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Abstract: In this paper, methyl glycine diacetic acid (MGDA) was found to have great influence on
the morphology and particle size of barium sulfate. The effects of additive, concentration, value of pH
and reaction temperature on the morphology and particle size of barium sulfate were studied in detail.
The results show that the concentration of reactant and temperature have little effect on the particle
size of barium sulfate. However, the pH conditions of the solution and the dosage of MGDA can
apparently affect the particle size distribution of barium sulfate. The particle size of barium sulfate
particles increases and the morphology changes from polyhedral to rice-shaped with the decreasing
of the dosage of MGDA. In solution with higher pH, smaller and rice-shaped barium sulfate was
obtained. To investigate the interacting mechanism of MGDA, the binding energy between MGDA
and barium sulfate surface was calculated. It was found that the larger absolute value of the binding
energy would result in stronger growth inhibition on the crystal face. Finally, the experimental data
and theoretical calculations were combined to elucidate the interacting mechanism of the additive on
the morphology and particle size of barium sulfate.

Keywords: barium sulfate; morphology; MGDA; particle size; binding energy

1. Introduction

Barium sulfate is known as an important inorganic salt, which has shown widespread
applications in industries such as medicine, paint, rubber and papermaking [1–3]. In the
paint industry, barium sulfate is frequently used as filler for many kinds of coating due to
its high whiteness, low oil absorption and great hiding power. As for rubber and plastics
industries, using barium sulfate as filler can greatly improve the overall performance of
rubber, such as changing the toughness and strength, enhancing the mechanical properties.
The thermal property of resin can be significantly improved by adding barium sulfate since
barium sulfate has excellent compatibility with resin [4]. It is also quite common to use
barium sulfate as a coated-paper and surface-coating agent of photographic paper in the
paper industry owing to its low cost. What is more, using barium sulfate with a great oil
absorption value could enhance the ink receptivity of paper.

The properties and applications of barium sulfate are closely related to its particle
size and morphology. Barium sulfate with average particle size less than 0.5 µm can
be used as filler of polyester fiber to improve the processability of polyester fiber [5].
Barium sulfate with particle sizes ranging from 0.8 to 1.0 µm can be applied in coatings,
including electrophoretic coatings, plastic coatings, spray powder coatings and high-gloss
coatings [6,7]. Barium sulfate with particle sizes less than 10 µm has similar strength,
whiteness, oil absorption value and refractive index as titanium dioxide. It can be added
into colored pigments as a dispersant to improve the brightness, glossiness, smoothness
and fullness of pigments [8]. About 2–20 µm barium sulfate particles play an important
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role in the manufacture of cosmetics and synthetic resin. In addition, scaly barium sulfate
can be used in the papermaking industry because it can optimize the coating performance
of paper [9]. Barium sulfate with a high aspect ratio can be applied in the production
of rubber and plastics to improve the tensile strength and wear resistance. Spherical
barium sulfate can be used in ceramics to enhance mechanical strength [10]. Therefore, it
is crucial to control the morphology and particle size of barium sulfate, according to its
specific application. Some methods have been reported to control the particle size and
morphology of barium sulfate. Jones et al. studied the effects of many kinds of additives,
such as ethylenediaminetetraacetic acid (EDTA), nitrilotrimethylenephosphonate (NTMP),
N-methylnitrilodimethylenephosphonate (MNDP) and nitrilotriacetic acid (NTA) [11–14].
However, no general rules have been found, and the molecular mechanism of the effect of
additives on the morphology of barium sulfate was not well understood.

In this study, the manipulation of morphology and particle size of barium sulfate was
investigated in detail. The effects of additive, concentration, value of pH and reaction
temperature on the morphology and particle size of barium sulfate were studied. The
effect of six additives were investigated, and methyl glycine diacetic acid (MGDA) was
found to have significant effect on the particle size distribution and morphology of barium
sulfate. Value of pH could also affect the morphology and particle size of barium sulfate.
Furthermore, it has been well known that molecular simulation can facilitate the better
understanding of the molecular mechanism of experimental phenomena [15]. Therefore,
molecular simulation was carried out to calculate the binding energy between MGDA and
each crystal surface to further reveal the molecular mechanism of morphological changes
of barium sulfate [16]. These results could provide an important basis for the preparation
of barium sulfate with desired morphology and particle size.

2. Results and Discussion
2.1. Effect of Additives on Morphology and Particle Size of Barium Sulfate

The effects of six additives (including tetrasodium iminodisuccinate, sodium hexam-
etaphosphate, PEG400, polyaspartic acid, MGDA, sodium pyrophosphate decahydrate) on
the morphology and particle size of barium sulfate were investigated. SEM of products
obtained with different additives are showed in Figure 1. Figure 2 shows the morphology
of barium sulfate without additives. It can be seen that the morphology of barium sul-
fate changed dramatically when additives were introduced, suggesting that the additives
could affect the morphology of barium sulfate. Further analysis shows that crystals of
barium sulfate coalesces obviously when the additive was tetrasodium iminodisuccinate,
sodium hexametaphosphate or sodium pyrophosphate decahydrate. When the additive
was PEG400, the product obtained was flaky, while rice-shaped barium sulfate could be
obtained when polyaspartic acid was used as an additive. More importantly, it could be
clearly seen that pillow-shaped barium sulfate was obtained and that the morphology
homogeneity of barium sulfate was the best when MGDA was used as an additive.

Figure 3 shows the particle size distribution (PSD) of barium sulfate obtained in the
presence of different additives. When MGDA exists, the PSD of barium sulfate is the most
uniform, and the particle size is the smallest (average granularity: 381.9 nm). When other
additives were introduced, multi-peaks appear in PSD, indicating the decrease in particle
size distribution uniformity. Above all, it can be concluded that MGDA could significantly
affect the morphology and particle size of barium sulfate.
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Figure 1. SEM photographs of barium sulfate product obtained in the presence of different addi-
tives (reactant concentration 0.1M): (a) tetrasodium iminodisuccinate; (b) sodium hexametaphos-
phate; (c) PEG400; (d) polyaspartic acid; (e) MGDA; (f) sodium pyrophosphate decahydrate. 
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It has been known that MGDA is a new kind of micromolecule complexing agents,
and its molecular structure is shown in Figure 4. MGDA can react with the metal ions and
form stable complexes in the range of pH from 2 to 13.5. The complexation constant of
MGDA with Ba2+ is 4.9 at 25 ◦C [17]. However, if MGDA only has complexation ability,
it can only control the rate of the reaction without affecting the morphology. Previous
studies [1,18] have demonstrated that EDTA, DTPA and other complexing agents have dual
functions, including complexation with Ba2+ to control the reaction process and adsorped
onto specific crystal faces of barium sulfate to affect the morphology of barium sulfate.
Based on the fact that MGDA is structurally similar to EDTA and DTPA, it is reasonable to
speculate that MGDA will adsorb on specific surfaces of barium sulfate, thereby inhibiting
their growth and finally changing the morphology of barium sulfate.
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2.2. Effect of Dosage of MGDA on Morphology and Particle Size of Barium Sulfate

In order to better understand the effect of MGDA on barium sulfate, the effect of
the dosage of MGDA on the morphology and particle size of barium sulfate was further
investigated. The reaction conditions and particle sizes of barium sulfate are listed in Table 1.
When the dosage of MGDA is decreased, fewer MGDA anions will form complexation
with Ba2+, and thus the release of barium ion cannot be controlled effectively. As a result,
less regulated reaction progress will result in uneven particle size in the solution. On the
other hand, the number of MGDA molecules adsorbed on the faces of barium sulfate also
decreases, and the inhibition effect on the growth of crystal faces of barium sulfate will
decrease, resulting in the changing of the crystal morphology and agglomeration of the
particles. As shown in Table 1, when the dosage of additive decreases, the particle size
of the product measured by the Malvern particle size analyzer gradually increases, and
the uniformity of particle distribution decreases, which is consistent with the theoretical
expectation. As shown in Figure 5, the barium sulfate particles gradually coalesce as the
dosage of MGDA decreases. This is because MGDA plays a role as an effective dispersant
in addition to a complexing agent. When its dosage is reduced, its ability to prevent
agglomeration between particles also reduces, eventually leading to the coalescence of
barium sulfate particles.
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Table 1. Effect of the amount of MGDA on the particle size of barium sulfate.

Temperature/◦C Reactant
Concentration/M pH Molar Ratio of

MGDA-3Na to BaCl2
BaSO4 Granularity/nm

25 0.005 Unregulated 1:1 257.8
25 0.005 Unregulated 1:2 355.7
25 0.005 Unregulated 1:4 304.5
25 0.005 Unregulated 1:8 5486
25 0.005 Unregulated 1:16 5970
25 0.005 Unregulated 1:20 6142
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additive to barium sulfate is: (a) 1:1; (b) 1:2; (c) 1:4; (d) 1:8; (e) 1:16; (f) 1:20 (reactant concentration
0.005 M.

In addition, the SEM of Figure 5 also shows that, when the molar ratio of additive
to barium sulfate is 1:20, barium sulfate crystals show multiple crystal planes. With the
increase in additive dosage, the particles gradually become spherical, then pillow-shaped
and finally rice-shaped. The change in the morphology of barium sulfate crystals with the
addition of additives once again indicates that the MGDA molecule can be adsorbed on the
specific faces of barium sulfate, inhibiting the growth of the crystal face, thus changing the
relative growth rates between the crystal faces and finally changing the crystal morphology.

The XRD patterns of the barium sulfate products obtained at different dosages of
additives are shown in Figure 6. It can be seen that the crystallinities of barium sulfate
products obtained in presence of MGDA is lower than those in the absence of MGDA,
indicating that MGDA has an inhibitory effect on the growth of barium sulfate. In addition,
compared with the barium sulfate XRD patterns without additives, the relative intensities
of the diffraction peaks corresponding to the (2 1 2) and (2 1 0) crystal planes are enhanced
in the XRD patterns of barium sulfate, indicating that MGDA may interact with these two
faces preferentially.
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2.3. Effect of Concentration of Reactants on the Morphology of Barium Sulfate

Concentration is an important factor that could affect crystal growth process [18,19].
Without adjusting the pH, the molar concentration of BaCl2 in the reaction solution is 0.1 M,
0.05 M, 0.04 M, 0.025 M, 0.005 M, 0.001 M, respectively, and the molar concentration of
MGDA-3Na added is equal to that of barium chloride. Figure 7 shows the morphology
of barium sulfate products obtained at different concentrations. It can be seen that the
concentration of the reactants does not have significant influence on the morphology of
barium sulfate. When the concentration of BaCl2 and Na2SO4 in the solution is 0.1 M
and 0.05 M, pillow-shaped barium sulfate was obtained. In the concentration range of
0.04–0.001 M, the morphology of barium sulfate transforms from a pillow shape to a rice
shape. In addition, it can be noticed that both the particle size distribution and morphology
of the product are more uniform when the concentration of the reactants is lower. It can
be speculated that the particles are better mixed in the solution under low concentration
and therefore result in more uniform morphology and better particle dispersibility of
the product.
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Figure 8 shows the variation of the particle size of barium sulfate with the concentra-
tion of the reactants. The particle size of the product increases as the concentration of the
reactants increases. It is well known that the particle size and morphology of crystal are
determined by the nucleation, growth and agglomeration of crystals [20–23]. When the
concentration of the solution is low, there is little chance of collision between the particles,
and thus it is difficult for the newly formed crystal nuclei to aggregate into large particles.
When the concentration of the solution increases, both the nucleation rate and the chance
of collision between the particles will increase. Therefore, the particles tend to coalesce and
form bigger particles. The particle size of barium sulfate obtained in these experiments are
in the range of 218.8 nm to 381.9 nm.
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2.4. Effect of pH Value on the Morphology of Barium Sulfate

The MGDA molecule that has different ionization balance in aqueous solution is a
zwitterion. MGDA can act as a complexing agent. The protonated MGDA anion can com-
bine with Ba2+ to form a stable complex, thus controlling the progress of the precipitation
reaction. Figure S1 of the Supporting Information shows the SEM images of barium sulfate
products at natural pH and other pH conditions with reactant concentrations of 0.1 M,
0.005 M and 0.001 M, respectively. It was found that at the same reactant concentration,
when the pH of the reactant is around 7 or 9, the product particles are uniform and the dis-
persibility is good. As the pH value decreases, the morphology of barium sulfate gradually
becomes less regular, and the dispersibility also decreases.

Figure 9 shows that the particle size of barium sulfate increases with the decreasing of
the pH under the same reactant concentration. Besides, the particle size is minimized when
the solution is around 7. The particle size distributions of the products obtained at different
pH values when the concentration of the reactant is 0.005 M are shown in Figure 10. It
can be seen that the PSD curve has a side peak at pH = 7 and a double peak at pH = 3,
respectively. In contrast, the PSD is uniform at both pH = 9 and pH = 12, which was verified
by the corresponding single peak. What is more, the size distribution at pH = 12 is narrower
and more symmetrical than that at pH = 9. Therefore, it can be concluded that the larger the
pH value is, the more uniform the PSD of the product will be. It indicates that MGDA-3Na
has a more positive effect on the uniformity of PSD under higher pH conditions. In a
basic environment, MGDA is mostly in the form of anions, which can form a complex
with Ba2+. While at lower pH, MGDA anions tend to combine with the hydrogen protons,
and thus the number of MGDA anions available for complexation with barium ions is
reduced. As a result, the number of free barium ions in the solution increases, leading to a
higher supersaturation degree. Furthermore, the reaction cannot be well controlled since
the solution is relatively concentrated. Therefore, the particles of the BaSO4 product are
prone to coalesce at lower pH, resulting in larger particles and less uniform PSD.
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MGDA is one kind of metal complexing agent that can form stable complexes with
metal ions in solution. The parameter that characterizes its complexation ability is called
the stability constant K. The higher the value of K is, the stronger the complexation ability
of MGDA is and the more stable the as-formed complex will be. The complexing reaction
can be expressed as follows (the charge is omitted):

M + L = ML (1)

where M represents a metal ion, and L stands for a MGDA anion. The stability constant
can be expressed as Equation (2):

KML =
[ML]
[M][L]

(2)

Previous research has pointed out that the stability constant of MGDA and Ba2+ is 4.9 at
25 ◦C, demonstrating the good complexing ability of MGDA [12]. In terms of structure,
MGDA can be classified as an aminocarboxylate complexing agent due to the existence
of three carboxylic acid groups and one amphoteric nitrogen atom. When the acidity of
the solution is enhanced, each of the nitrogen atom and the carboxylic acid groups may
accept a hydrogen proton and finally form H4L+. Conversely, under alkaline conditions,
deprotonation is more predominant. The ionization equilibrium in the solution can be
explained as follows:

H4L+
−H+

�
+H+

H3L
−H+

�
+H+

H2L−
−H+

�
+H+

HL2− −H+

�
+H+

L3− (3)

The ionization equilibrium changes with the variations of hydrogen ions concentration
(pH). As a result, the complexing ability of MGDA will vary with pH. This phenomenon is
called the acid effect. The magnitude of the acid effect is usually expressed by the acid effect
coefficient, which is the ratio between the total concentration of various forms of MGDA
that cannot participate in the complexation reaction and the equilibrium concentration of
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L3− that can participate in the complexation reaction. The acid effect coefficient(αL[H]) can
be calculated as:

αL[H] = [L′]
[L3− ]

=
[L 3− ]+[HL 2− ]+[H 2L− ]+[H 3 L]+[H 4L+

]
[L 3−]

= 1 + [H + ]
K4

+ [H+ ]
2

K4K3
+ [H+ ]

3

K4K3K2
+ [H+ ]

4

K4K3K2K1

(4)

where Kn is the equilibrium dissociation coefficient, and [H+] represents the hydrogen ion
concentration. It can be concluded that, as the pH increases, the acid effect coefficient αL(H)
decreases, since [H]+ decreases and all Kn are constants.

Combining Equations (2) and (4), a new equation can be obtained as follows:

[ML]
[M]
[
L′
] = KML

αL(H)
= K′ML (5)

where K′MY is called the conditional stability constant that considers the acid effect and
thus can describe the complexing ability of MGDA under experimental conditions. It can
be seen from Formulas (4) and (5) that the αL(H) decreases as the pH increases, resulting in
an increase in the conditional stability constant. Therefore, at higher pH, MGDA can better
control the progress of the reaction, resulting in more uniform product particles with better
particle size dispersion. This prediction based on theoretical calculation is consistent with
the experimental results.

The barium sulfate products obtained under different pH values at a reactant concen-
tration of 0.005 M were analyzed by X-ray diffraction (XRD), and the results are given in
Figure 11.
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Figure 11. Standard XRD pattern of barium sulfate and XRD patterns of barium sulfate products
obtained at different pH (reactant concentration 0.005 M): (a) standard pattern; (b) natural pH;
(c) pH = 9; (d) pH = 7; (e) pH = 3.

Comparing with the standard pattern, it can be found that no polymorphism phe-
nomenon was observed under different pH conditions [24]. However, as the pH decreases,
the crystallinity of the product gradually increases, indicating that MGDA has a strong
inhibitory effect on the surface of barium sulfate at high pH and a weak inhibitory effect at
low pH. This is because MGDA is deprotonated at higher pH, and deprotonated MGDA
is more likely to interact with the surfaces of barium sulfate crystals, inhibiting crystal
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surface growth and reducing the crystallinity. The change in the relative intensity of each
peak in the XRD pattern can indicate the variation in the crystal surface. Comparing the
XRD patterns of barium sulfate products obtained under different pH conditions with the
standard pattern of barium sulfate at a concentration of 0.005 M, it can be found that the
relative diffraction intensities of (2 1 1), (2 1 0), (2 1 2) surfaces change greatly with pH.
Therefore, it can be suspected that MGDA has specific adsorption effects on the (2 1 1),
(2 1 0), (2 1 2) faces of BaSO4 crystals and can significantly affect the growth rates of these
faces. Therefore, the MGDA added into the reaction mother liquors will result in changes
of the morphology of barium sulfate.

2.5. Effect of Temperature on the Morphology and Particle Size of Barium Sulfate

The particle size and morphology of barium sulfate at 10 ◦C, 25 ◦C, 50 ◦C and 80 ◦C
were also investigated when MGDA is present at a concentration of 0.005 M. The results
are given in Figure 12 and Figure S2 of the Supporting Information. It can be seen from
Figure 12 that the average particle size of barium sulfate obtained at 10 ◦C, 25 ◦C, 50 ◦C
and 80 ◦C are 457.6 nm, 257.8 nm, 795.2 nm and 446.2 nm, respectively. At 25 ◦C, the
product has the smallest particle size. The barium sulfate product with uniform PSD and
good dispersibility can be obtained at any temperature, which means that the reaction
temperature has a relatively small influence on the dispersion degree of barium sulfate
particles. The barium sulfate with uniform PSD can be obtained at any temperature. It
can be seen from Figure S2 that the morphologies of the products obtained at different
temperatures are almost the same (rice-shaped).
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2.6. Molecular Mechanism of the Effect of MGDA on the Morphology and Particle Size of
Barium Sulfate

In order to better understand the interactions between MGDA and barium sulfate, an
interface model was constructed according to the molar ratio of MGDA to barium sulfate
at 1:1. Molecular dynamics simulation was carried out to calculate the binding energy
between each crystal surface of barium sulfate and MGDA. Figure 13 shows the interactions
between MGDA and each surface. The pink dotted line indicates the interactions between
the atoms. It can be seen that the MGDA molecular conformation varies with the crystal
face of BaSO4. However, the carboxylic acid groups in the MGDA molecule are all close
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to the barium sulfate surface. It can be seen clearly that, on the (0 0 1) and (1 0 1) faces,
the three carboxylic acid groups of the MGDA molecule are oriented toward the barium
sulfate surfaces, indicating that the carboxylic acid group is the main functional group that
causes the interactions between MGDA and barium sulfate. What is more, carboxylic acid
groups interact with barium ions by electrostatic force. Except for carboxylic acid groups,
there is also certain repulsion between the two methyl groups in the carbon bone chain of
MGDA molecule and crystal surfaces of BaSO4, as implied in Figure 13. The interactions
between MGDA and barium sulfate are similar to those between EDTA and barium sulfate
because both MGDA and EDTA are aminocarboxylate complexing agents [3,14]. It has
been reported that the complexation constant of MGDA with barium ions is 4.9, while the
complexation constant of EDTA with barium ions is 7.76 [25]. Generally, the larger the
complex constant is, the more stable the complex will be. The EDTA molecule has one more
carboxylic acid group and a longer carbon bone chain than the GDA molecule. Thus, EDTA
is more prone to twist, allowing carboxylic acid groups to interact with barium sulfate more
easily. In addition, compared with MGDA, EDTA does not contain methyl groups that are
repulsive to the crystal surfaces of BaSO4. For these reasons, EDTA molecules are more
likely to interact with barium sulfate. The existence of carboxylic acid groups in additives is
beneficial to strengthen the interactions between additives and barium sulfate faces, while
methyl groups have the opposite effect. These conclusions are of great significance in the
design of additives for manipulating the morphology and particle size of barium sulfate.
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Figure 13. Interactions between MGDA and each crystal surface of barium sulfate.

The binding energies calculated are listed in Table 2. Generally, the greater the absolute
value of the binding energy is, the stronger the affinity between the additive and the crystal
face will be. The order of the absolute values of the binding energies turns out to be:
(2 1 2) > (2 1 0) > (2 1 1) > (1 0 0) > (0 1 1) > (0 1 0) > (1 0 1) > (0 0 1). Jones et al. calculated
the attachment energy with relaxation and listed the faces according to the absolute value
of the attachment energy: (2 1 2) > (0 1 0) > (0 1 1) > (2 1 1) > (1 0 0) > (2 1 0) > (1 0 1) >
(0 0 1). The smaller the absolute value of the attachment energy is, the larger the area of the
crystal surface will be. The absolute value of the binding energy of (2 1 2) face is the largest,
meaning that the affinity of MGDA to the (2 1 2) face is the strongest. However, since the
initial attachment energy of the (2 1 2) face is too large, the growth rate of the (2 1 2) face is
still fast and the (2 1 2) face is difficult to see even if MGDA has a strong inhibitory effect on
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the crystal surface. It can be seen that the next energetically favored faces are the (2 1 0) and
(2 1 1) faces. The XRD patterns in Figure 11 shows that the relative strength of the two peaks
representing (2 1 2) and (2 1 0) faces changed significantly, meaning that MGDA is most
likely to interact with these two surfaces, which is consistent with the calculation results of
binding energy. According to the morphology variation of barium sulfate with different
MGDA dosages in Figure 5 and the binding energy calculated in this section, the evolution
of barium sulfate morphology in the presence of MGDA is illustrated by Figure 14.

Table 2. Binding energies between each crystal face and additive.

Surface Etotal (kJ/mol) Esurface (kJ/mol) Eadditive (kJ/mol) Ebinding (kJ/mol)

(1 0 0) 67,506.1 49,569.6 18,390.6 −454.061
(2 1 0) 72,417.5 54,540.5 18,525.1 −648.094
(0 0 1) 71,645.9 53,768.1 18,225.6 −347.824
(0 1 1) 64,920.5 46,853.4 18,500.8 −433.714
(2 1 1) 67,451.8 49,253.3 18,709.2 −510.655
(0 1 0) 69,131.4 51,511.8 18,017.3 −397.643
(2 1 2) 64,630.9 46,467.2 18,861.1 −697.406
(1 0 1) 69,322.4 51,262.5 18,429.1 −369.121
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Figure 14. The evolution of barium sulfate morphology with different molar ratio of MGDA-3Na to
BaCl2.

When the dosage of MGDA is low, it first interacts with the (2 1 0) and (2 1 1) faces,
and the growth rates of the two faces are slowed down, and the faces are exposed. As the
dosage of additive increases, MDGA gradually begins to inhibit the growth of the (0 1 1),
(0 1 0), (1 0 1) faces, which are less favorable. The initial attachment energy of these three
faces can be listed as: (0 1 0) > (0 1 1) > (1 0 1). MGDA first inhibits the surface, which grows
faster, and then the slower one. This is beneficial to reduce the differences in the growth
rate between the surfaces, and therefore, the crystal morphology tends to be spherical.
Later, the growth of crystal plane (001) is inhibited, and, as a result, the spherical particles
become flat. In this case, the area of the (211) face is larger, which makes the two ends of
the crystal sharper and tend to be rice-shaped when viewed from the side. With the further
increase in the dosage of additive, the proportion of rice granular crystals increases due
to the inhibition effect of MGDA towards the growth of the (1 0 0) surface, and finally,
rice-shaped crystals will be obtained.
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3. Experimental
3.1. Materials

MGDA-3Na was supplied by TCI Chemical Industry Development Co., Ltd., Shanghai,
China. Tetrasodium iminodisuccinate and polyaspartic acid were provided by Think-Do
Environment Co., Ltd., Hebei, China. Sodium hexametaphosphate and sodium pyrophos-
phate decahydrate were supplied by Chemart Chemical Technology Co., Ltd., Tianjin,
China. PEG400 was supplied by Jiangtian Chemical Co. Ltd., Tianjin, China. BaCl2 (mass
concentration 99.5%), and Na2SO4 (mass concentration 99.5%) was provided by Sailboat
Chemical Reagent Technology Co., Ltd., Tianjin, China. Hydrochloric acid (mass concentra-
tion 36.0–38.0%) and sodium hydroxide (mass concentration 96.0%) were provided by Yuanli
Chemical Co., Ltd., Tianjin, China. All materials were used without further purification.

3.2. Crystallization Experiment of Barium Sulfate

Under agitation (300–350 r/min), a certain concentration of BaCl2 stock solution
(0.001–0.1 M) was placed into a crystallizer, and the solution temperature was controlled at
the specified temperature by a thermostat (CF41, Julabo, Germany) with an accuracy of
±0.05 K. A certain amount of additive was added to the crystallizer and was completely
dissolved. A Na2SO4 stock solution of the same molar concentration with BaCl2 was added
dropwise to the crystallizer using a peristaltic pump at a speed of 1–5 mL/min. During the
reaction, the pH of the reaction solution was adjusted to the desired pH with HCl or NaOH
solution. After the addition of Na2SO4 stock solution, the rotation speed was lowered
to 150 r/min, and the precipitation was kept aging for 3 h. At last, the suspension was
centrifuged, washed twice with ultrapure water and dried at 35 ◦C for 6 h.

3.3. Characterization of Barium Sulfate
3.3.1. Scanning Electron Microscopy (SEM)

The obtained products were placed on carbon-coated SEM stubs and then were sputter-
coated with a layer of gold to make the product conductive. The morphology of the barium
sulfate was investigated using a scanning electron microscope (S-4800, Hitachi, Japan).

3.3.2. X-ray Powder Diffraction

A Rigaku D/max-2500 X-ray powder diffractometer (Rigaku, Japan, Cu Kα 1.5405 Å)
was utilized for the polymorphic characterization of barium sulfate (using a step size of
0.02◦, scanning rate of 0.067◦/s, diffraction angle (2θ) range of 5 to 80◦).

3.3.3. Malvern Zetasizer Nano ZS

The particle size of barium sulfate was studied using dynamic light scattering (Malvern
Zetasizer Nano ZS, Malvern Instruments Ltd., Worcestershire, UK), equipped with a He–Ne
laser lamp (0.4 mW) with a wavelength of 633 nm. During the measurements, water was
used as the dispersed phase, and the samples were constantly stirred at room temperature.

3.4. Molecular Simulation

The interaction energy between MGDA and the surface of barium sulfate was calcu-
lated through Materials Studio 8 (Accelrys Inc., SanDiego, CA, USA) in order to get a better
insight of the growth inhibition effect of MGDA molecules on the surface of barium sulfate.
The surface docking model is often used to investigate the interactions between additives
and the surface of crystal. In this model, the molecular dynamics are performed based
on the assumption that the additive is on the surface of the crystal, and then the binding
energy between the additive and the surface can be calculated. The greater the absolute
value of the binding energy is, the stronger the interaction between the additive and the
surface of barium sulfate will be, which means that the additive will have a more inhibitory
effect on the surface [26,27]. This model assumes that the crystal growth can be disrupted
by the additive through adsorbing to the specific surface of barium sulfate and thus the
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morphology of barium sulfate will be changed. The binding energy between MGDA and
the cleaved faces can be obtained using molecular simulation.

Ryabov et al. revealed the single-crystal-structure data of barium sulfate in 1983 ta-
ble [28]. Jones et al. have calculated the initial attachment energy of each surface of barium
sulfate under vacuum conditions, and the main surfaces can be listed according to the
energy as: (2 1 2) > (0 1 0) > (0 1 1) > (2 1 1) > (1 0 0) > (2 1 0) > (1 0 1) > (0 0 1). The
smaller the absolute value of the attachment energy is, the larger the crystal face area will
be. In this work, the binding energy between MGDA and these main crystal faces were
calculated. Firstly, the geometrical optimization of the structure of barium sulfate single
crystal was carried out using universal force field. Secondly, the specific face was cleaved,
and a supercell structure was created with appropriate dimensions (U = 3, V = 3). Then,
the supercell was spread into a vacuum slab, and a MGDA molecular layer (including
108 MGDA molecules) was created. Through building the vacuum slab and the optimized
MGDA molecular layer together, geometrical optimization was carried out to identify the
lowest energy conformation. Finally, molecular dynamics simulations were carried out.
NVT ensemble was used at a time step of 0.1 fs for 500 ps. The temperature was set at 298 K,
and a Nose–Hoover–Langevin thermostat was used to control the temperature during
simulation. After the dynamics simulation, the energy module was used to calculate the
energy of each part. The binding energy can be calculated as the following equation [29,30]:

Ebind = Etot − (Esur + Eadd) (6)

where Ebind represents the binding energy between MGDA and the crystal surface, Etot
is the energy of the system that docks the additive molecular layer after the molecular
dynamics simulation, Esurf represents the energy of the crystal surface, and Eadd is the
energy of the additive layer. The calculated binding energy can be used to interpret the
interactions between MGDA and crystal faces.

4. Conclusions

In this work, the manipulation of the morphology and particle size of barium sulfate
was investigated in detail. The effects of six additives were investigated, and MGDA was
found to be able to significantly affect the morphology and particle size of barium sulfate.
The effects of the dosage of additive, the concentration of the reactant, the pH value and
the reaction temperature on the morphology and particle size of barium sulfate were also
investigated. The results show that the concentration of reactant and temperature have
little effect on the particle size of barium sulfate. The pH conditions of the solution and
the dosage of MGDA can apparently affect the particle size distribution of barium sulfate.
The particle size distribution of the product is uniform, and the particle size is less than
1 µm at natural pH. With the decrease in the dosage of MGDA, the particle size of barium
sulfate particles increases and the morphology changes from polyhedron to rice-shaped.
The interacting mechanism of MGDA was also investigated. It was found that MGDA
can not only control the reaction process by complexing with barium ions but also change
the morphology of barium sulfate by adsorbing on the specific crystal surfaces. The XRD
patterns show that the crystal faces that are preferentially adsorbed by MGDA are (2 1 1),
(2 1 0) and (2 1 2). From molecular simulation, it was found that the order of the absolute
value of the binding energy of each crystal face is: (2 1 2) > (2 1 0) > (2 1 1) > (1 0 0) > (0 1 1) >
(0 1 0) > (1 0 1) > (0 0 1), indicating that (2 1 1), (2 1 0), (2 1 2) faces are more energy-favorable,
which is consistent with the XRD characterization results. The greater absolute value of
the binding energy will result in a stronger interaction between MGDA and the crystal
surface. The existence of a carboxyl group in the MGDA molecule is beneficial to enhance
the interaction between MGDA and the crystal surface, while the existence of a methyl
group has the opposite effect.
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www.mdpi.com/article/10.3390/molecules28020726/s1. Figure S1. SEM of barium sulfate product
obtained with different reactant concentrations at different pH values; Figure S2. SEM of barium
sulfate obtained at different reaction temperatures.
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Abbreviation Full name
MGDA methyl glycine diacetic acid
EDTA ethylenediaminetetraacetic acid
NTMP nitrilotrimethylenephosphonate
MNDP N-methylnitrilodimethylenephosphonate
NTA nitrilotriacetic acid
SEM scanning electron microscopy
PSD particle size distribution
XRD X-ray diffraction
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