
Citation: Zheng, H.; Wu, P.; Bonnet,

P.-A. Recent Advances on

Small-Molecule Antagonists

Targeting TLR7. Molecules 2023, 28,

634. https://doi.org/10.3390/

molecules28020634

Academic Editors: Theodora Venera

Apostol, George Mihai Nitulescu and

Laura Ileana Socea

Received: 28 November 2022

Revised: 28 December 2022

Accepted: 30 December 2022

Published: 7 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Review

Recent Advances on Small-Molecule Antagonists
Targeting TLR7
Haoyang Zheng 1, Peiyang Wu 2 and Pierre-Antoine Bonnet 3,*

1 Faculty of Pharmacy, Montpellier University, 34093 Montpellier, France
2 School of Life Sciences, Shanghai Normal University, Shanghai 200234, China
3 Institut des Biomolécules Max Mousseron IBMM, Ecole Nationale Supérieure de Chimie de Montpellier

ENSCM, Montpellier University, Centre National de La Recherche Scientifique CNRS,
34093 Montpellier, France

* Correspondence: pierre-antoine.bonnet1@umontpellier.fr

Abstract: Toll-like receptor 7 (TLR7) is a class of pattern recognition receptors (PRRs) recognizing
the pathogen-associated elements and damage and as such is a major player in the innate immune
system. TLR7 triggers the release of pro-inflammatory cytokines or type-I interferons (IFN), which
is essential for immunoregulation. Increasing reports also highlight that the abnormal activation
of endosomal TLR7 is implicated in various immune-related diseases, carcinogenesis as well as the
proliferation of human immunodeficiency virus (HIV). Hence, the design and development of potent
and selective TLR7 antagonists based on small molecules or oligonucleotides may offer new tools for
the prevention and management of such diseases. In this review, we offer an updated overview of
the main structural features and therapeutic potential of small-molecule antagonists of TLR7. Various
heterocyclic scaffolds targeting TLR7 binding sites are presented: pyrazoloquinoxaline, quinazo-
line, purine, imidazopyridine, pyridone, benzanilide, pyrazolopyrimidine/pyridine, benzoxazole,
indazole, indole, and quinoline. Additionally, their structure-activity relationships (SAR) studies
associated with biological activities and protein binding modes are introduced.
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1. Introduction

Toll-like receptors (TLRs) are a major family of prototypical pattern recognition recep-
tors (PPRs) and type I membranous glycoproteins [1]. TLRs recognize pathogen-associated
molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). TLRs
can initiate antimicrobial host defense responses to restrain pathogenic replication in the
innate immune system [2,3]. The engagement of PAMP-PRR interaction allows TLRs to
activate downstream signaling molecules of host defense responses [4]. To date, ten TLR
subtypes (TLRs 1–10) have been identified in mammals. They are expressed in various
innate immune cells, including dendritic cells (DCs), macrophages, and B cells as well as
other cell types, such as epithelial cells, endothelial cells, and fibroblasts [5,6]. Notably,
TLR7 and TLR9 are only expressed in plasmacytoid DCs rather than myeloid DCs [7].
Several nucleotide-sensing intracellular TLRs, including TLR3, TLR7, TLR8, and TLR9,
originally synthesized in the endoplasmic reticulum (ER), are finally transferred to the
endosomal compartments [8,9].

TLR7 are selectively activated by guanosine and uridine-containing single-stranded
RNA (ssRNA) from viruses, bacteria, endogenous RNA, and oligoribonucleotides in the
DCs’ endolysosomes [10]. TLR7 also respond to various chemical ligands, such as small
heterocyclic molecules. Such recognition promotes the release of pro-inflammatory cy-
tokines, chemokines, and type-I interferons (IFN), which are involved in the up-regulation
of inflammatory reactions [11].
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TLR7 is a key determinant of the protective immunity, conversely, its dysregulation is
linked to the susceptibility of inflammatory diseases, such as lupus, caused by activation
of host-origin nucleic-sensing pathways via TLR7 [12]. Therefore, the rational design
of antagonist ligands is a primary focus for the management of autoimmune disorders,
cancers, virus infection, and other potential TLR7-associated clinical disorders [13,14].

The development of small-molecule antagonists of TLR7 might start with the identi-
fication of chemical scaffolds by high-throughput screening (HTS), or chemical switches,
that transform an existing agonist to an antagonist [15]. After the determination of the
chemical scaffolds, structure-activity relationship (SAR) studies are then applied to opti-
mize their antagonistic activities and might be followed by the co-crystallization of the
inhibitor/TLR7 complexes [16]. Biological studies usually use HEK-Blue or HEK293 cell
lines, which are engineered to overexpress TLR7 to indirectly report the nuclear factor-
κB (NF-κB) translocation to the cell nucleus. Tests, such as secreted embryonic alkaline
phosphatase (SEAP)-driven assay, cell proliferation assay, isothermal titration calorimetry
(ITC), and immunoblotting, are also used in in vitro validations. A non-selective TLR7
agonist R848 (Resiquimod) can be commonly used as a positive control [17]. The inhibi-
tion of TLR7-induced pro-inflammatory cytokines can be measured through a real-time
polymerase chain reaction (RT-PCR) [18].

2. TLR7 Main Features
2.1. Structural Studies of TLR7

TLR7 is characterized by three distinct domains (Figure 1a) [19]. Firstly, an N-terminal
ectodomain (ECD) contains 26 leucine-rich repeats (LRRs). They form a large parallel
β-sheet, which lies in the inner part of the ECD allowing a protein–protein interaction
between the two monomers. Opposite the β-sheet, α-helices form the convex surface.
The different widths between the β-sheet and the α-helices might explain why the ECD
structure is curved [20]. The unstructured Z-loop region between LRR14 and LRR15 is
particularly important for TLR dimerization. TLR7 requires proteolytic cleavage at the
Z-loop for its activation; TLR7 with an uncleaved Z-loop is unable to form the dimer
and recognize any microbial RNA [21]. After proteolytic cleavage at the Z-loop region,
the N-terminal remains connected with the C-terminal of TLR7 through a disulfide bond
between Cys98 (N-ter) and Cys475 (C-ter) [22].

Following ligand stimulation, two ECDs of TLR7 form an m-shape symmetrical
homodimer, due to the proximity of the LRR loops. This stage is crucial to trigger a
downstream signal transduction [25,26]. Moreover, TLR7 has been considered as a dual
receptor. Small-molecule ligands insert into the binding site within the dimerization inter-
face, whereas the binding of oligonucleotides is found at the concave surface, respectively
(Figure 1b) [24,27].

Additionally, a transmembrane (TM) domain consisting of a single long transmem-
brane helix inserts into the lipid endomembrane, due to hydrophobic forces [23]. Finally,
the cytoplasmic toll/interleukin-1 receptor (TIR) homology domain, a horseshoe structure,
is highly conserved in the TLRs. The TIR domain is taken into consideration for interacting
with the other TIR-containing systems to activate a signaling cascade through recruitment
of adaptor proteins. In TLR1 and TLR10, the TIR domain has a central parallel five-stranded
β-sheet flanked with five α-helices. Inside of the TIR domain, a BB-loop connects a β strand
and an α helix, which play a crucial role in the formation of the dimer and activation of
downstream signaling. At present, the structure of TIR domain has not been reported yet
in TLR7 [28,29].
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Figure 1. Structure and signaling pathways of the toll-like receptor 7 (TLR7): (a) Schematic repre-
sentation of TLR7. The N-terminal ectodomain (ECD) locates in the endosome. The transmembrane 
helix consists of an α-helix across the endosomal membrane. The details of the structure of toll/in-
terleukin-1 receptor (TIR) domain are not illustrated due to the lack of data for TLR7. Data are from 
reference [23] (PDB ID: 7CYN). (b) Front view of the ECD dimer. The cleaved Z-loop and a disulfide 
bridge between Cys98 and Cys475 are shown in cyan and yellow, respectively. The binding site of 
small molecules and synthetized oligonucleotides are illustrated in red and blue, respectively. Data 
are from reference [24] (PDB ID: 5GMG). (c) TLR7-mediated MyD88-dependent signaling pathways. 
Firstly, the recognition between small-molecule ligands or ssRNA and TLR7 allows to initiate down-
stream signaling. MyD88 then forms the myddosome with IRAK4, which phosphorylates and re-
leases IRAK1. After that, TRAF6 is auto-ubiquitinated and activates TAK1. TAK1 forms a complex 

Figure 1. Structure and signaling pathways of the toll-like receptor 7 (TLR7): (a) Schematic rep-
resentation of TLR7. The N-terminal ectodomain (ECD) locates in the endosome. The transmem-
brane helix consists of an α-helix across the endosomal membrane. The details of the structure of
toll/interleukin-1 receptor (TIR) domain are not illustrated due to the lack of data for TLR7. Data
are from reference [23] (PDB ID: 7CYN). (b) Front view of the ECD dimer. The cleaved Z-loop and a
disulfide bridge between Cys98 and Cys475 are shown in cyan and yellow, respectively. The binding
site of small molecules and synthetized oligonucleotides are illustrated in red and blue, respectively.
Data are from reference [24] (PDB ID: 5GMG). (c) TLR7-mediated MyD88-dependent signaling path-
ways. Firstly, the recognition between small-molecule ligands or ssRNA and TLR7 allows to initiate
downstream signaling. MyD88 then forms the myddosome with IRAK4, which phosphorylates and
releases IRAK1. After that, TRAF6 is auto-ubiquitinated and activates TAK1. TAK1 forms a complex
with TAB1/2/3. Finally, translocation of NF-κB and activation of MAPK signaling pathway generates
innate immune responses that lead to the production of pro-inflammatory cytokines and IFNs.
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2.2. TLR7 Signaling Pathways

The homodimerization of TLR7 allows to initiate the myeloid differentiation primary
response 88 (MyD88)-dependent pathway in the plasmacytoid DCs (Figure 1c) [30]. In
the signaling pathway, TLR7 cooperates with protein kinases, transcription factors, and
adaptor proteins [31].

Upon ligand binding, TLR7 firstly moves toward the MyD88 adaptor-like protein
(MAL) and interacts with MyD88 [32]. Then, MyD88 recruits interleukin-1 receptor-
associated kinase (IRAK) family members and forms a large intracellular oligomeric
signaling complex: the myddosome. During the formation of the myddosome, IRAK4
activates the autophosphorylation of IRAK1, which is then released to interact with the
tumor necrosis factor receptor–associated factor 6 (TRAF6) [33]. TRAF6 functions as an E3
ubiquitin ligase and promotes the non-degradative K63-linked ubiquitination of growth
factor-β-activated kinase 1 (TAK1).

Subsequently, the poly-ubiquitinated TAK1 is activated after the formation of a com-
plex with TAK1-binding proteins (TAB1, TAB2, and TAB3) [34]. TAK1 downstream cascades
are then divided into two different signaling pathways: NF-κB pathway and mitogen-
activated protein kinases (MAPK) pathway [35]. TAK1 phosphorylates IκB kinase β (IKKβ).
IKKβ forms a complex with a catalytic subunit IKKα and a regulatory subunit NEMO
termed as IKKγ. The IKK complex then phosphorylates NF-κB inhibitory protein IκBα. The
inhibitory protein IKK family inactivates and keeps apart the transcription factor NF-κB
dimer [36]. Subsequently, the degradation of both IκBα and IκBβ allows the nuclear translo-
cation of the NF-κB, which stimulates the genes encoding IFNs and pro-inflammatory
cytokines [37]. Additionally, TAK1 activates the AP-1 transcription factor, which leads to
an increased expression of cytokines and IFNβ in the nucleus via the MAPK signaling
pathway [1].

3. TLR7 Implication in a Variety of Clinical Diseases
3.1. Autoimmune Disorders

TLR7 MyD88-dependant signaling pathway drives the production of type 1 IFN in
human pDCs and is implicated in the pathogenesis of autoimmune diseases [38]. The
abnormal immune system turns its defenses against pathogens upon normal physiological
components of the body [39].

Among them, systemic lupus erythematosus (SLE) is a polygenic autoimmune disease
characterized by the elevation of two cell types; they are autoreactive age-associated B cells
(ABCs) and extrafollicular helper T cells [40]. Additionally, SLE is also associated with the
production of antinuclear autoantibodies in multiple organs [41]. Abnormal resistance to
the degradation of self-derived RNA activates the TLR7 MyD88 signaling pathway and
increases the production of pro-inflammatory cytokines [42]. In SLE pathogenesis, TLR7
can induce the transcription of IFN-stimulated genes (ISGs), which can up-regulate type 1
IFN and activate B cells [43,44]. Several data support the link between TLR7 signaling and
B cell activation and production of autoantibodies [45,46]. Similarly, the TLR7Y264H variant
resulted in the activation of DCs to release serum lgG in mouse and caused severe lupus
in child [39,47]. Up-regulation of TLR7 also increases IFN-β production in pDCs of SLE
patients [48]. A recent study also revealed that such a variant increased the affinity of TLR7
for guanosine and cGMP and caused B-cell driven autoimmunity [49]. The TLR7 copy
number tightly correlates with disease severity in SLE [50]. In addition, enhanced TLR7
signaling is associated with the differentiation of inflammatory hemophagocytes (iHPCs),
which are responsible for anemia and thrombocytopenia in immunity-related diseases [51].

For the management of autoimmune disorders, several studies report the use of
synthesized oligonucleotides to act as immunosuppressor of TLR7 [52,53]. Among them,
IMO-3100, a TLR7/9 dual antagonist of TLR7 and TLR9 can block the expression of IFN-β,
TNF-α, and interleukin 17 (IL-17) and attenuate SLE, rheumatoid arthritis (RA) in a murine
model [54]. IMO-3100 significantly improved the expression profile of disease-related
MAD-3 genes involved in spindle-assembly checkpoint (SAC) [55]. Recently, IMO-3100
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was evaluated in a 4-week phase 2 trial in psoriasis patients (NCT01622348). IMO-9200,
a trinary antagonist of TLRs 7/8/9, ameliorates SLE progression in mouse model and
shows safety and tolerance in healthy subjects [56]. IMO-8400 is also a dual antagonist
of TLRs 7/9 that completed a phase 2 trial in psoriasis pathogenesis (NCT01899729) and
dermatomyositis (NCT02612857). The macromolecules will not be described in detail in
this review, as its main scope and purpose is to focus on small molecules.

Endosomal TLR7 is also implicated in the pathogenesis of organ-specific type 1 di-
abetes (T1D), which leads to insufficient insulin secretion and hyperglycemia [57]. T1D
occurs as a consequence of the immune destruction of insulin-producing β-islet cells within
the pancreas [58,59]. Further to the cytokines release, CD4+ helper T cells promote CD8+
cytotoxic T cells responses, which lead to the β-islet cells blast. Consequently, the loss
of β-islet cells makes it difficult for the body to metabolize glucose [60,61]. TLR7 stimu-
lates the up-regulation of a proinflammatory cytokine and type I/II IFNs and accelerates
spontaneous onset of autoimmune diabetes [59]. Additionally, TLR7 deficiency suppresses
the development of T1D by altering B-cell functions and immunoglobulin production in
diabetogenic mouse. Meanwhile, TLR7 deficiency limits the number of CD4+ T cells and
reduces the proliferation of antigen-specific CD8+ T cells [58].

Sjogren’s syndrome (SS) is also associated with TLR7 expression [62,63]. SS is a
rheumatoid autoimmune disorder characterized by dry eyes and a dry mouth, and often
accompanies lupus and rheumatoid arthritis. In this disease, the immune system destroys
moisture-secreting glands, such as salivary and lacrimal glands. Patients with SS exhibit
increased secretion of inflammatory cytokines in line with TLR7 and TLR9 activation. Such
stimulation in peripheral blood B-cells indicates altered TLR signaling [64]. Therefore, the
development of antagonists targeting TLR7 might prove beneficial for the treatment of SLE,
T1D, and SS.

3.2. Immuno-Oncology

TLRs are also involved in the development of various tumors [65]. Either hyperac-
tivation or hypoactivation of TLRs increase the survival and metastasis of a tumor. On
the one hand, elevated expression of TLRs signaling induces the production of cytokines
and stimulates immune cells, such as DCs, to foster tumor immunotherapy [66,67]. On the
other hand, activation of the TLR7 Myd88 signaling pathway induces chronic inflammation,
which is an important factor for further putative tumorigenesis and tumor progression [68].
Additionally, TLRs aberrant stimulation could be involved in the early initiation, carcino-
genesis, and therapeutic resistance in several types of cancer, such as gastrointestinal
malignancies, melanoma, and esophageal cancer [69–71]. Dysregulation of TLRs could also
enhance immune escape and angiogenesis [72].

Furthermore, TLR7 overexpression is related to high cell proliferation in lung cancer
as well as pancreatic cancer [70,72]. Up-regulation of TLR7 decreases the expression of
several antitumor molecules implicated in apoptosis. Moreover, increased TLR7 accelerates
the proliferation of human CD4+ T helper cells and induces the production of IL-10, IL-2,
and IFNγ, and leads to chemoresistance in primary tumors [73,74]. Finally, TLR7 and TLR8
stimulation are associated with immune evasion in line with an increase in the nuclear
factor NF-κB and cyclooxygenase-2 (COX-2) expression [75].

3.3. Antiviral Immunotherapy and Infection

Endosomal TLRs might promote human immunodeficiency virus type 1 (HIV-1) repli-
cation and latency reversal via the stimulation of inflammatory responses [76]. TLR7
overexpression leads to the hypo-responsiveness of CD4+ T cells, and the production of
IFN-α in HIV-1 replication [77,78]. TLR7 engagement in CD4+ T cells results in the dephos-
phorylation of transcription factor NFATc2 and then induces an anergic gene-expression
program. In contrast, the anergy of CD4+ T cells could be eliminated by silencing TLR7 [79].
Furthermore, TLR7 and TLR9 were found to be involved in T cell CD95/Fas-mediated
apoptosis by inducing Type 1 IFN upon exposure to HIV-1. This enhanced apoptosis has
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been shown to be inhibited by a phosphonothioate deoxyribose compound acting as a
TLR7/9 specific antagonist [80]. Furthermore, an oligonucleotide TLR7/9 antagonist had
the potential to abolish the production of virus-induced chemokines, such as interferon
gamma-induced protein 10 (IP-10) in HIV-1 viremia [81].

By blocking related cytokines, influenza-related immunopathology could be moder-
ated [82]. The mortality of viral respiratory diseases is often associated with the ‘cytokine
storm’ along with an excessive pro-inflammatory cytokine production [83]. TLR7 antago-
nism demonstrated an adjustive role in the protection of an IFN-1-driven cytokine storm
produced by pDCs and monocytes. TLR7 abrogation also reduced the number of lung
neutrophils and attenuated inflammation and mortality in influenza in a murine model [84].

TLR7 is also implicated in other infection diseases, such as Pseudomonas aeruginosa
pneumonia or Helicobacter pylori infection, and TLR7 or TLR7/8 antagonist might play a
positive role in bacterial recognition and treatment [85–87].

3.4. Others

TLR7 is involved in the pathogenesis of knee osteoarthritis (OA) pain induced by
microRNAs (miRNAs) [88]. TLR7 can detect the GU-rich motif of miRNAs; therefore,
removal of this TLR recognition motif eliminates OA and blocks the analgesic effect [89].
Clinical data in humans have also suggested a possible involvement of TLR7 in atheroscle-
rotic lesions characterized by the accumulations of lipid, cells and matrix components [90].
The knockout of TLR7 in vivo demonstrated a protective effect toward the atherosclerotic
lesions by constraining inflammatory macrophage activation and cytokine production [91].

4. Small Molecule Antagonistic Ligands of TLR7
4.1. Imiquimod Analogs

Imiquimod 1 was approved by FDA in 1997 and EMA in 1998 (Figure 2) [92]. Im-
iquimod activates a series of cytokines, such as interferon-α (IFN-α) and IL-6 via TLR7 [93].
At present, imiquimod is commonly used to treat genital warts and superficial basal cell
carcinoma (BCC) under the brand name Aldara [94,95].
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Recently, our team synthesized three heterocyclic series derived from the chemi-
cal scaffold of imiquimod (imidazo [4,5-c]quinoline): imidazo [1,2-a]pyrazine, imidazo
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[1,5-a]quinoxaline, and pyrazolo [1,5-a]quinoxaline [96]. Although the heterocycle core is
different from the one from imiquimod, the compounds possess some structural similarities,
including an amine group and a hydrophobic alkyl chain. Most interestingly, compounds
did not show any agonist property but potent and specific antagonistic activities. Among
these heterocyclic series, two pyrazolo [1,5-a]quinoxaline derivatives 2 and 3 were identified
as lead compounds with IC50 = 8.2 µM and IC50 = 10 µM for TLR7 inhibition activity while
they did not exhibit any activity on TLR8. In comparison to the imidazo [1,2-a]pyrazine
series, the antagonistic activity of pyrazolo [1,5-a]quinoxaline compounds was increased
when their alkyl chains reached 4–5 carbon atoms maximum. Meanwhile, the presence of a
butyl or an isobutyl chain, such as in compounds 2 and 3, was shown to be beneficial to
obtain the greatest antagonistic potency.

Docking simulation was also performed in the active region of TLR8 (PDB ID: 5WYZ),
due to the high sequence similarity and similar antagonistic site between TLR7 and TLR8.
Thereafter, a box covering the likely TLR7 binding antagonist sites was applied, which
allowed to determine various chemical interactions located in the interface of TLR7 dimer.
The tricyclic scaffold of the pyrazoloquinoxaline forms a face-to-face π-π stacking with
Phe1302, followed by additional van der Waals forces with Tyr242. In addition, the alkyl
chain was engaged into the hydrophobic pocket of TLR7. In particular, Thr384 of TLR7
was indicated to explain the selectivity in comparison with Ile403 of TLR8 containing a
bulky side chain, regardless of the high degree of similarity between TLR7 and TLR8. In
in vitro tests, compounds 2 and 3 inhibited the expression of TNF-α and interleukin 6 (IL-6)
in HEK-blue-hTLR7/8 cells. Additionally, compounds 2 and 3 selectively inhibited NF-κB
translocation in TLR7 MyD88 signaling pathways.

A recent study showed also that TLR7 can adopt both imidazo [4,5-c]quinoline-based
agonists and antagonists. A C2-alkyl substitution on the tricyclic core can interact with a
hydrophobic area of the receptor at the dimer interface and appeared to be a determinant
for its activity [97].

4.2. Quinazoline-Based Ligands

The quinazoline derivative CPG-52364 4 is a potent trinary TLR7/8/9 antagonist with
a ratio for TLR7/9 antagonism of 0.8 (Figure 2) [54]. CPG-52364 was tested for tolerability
in chronic autoimmune diseases, including SLE, but unfortunately failed in phase 1 clinical
trials (NCT00547014). The reason of discontinuation remains unpublished.

Recently, some new TLR7 antagonists with the same quinazoline scaffold were syn-
thesized [98]. The development of diverse TLR7 antagonists was mainly accomplished
through random screening. To correlate TLR7 antagonistic activity with the structural
features in different chemotypes, the authors derived a hypothetical binding model based
on molecular docking analysis along with molecular dynamics (MD) simulation studies by
using the homologue protein hTLR8 (PDB ID: 3W3J). Binding studies exhibited different
pockets, grooves, and a central cavity where the ligand could interact with specific residues
of its receptor through hydrophobic and hydrogen bonds. Molecular docking analyses de-
termined the presence of three hydrophobic pockets and two small grooves in the binding
site of TLR7 antagonist 4.

Such studies paved the way for the rational design of several chemotypes. Based on
the structural insight gained, TLR7 antagonists with the quinazoline core were designed
to better understand the engagement mode of the molecules within the diverse protein
pockets. The biological evaluation of the synthesized molecules was performed in TLR7-
reporter HEK293 cells as well as in pDCs. The study provided a rational design approach
thus facilitating further development of novel small molecule hTLR7 antagonists based
on different chemical scaffolds. Among them, the best active molecule 5 showed TLR7
inhibition with an IC50 of 1.03 µM, and the suppression of IFN-α induction in response
to TLR7 activation in pDCs with an IC50 of 1.42 µM. Separate substitution of quinazoline
at C2 or C7 position with a flexible linker and the presence of other small hydrophobic
groups were shown to be beneficial for achieving potent TLR7 antagonism. Meanwhile, the
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cooperation of C2, C4, and C7 substitution could lead to an increase in antagonistic activity
of TLR7.

With the most potent antagonist of quinazoline derivatives, molecular dynamics
simulation studies show highly stable interactions, which lead to a steady-state fold of
TLR7. This study highlights the crucial role of hydrophobic interactions around the central
cavity of the antagonist site with important residues, such as Tyr356, Thr525, and Gln354 in
the binding mode of the most potent antagonist derivatives.

4.3. Purine-Based Ligands

TLR7 can also respond to guanosine and to small molecules containing a purine core.
Such data were of great value for rational drug design [24,99]. An adenine scaffold was
previously reported in a series of TLR7 agonists [100]. Hydroxyl groups at C8 and C2 were
demonstrated to be important to boost IFN activity [101]. Meanwhile, an amino group at
C6 and the introduction of an alkylamino group on the N9 position increased aqueous
solubility [102]. Such chemical modification on the adenine core were determined to be
useful for antagonism, as well as drug delivery and absorption.

In 2020, Tojo S. et al. developed, for potential SLE applications, a series of TLR7
antagonists based on the 8-oxoadenine core using a chemical switch approach [103]. Based
on SAR studies, the authors emphasized that the C8 position of adenine could be substituted
from an 8-oxo to an 8-pyridyl group, which allowed the conversion of an agonist into an
antagonist. Additionally, the C2 side chain and 8-pyridyl moiety were further optimized,
and an amine was introduced on the para-position of the 9-phenyl group in order to
increase solubility. As a result, a potent TLR7 antagonist 6 based on a 6-methyl derivative
was successfully synthesized with high inhibitory activity (IC50 = 15 nM), selectivity and
good solubility (>0.15 mg/mL at pH 7.4) (Figure 3).
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Crystallographic studies showed that the most active TLR antagonist 6 interacted at the
dimerization interface of the TLR7 protein and induced an open form conformation of the
dimer. Such an open form, which shows large differences at the interface compared to the
closed form, appears to prevent TLR activation. The 6-methyl adenine and 8-fluoropyridine
rings of the most active antagonistic compound are capable to form π-π stacking with
Phe408, Phe506, Phe507, Phe349, Phe351, Leu353, and Val381. A hydrogen bond was
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observed with Gln354, and additional interactions were depicted with Gln323, Phe349,
Tyr264, Asn265, Phe351, Ser530, and Tyr579. In vitro results showed that compound 6
totally blocked IFN-α production induced by R848, which suggested compound 6 was
specific in inhibiting TLR7. Furthermore, in vivo studies showed compound 6 significantly
decreased proteinuria and prevented death in SLE mice.

In 2020, Mukherjee A. et al. reported a very simple modification at the 2-position
of 9-alkylpiperazinyl guanosine derivatives induced to a chemical switch from a TLR7
agonist 7 to a clinically relevant antagonist [15].

The deletion of a butoxy moiety afforded compounds with antagonist activity, lead-
ing to a potent TLR7 inhibitor 8 after having further increased lipophilic interactions by
modifying the amino group on the 6-position. Compound 8 exhibited an IC50 of 4.7 µM on
TLR7 and induced inhibition of IL-6 transcription and proinflammatory cytokines, such
as TNF-α. It also showed significant potency on an in vivo rodent model of psoriasis. In a
molecular docking study, the team used the homology model of TLR7 (PDB ID: 5WYZ) and
showed that the purine core formed π-π stacking interactions between two hydrophobic
residues, Phe329 and Tyr1374. Meanwhile, ethylpiperazine at C6 formed an important
hydrogen bonding between the terminal nitrogen and Ser452. Additionally, the alkyl linker
on N9 interacted with Leu331 and Phe329 in a hydrophobic cavity.

In a further study, the same team developed an orally bioavailable dual TLR7/9
antagonist 9, with IC50 values of 0.08 and 2.66 µM against TLR9 and TLR7, respectively [104].
They highlighted several suitable substitutions at C2, C6, and N9 positions that could
exhibit considerable efficacy in TLR7 and TLR9 antagonism. Compared to compound 8,
compound 9 bears a 4-methoxybenzyl group in the C2 position and a pyrrolidine group,
instead of pyrazine, at N9. After in vivo evaluation, compound 9 was suggested to be
available as a therapeutic candidate in autoimmune disorders after being shown to have
therapeutic effects on psoriasis in mice.

4.4. Imidazopyridine-Based Ligands

Recently, Das N. et al. developed a potent dual TLR7/9 antagonist based on a
2-phenylimidazopyridine heterocyclic core with a bridgehead nitrogen, which exhibited
IC50 values of 0.47 and 0.04 µM against TLR7 and TLR9, respectively [105]. They initially
intended to explore minimal pharmacophoric features around the basic core 10 (Figure 4).
The presence of two methoxy groups at C2 and C4 positions 11 on the phenyl group and a
NH2 function at C7 position of the heterocyclic platform showed interesting TLR7 antago-
nistic activity with an IC50 of 2.55 µM. Among these modifications, the NH2 group at the
C7 position acts as a hydrogen bond acceptor, which stabilizes the pharmacophore in the
binding site.
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Concurrently, the imidazopyridine core forms π-π interactions with the central hy-
drophobic cavity. The oxygen atom of the methoxy group at the C4 position forms a
hydrogen bond contributing to the stabilization of the ligand-receptor combination. Di-
methoxy substitution on the 2-phenyl ring leads to a compound 12, which exhibited TLR9
and TLR7 inhibition with IC50 values of 40 and 466 nM, respectively. After replacement of
the NH2 group by an alkyl-substituted piperazine and the introduction of a pyrrolidine
cycle at position 3 of the imidazopyridine core, Das N. et al. obtained a lead compound 13,
which exhibited TLR9 and TLR7 inhibition with IC50 values of 15 and 258 nM, respectively.

4.5. Pyridone-Based Ligands

Knoepfel T. et al. developed a selective dual TLR7/8 antagonist further with high-
throughput screens (HTS) using TR-FRET (time-resolved fluorescence resonance energy
transfer) assays with a biotinylated TLR8 protein and Eu-labeled streptavidin [16]. Conse-
quently, they first identified a hit compound 14 with a quinazoline core (Figure 5) forming
face-to-edge stacking located in a hydrophobic pocket and a pyridin-2-one group for hydro-
gen interactions. The hit-to-lead optimization process showed that 8-methyl substitution
15 increased the cellular potency and affinity toward TLR8 but was detrimental to TLR7 an-
tagonistic activity. Therefore, even though TLR7 and TLR8 have a high degree of structural
similarity, two main differences were noted on two non-conserved amino acids between
TLR7 and TLR8. In comparison to TLR8 (PDB ID: 6TY5), alanine 518 is a serine (530) in
one of the TLR7 monomers, and glutamic acid 427 is a valine (430) in TLR7 in the other
one. Considering such differences, they changed the quinazoline core by an indazole to
avoid the interaction with Glu427 of TLR8 and a steric clash with Ser530 of TLR7. The next
step was to separate TLR7/8 balanced activity from TLRs 4/9. A 6-methyl substitution
16 on the pyridone exhibited desired TLR7/8 potency without any TLR4/9 profile and
showed the C6 position of the pyridone was crucial for TLR4/9 activity. For the final step
of their lead optimization, they focused on the binding to TLR8, since TLR7 activity was
still maintained in order to obtain a dual TLR7/8 antagonist 17, with very low IC50s = 0.62
and 1.5 nM for TLR7 and TLR8, respectively.
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4.6. Benzanilide-Based Ligands

Padilla-Salinas R. et al. performed a first high-throughput screening (HTS) targeting
TLR8, which allowed them to identify two first hits, a non-benzanilide TLR8-specific
inhibitor 18a and a 2,6-dihalogenobenzanilide derivative 18b with TLR7/8 dual inhibitory
activity (Figure 6) [106]. A series of SAR studies mainly performed on the benzanilide
derivative showed the importance of the presence of three closed linked phenyl rings,
with a separation by an amide group for two of them, one of the phenyl rings being
substituted by two trifluoromethyl groups. Furthermore, an optimal distance had to
be maintained between the different aromatic rings. Benzanilide ring modulation was
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intolerant for TLR7. Replacement of a trifluoromethyl group by a trifluoromethyl pyridine
led to the TLRs 7/8 antagonist CU-72 18c, which showed micromolar inhibitory activities
on TLR7 (IC50 = 5.1 µM) and TLR8 (IC50 = 2.87 µM). In vitro studies suggested CU-72 could
act for the inhibition of ssRNA-sensing pathways at low concentrations. Unfortunately,
the compound shows low solubility and remains to be further optimized for extended
biological evaluation.
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4.7. Pyrazolopyrimidine/Pyridine-Based Ligands

Alper P.B. et al., using a large screening study performed on a databank of two
million compounds, further identified a first hit pyrazolopyrimidine compound 19 with
a piperazine moiety (Figure 6) as a good inhibitor of the TLR7 agonist imiquimod on IL6
production [107]. TLR7 antagonistic activity was then shown to be significantly increased
by replacement of the piperazine by a piperidine ring 20 and then a bicyclo [2,2,2]octane.
The next step was to focus on chemical modulations to improve the oral exposure and
solubility. Replacement of the pyrazolopyrimidine scaffold by a pyrazolopyridine one
and a change in the attachment position to the heterocycle platform afforded the lead
compound 21 (IC50 < 1 nM).

4.8. Benzoxazole-Based Ligands

Lamphie, M. et al. studied the activity and mechanism of the action of two potent
and selective benzo[d]oxazole TLR7/9 antagonists, AT791 22 and E6446 23 (Figure 7) [108].
The two compounds were initially developed to block TLR9 DNA-induced stimulation,
but they were also shown to inhibit TLR7 stimulation. Such inhibition does not appear to
be linked to a direct binding to TLRs but by their accumulation as lipophilic weak bases
in endosomes, as, for example, antimalarial drugs and, more interestingly, their high and
selective affinity for nucleic acids.
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4.9. Indazole-Based Ligands

Betschart C. et al. reported a potent and selective dual TLR7/8 antagonist 24 with
IC50 values of 0.39 and 0.08 nM on TLR7 and TLR8, respectively (Figure 7) [109]. Their
study started from a fragment-based screening, and hits were optimized following SAR
and co-crystallography with TLR8 (PDB ID: 7R53 for compound 24). Such latter data
showed that compound 24 stabilizes the inactive conformation of TLR8, and indazole
formed two key hydrogen bonds with Gly351 in one monomer and Ser516 in the other one.
The cyclopropyl ring of antagonist 24 occupies a nearby hydrophobic pocket. In in vitro
and in vivo studies, compound 24 showed inhibition of TLR7-dependent IFNα release.

4.10. Indole-Based Ligands

Afimetoran 25 (BMS-986256) is an oral potent inhibitor of TLR 7/8 in clinical tri-
als (Figure 8). It is an indole-based compound with two heterocyclic substituents, a
triazolopyridine- and a piperidine-based structures. Afimetoran had the ability to prevent
lupus symptoms in mouse models and reverse organ damage, and it showed promising
PK data as well as safety profiles in a phase 1 trial (NCT04493541). A recent phase 2 study
evaluates its efficacy in patients with systemic lupus erythematosus (NCT04895696).

In 2020, a BMS group of medicinal chemists reported the discovery process of a series
of indole-based TLR antagonists, with the exclusion of BMS-986256 [110]. Their SAR study
concentrates on tri-substituted indole derivatives with, for the most active compounds,
a dimethoxy phenyl substitution on position 2, a short alkyl group on position 3, and
the piperidinyl heterocycle grafted on position 5. The most active compound 26 was
determined to be a very potent and dual TLR7/8 inhibitor with IC50 values of 10 and
17 nM, respectively. It was also shown to have a much lower effect on TLR9 activity.

Recently, in continuum of this first SAR study, the same group developed a 2-pyridinyl-
indole series that allows them to afford a compound 27, BMS-905, another dual inhibitor of
TLR7/8 [111]. In this study, they demonstrated that the aryl substitution on position 2 of
the indole was important for ligand–protein interactions. They firstly determined the en-
gagement of the heteroatom with various pyridinyl isomers. The 2′,6′-dimethyl groups on
the pyridinyl group induced the greatest potency in both TLR7 and TLR8. The substitution
of the C3 position of the indole by an isopropyl was shown to be essential for selectivity
toward TLR9. With these changes, BMS-905 was discovered as a second potent TLR7/8
dual antagonist lead, with IC50 values of 0.7 and 3.2 nM for TLR7 and TLR8, respectively. It



Molecules 2023, 28, 634 13 of 19

is interesting to note that two of the three main structural features of compound 26 and
BMS-905 can also be found in BMS-986256 with an important change on position 2 by
replacement of the phenyl or pyridinyl group by the triazolopyridinyl heterocycle.
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4.11. Quinoline-Based Ligands

Enpatoran 28 (M5049) is a 5-piperidylquinoline derivative developed as a potent
and selective dual TLR7/8 antagonist with IC50 values of 11.1 and 24.1 nM for TLR7 and
TLR8, respectively (Figure 8). M5049 appears to bind the open form of the TLR dimer and
stabilizes the inactive state of the receptor, which prevents its activation [112].

In in vitro and in vivo tests, enpatoran shows a therapeutic effect in SLE, rare cuta-
neous lupus erythematosus (CLE), and other autoimmune diseases by suppressing the
pathologic activity of ribonucleic acid–containing immune complexes. In comparation to
placebo, M5049 showed promising drug-like properties with good tolerance and promising
PK without significant dose-limiting adverse events in healthy volunteers. Further studies
focus on the evaluation of its potential efficacy in patients with autoimmune diseases, such
as lupus, with high TLR7 and TLR8 expression [113].

Additionally, TLR7 is also involved in coronavirus disease 2019 (COVID-19), due to
the participation of TLR7 in the invasion and infection of the virus [114,115]. Therefore,
enpatoran also underwent a phase 2 trial in order to evaluate its safety and efficacy in
COVID-19 pneumonia patients (NCT04448756). High exposure (100 mg) to enpatoran
reduced the inflammatory response that leads to the cytokine storm in some cases, and was
recommended to reduce acute hyperinflammation caused by COVID-19 [116].

5. Conclusions

TLR7 is crucial for recognizing xenobiotics containing PAMPs in the innate immunity
system. The TLR7 overexpression, caused by the presence and abnormal degradation of
self-RNA, activates MyD88-dependent signaling pathway and guides the host defensive
responses. Hence, TLR7 is an attractive target for drug design studies and development. In
this review, we provide general information for potential therapeutic treatments, including
autoimmune disorders, cancer, and antiviral immunotherapy. Various heterocyclic aromatic
scaffolds of small molecule TLR7 antagonists are described, many of them bearing a five-
membered cycle. The obtention of the lead compounds include SAR optimization, and
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some of them are X-ray co-crystallography data. For small molecule antagonists, most
of the studies state that TLR7 antagonists occupy the same binding site as agonists and
change the closed-form conformation of TLR7 to an opened-form conformation. Several
small molecule TLR7 antagonists have undergone clinical trial; the first results appear to
assess their safety of use in patients. Afimetoran, an indole-based TLR7 antagonist, and
Enpatoran, a quinoline derivative, are under phase II clinical investigation in patients with
SLE or other immune related diseases.
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