32]. Arthrospira was also validated for
its anti-inflammatory and inhibitory effects during the response of microglia to oxidative
stress [15]. The new AdSP in this study, when in the appropriate range of concentration,
can effectively promote the proliferation, spheroid formation, and differentiation of NSCs.
This AdSP may, thus, be a promising candidate for the treatment of neurodegenerative
diseases in the future.
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that of GAPDH. * p < 0.05 and ** p < 0.01 between the indicated groups.
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2.3. Analyses of AdSP-Modified Substrates

A conventional overlay coating method was initially attempted to decorate AdSP
on the substrate dish, which was conducted by overlay coating and washing three times,
followed by drying [33]. The outcome showed that a significant difference between the
dish treated by the overlay coating method and the untreated non-adhesive dish did
not exist, indicating that AdSP was not readily attached to the substrate by the regular
casting. The reason for this failure by the conventional coating may be attributed to the
presence of numerous hydrophilic groups on the AdSP chain, which prevent it from binding
to the substrate by simple contact. If AdSP successfully modifies the substrate surface,
hydrophilicity and cytophilicity could be expected.

To graft AdSP onto the surface, a custom method was developed by using the air plasma
treatment. The surface topography and hydrophilicity of the three groups, including a
commercial non-adhesive polystyrene dish (untreated), plasma-activated dish, and AdSP-
modified dish, were examined to determine if the surface modification of the substrates
was successful. The surface of the untreated and plasma-treated dishes showed a similar
morphology without a specific pattern. By contrast, the surface of the dried AdSP-modified
dish exhibited a dendritic pattern in the substance attachment, as shown in Figure 5. After
repeated moistening and drying, a similar dendritic pattern still remained on the surface of
the ADSP-modified dish. In addition, the average values of the contact angles for the dishes
shown in Figure 6 confirmed the difference among the substrates. The untreated dish and
plasma-activated dish showed contact angles of ~62◦ and ~33◦, respectively, indicating limited
wettability. As for the AdSP-modified dish, a contact angle of less than 10◦ was detected,
implying that the AdSP-modified surface possesses superhydrophilicity [34]. This result was
also associated with the water solubility of AdSP itself. The changes in the surface morphology
and hydrophilicity of the dish suggest the successful modification of the substrates by AdSP.
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2.4. Cell Adhesion on AdSP-Modified Substrates

NSCs were seeded on dishes in three different groups and then were observed by
light microscopy at various pre-set time points within 48 h, as shown in Figure 7. About
80% of the NSCs seeded on the AdSP-modified dish exhibited adherent behavior, with a
spreading cell morphology after a 3 h culture, and all NSCs showed complete attachment
on the AdSP-modified dish after 24 h, along with slight proliferation. At 48 h, the NSCs
on the AdSP-modified dish presented regular proliferation. On the contrary, NSCs were
unable to adhere after 48 h of culture on the untreated dish and showed a wandering cell
state; they were unstable and failed to grow in a continuous monolayer. Meanwhile, the
NSCs growing on the plasma-activated dish attached to the surface slowly, with ~90%
of the cells being adherent and morphologically stretched after 48 h but without obvious
proliferation. The experimental results confirmed that AdSP coating could impart good
cell adhesion to the surface of substrates. A different SP as the coating material has been
used for antimicrobial and anti-fouling applications [35,36] but not for cell adhesion. Most
commercially available tissue culture plates or dishes are made of polystyrene with surface
modification such as hydrophilic polymer decoration or plasma treatment [37]. The finding
in this study suggests AdSP as a promising coating option for substrates used in cell culture.
Moreover, AdSP may have particular promotion effects in cell clustering and influence the
differentiation behavior of some stem cells, based on the aforementioned results.
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2.5. Potential of AdSP as Drug Carrier

Plant-resourced polysaccharide has been combined with a positively charged poly-
mer to fabricate composite nanoparticles through the formation of a polyelectrolyte com-
plex [38]. The potential of AdSP as a component to prepare composite nanoparticles was
verified by a reaction with chitosan. A photo image of the suspension of AdSP/chitosan
nanoparticles is shown in Figure 8A. The suspension was homogeneous with a milky-white
semi-transparent appearance. The hydrodynamic diameter and polydispersity index (PDI)
of the AdSP/chitosan nanoparticles were 239.67 ± 137.44 nm and 0.369, respectively. These
preliminary features confirm the possibility of using AdSP as a component to prepare
nanoparticles. The mechanism may be ascribed to electrostatic interaction and hydrophobic
interaction [39]. The drug-loading capacity of AdSP/chitosan nanoparticles was subse-
quently verified using fast green (FG) as a model drug. A photo image of the suspension of
FG-loaded AdSP/chitosan nanoparticles is displayed in Figure 8B. The suspension was
in the form of a blue-colored homogeneous semi-transparent dispersion. The hydrody-
namic diameter and PDI of the FG-loaded AdSP/chitosan nanoparticles were altered to
306.17 ± 60.33 nm and 0.281, respectively. The drug-loading efficiency of the nanoparticle
was estimated to be 18%, indicating the potential for drug delivery. The reason for the
increment in the size of the drug-loaded particles was hypothesized to be the competition
by the charge of drug in the electrostatic interaction between AdSP and chitosan that
influences the regular self-assembly. Considering the properties of each composition in the
formula, such as the pH sensitivity and antibacterial properties of chitosan [40] as well as
the potential antiviral and immunomodulatory abilities of AdSP [10,11], the capabilities of
AdSP/chitosan nanoparticles as a functional drug carrier may deserve further exploration,
through the optimization of AdSP/chitosan nanoparticles for drug loading and release and
the intensive study of their functions.
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3. Materials and Methods
3.1. Materials

The purified sulfated polysaccharide (AdSP, polysaccharide content of ~99%,
Mw = 272 kDa) extracted from self-grown Arthrospira maxima through the pressurized hot
water extraction method was provided by Far East Bio-Tec. Co., Ltd. (Taipei, Taiwan).
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The molar ratio of each monosaccharide composition is listed in Table 2. Methyl acrylic
anhydride (MAA), gelatin (type A, 300 Bloom, from porcine skin), deuterium oxide (D2O),
and sodium bicarbonate were purchased from Sigma-Aldrich (St. Louis, MO, USA). High-
glucose Dulbecco’s Modified Eagle’s Medium (HG-DMEM), Ham’s F-12, fetal bovine serum
(FBS), and penicillin–streptomycin–amphotericin (PSA) were purchased from Gibco (Grand
Island, NY, USA). Geneticin (G418) was purchased from Invitrogen (Waltham, MA, USA).
2,2-Azobis(2-methyl-N-(2-hydroxyethyl) propionamide) (VA-086) and FG were purchased
from Wako Chemicals GmbH (Neuss, Germany). Chitosan (Mn~1.4 × 105 Da) was obtained
from Hopax lnc. (Taipei, Taiwan). CCK-8 (Sigma-Aldrich, St. Louis, MO, USA) and KAPA
SYBR Green qPCR kit (Kapa Biosystems, Inc., Wilmington, MA, USA) were applied in the
commercial form.

Table 2. Molar ratios (%) of monosaccharides in the composition of the Arthrospira-derived sulfated
polysaccharide (AdSP) in this study.

Monosaccharide Rhamnose Glucose Mannose Fructose Galactose

Molar ratio 91.3 ± 0.1 1.8 ± 0.2 1.2 ± 0.2 2.6 ± 0.1 1.7 ± 0.1

Monosaccharide Xylose Arabinose Glucuronic acid Galacturonic acid

Molar ratio Trace Trace 0.2 ± 0.1 1.2 ± 0.5

3.2. Characteristics of AdSP

AdSP, dissolved in D2O, was analyzed by the DOSY, along with classic 1H NMR
(Bruker AVANCE IIITM HD 400 MHz NMR spectrometer, USA) operated at 300 K. The
molecular weight analysis was determined by HPSEC-RI. Samples were separated by the
TSKgel® guard column PWH (7.5 mm × 7.5 cm, Tosoh Bioscience, Inc., Tokyo, Japan)
coupled with the TSKgel® G4000PW column (7.5 mm × 30 cm, Tosoh Bioscience, Inc.,
Tokyo, Japan) and TSKgel® G3000PW column (7.5 mm × 30 cm, Tosoh Bioscience, Inc.,
Tokyo, Japan). Columns were eluted at a flow rate of 0.5 mL/min at 70 ◦C with 0.3 N
NaNO3, containing 0.02% NaN3. The molecular weight was estimated with a calibration
curve of the pullulan standard kit (P82, Lot:16021, Showa Denko America, Inc., New York,
NY, USA). The ζ-potential of AdSP in aqueous solution was measured by a nanoparticle
analyzer (Delsa Nano, Beckman Counter, Brea, CA, USA). The nanoscale structure of SP
was investigated by SAXS, with the scattering vector (q)-range from 3 × 10−3 Å−1 to
2 × 10−1 Å−1 performed at the beamline station 23A of Taiwan Light Source (TLS 23A) at
National Synchrotron Radiation Research Center (NSRRC), China.

3.3. Preparation of AdSP-Loaded Hydrogels

The synthetic procedure of GelMA followed the previous literature [41]. GelMA was
prepared by dissolving gelatin (10 w/v %) in 100 mL of 0.25 M carbonate-bicarbonate buffer,
and then 0.2 mL/g (MAA/gelatin) at 45 ◦C was slowly added under stirring for 90 min to
achieve methacrylation. The resulting mixture was dialyzed through a dialysis membrane
(MWCO = 12–14 kDa) in deionized water for 72 h and then freeze dried to obtain GelMA
with a DS close to 95%. The obtained GelMA was dissolved in D2O and analyzed by NMR
spectroscopy (1H NMR, Brucker AV III-500 MHz FT-NMR, USA) for the DS.

The composite hydrogel of GelMA and AdSP was then prepared. Both ingredients
were completely dissolved in HG-DMEM and Ham’s F12 (1:1) with 1% sodium bicarbonate
at 37 ◦C, and the VA-086 (photoinitiator) was then added into the prepolymer solution
at 1.5 w/v % of total solid content under light-proof conditions. The weight percentage of
GelMA in the prepolymer solution was 7.5 wt% with different concentrations of AdSP (0, 1,
3, and 5 mg/mL). The prepolymer was pipetted in the 24-well plate and exposed to UV
light (22.4 mW/cm2, 360–480 nm) at the distance of 5 cm for 2 min to allow the formation
of the photo-crosslinked network.
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3.4. Cell Culture in AdSP-Loaded Hydrogels

NSCs (passage 7) used in this study were derived from adult mouse brain, as described
in previous studies [42]. The cell medium for NSCs was a mixture of HG-DMEM and
Ham’s F-12 (1:1) with 10% FBS, 400 µg/mL G418, and 1% PSA. NSCs were incubated in a
humidified incubator at 37 ◦C and 5% CO2, and the medium was renewed every 2 days.
For three-dimensional cell culture in hydrogels, NSCs with the density of 2 × 106 cells/mL
were suspended in the prepolymer solution before UV light exposure. The NSC-loaded
hydrogels were placed into a 24-well plate for incubation. The proliferation of NSCs in hy-
drogels was assessed by the CCK-8 assay at pre-set time points for 14 days. Measurements
with CCK-8 assay were performed using a SpectraMax M5 plate reader at the wavelength
of 450 nm. The behavior of NSCs embedded in hydrogels was observed and captured by a
light microscope coupled with a digital camera (Nikon, Eclipse 80i, Tokyo, Japan).

The expression levels of neural-related genes in NSCs embedded in hydrogels for
14 days were analyzed by real-time reverse transcriptase-polymerase chain reaction (RT-
PCR) using the KAPA SYBR Green qPCR kit. The medium for NSCs in the evaluation of
differentiation was G418-free culture medium. The results were detected and recorded us-
ing a Step One Plus Real-Time PCR instrument (Applied Biosystems, Waltham, MA, USA).
The neurological markers used in this study included nestin, GFAP, β-tubulin, and MAP2.
All primer sequences used in this research are shown in Table S1. The gene expression
levels were normalized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and then
represented in relative proportions.

3.5. Preparation of AdSP-Modified Substrates

AdSP was coated on the material surface based on a self-developed method inspired
from the previous literature [33]. The surface of non-adherent polystyrene dish (diame-
ter/height: 35/10 mm, Greiner Bio-One, Frickenhausen, Germany) was used as the pristine
substrate. The surface of the dish was first activated by air plasma scanning, and then
the AdSP aqueous solution (1 mg/mL) was uniformly coated on the plasma-modified
substrate for 1 min, followed by three washes with deionized water. The plasma was
provided by a high-power open-air plasma system (Openair®) developed by Plasmatreat
(Steinhagen, Germany). The plasma temperature at the nozzle outlet was ~26 ◦C, and the
air pressure was 2.5 kg/cm2. The plasma power was set at 720 W. The substrate was placed
at a distance of 200 mm from the nozzle, and the nozzle was scanned at a speed of 6 m/min.
All samples were washed and dried at room temperature. The surface of the modified
dish was observed by a light microscope coupled with a digital camera (Nikon, Eclipse 80i,
Tokyo, Japan). Surface contact angles were measured at room temperature using an optical
contact angle meter. To conduct the measurement, the dish was placed on a removable
sample stage and leveled horizontally. A drop of deionized water was carefully placed on
the surface, and the average of five measurements at different positions of the sample was
recorded as the contact angle.

3.6. Cell Adhesion on AdSP-Modified Substrates

The source and culture conditions of NSCs were the same as described in Section 3.4.
Before NSCs were seeded in a density of 5 × 104 cells per dish, each dish was exposed to
UV light for 24 h for sterilization. The cell morphology and adhesion on the dish surface
were observed by light microscopy, where images were taken at pre-defined time points.

3.7. Evaluation of AdSP as a Component of Drug Carrier

The attempt to corroborate the use of AdSP as a nanocarrier was motivated by the
previous literature [39]. Composite AdSP–chitosan nanoparticles were prepared by mixing
the 1.0 mg/mL chitosan solution and 1.0 mg/mL AdSP solution at pH around 6.0 under
the stirring speed of 600 rpm. The whole process to prepare composite nanoparticles
was executed in room temperature. As for the drug-loading attempt, FG as a model
drug was first added in the chitosan solution with a concentration of 500 ppm. Then,
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the AdSP solution was dropped in the chitosan/FG solution and mixed at 600 rpm. The
target nanoparticles were obtained by centrifugation at the speed of 2500 rpm for 15 min.
The PDI and hydrodynamic diameters of the nanoparticle and FG-loaded nanoparticle
were analyzed by a nanoparticle analyzer (Delsa Nano, Beckman Counter). The loading
efficiency was calculated through the formula (Wi − Ww)/Wi × 100%, where Wi is the
initial weight of the drug, and Ww is the weight of the unwrapped drug. The weight of
the unwrapped drug was estimated in two steps. The absorbance in the supernatant after
centrifugation was tested using a microplate reader (SpectraMax M5, Molecular Devices,
San Jose, CA, USA) at the wavenumber of 552 nm for FG. Then, the concentration of
FG was calculated through the absorbance and the calibration curve of FG (Figure S1,
Supplementary Materials) to acquire the weight of the unwrapped drug.

3.8. Statistical Analysis

All quantitative results were obtained independently with at least three replicates to
exclude unexpected cases (n ≥ 3). Computed data are expressed as mean ± standard devi-
ation. Statistical differences were made between groups using the commercially distributed
statistics software package GraphPad Prism 9 and a Student’s t-test, and data were deemed
statistically meaningful if p < 0.05.

4. Conclusions

The new, high-purity sulfated polysaccharide extracted from Arthrospira maxima
showed bioactivities. When added to the hydrogel, it effectively enhanced the proliferation
and differentiation of embedded NSCs, along with prolonging the stemness. The formation
of multicellular spherical cell clusters with diameters in a range of 40 to 60 µm was observed
in the AdSP-containing hydrogel. An optimal concentration (less than 5 mg/mL) existed
for the AdSP in the hydrogel to achieve the greatest ability in promoting cellular behavior.
AdSP was also verified as serving as a coating material through the self-developed method
for providing the AdSP-modified substrate with superhydrophilicity, i.e., a contact angle
less than 10◦ and cell adhesiveness. In addition, AdSP was used as a component for prepar-
ing nanoparticles by simple mixing with chitosan at room temperature for drug-carrier
applications. Such composite nanoparticles had an average diameter of about 240 nm,
with a considerable drug-loading efficiency of ~18%. These findings suggest that the new
AdSP proposed in this study may possess great potential in biomedical applications for cell
culture, surface modification, and drug delivery.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28020732/s1. Table S1: The primer sequences for
PCR used in this study; Figure S1: The calibration curve for the model drug fast green; Figure S2:
The molecular weight distribution of AdSP, showing the high homogeneity of the purified sample;
Figure S3: The SAXS profile of AdSP in the study; Figure S4: 1H NMR of GelMA prepared in
the study.
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