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Abstract: The cell wall of Mycobacterium tuberculosis and related organisms has a very complex and
unusual organization that makes it much less permeable to nutrients and antibiotics, leading to the
low activity of many potential antimycobacterial drugs against whole-cell mycobacteria compared
to their isolated molecular biotargets. The ability to predict and optimize the cell wall permeabil-
ity could greatly enhance the development of novel antitubercular agents. Using an extensive
structure–permeability dataset for organic compounds derived from published experimental big
data (5371 compounds including 2671 penetrating and 2700 non-penetrating compounds), we have
created a predictive classification model based on fragmental descriptors and an artificial neural
network of a novel architecture that provides better accuracy (cross-validated balanced accuracy
0.768, sensitivity 0.768, specificity 0.769, area under ROC curve 0.911) and applicability domain
compared with the previously published results.

Keywords: Mycobacterium tuberculosis; tuberculosis; resistance; cell wall; permeability; penetration;
machine learning; neural networks; fragmental descriptors

1. Introduction

Tuberculosis (TB) is a serious infectious disease caused by pathogenic
Mycobacterium tuberculosis mycobacteria (or, in some cases, by a number of related my-
cobacteria species belonging to the Mycobacterium tuberculosis complex) [1,2]. This is a
chronic bacterial infection characterized by the development of cell-mediated hypersen-
sitivity and the formation of granulomas in the affected tissues. The disease is usually
localized in the respiratory organs, but other organs may be involved in the process. Tu-
berculosis exhibits a variety of clinical and pathomorphological manifestations, as well as
broad abilities for adaptation to changing environmental conditions and the characteristics
of the host organism [3].

According to the World Health Organization (WHO), tuberculosis is one of the most
widespread and socially significant infections: every year, despite being a preventable and
curable disease, about 10.6 million people develop tuberculosis and 1.6 million people die
worldwide, making it the leading cause of death from a single infectious agent [4]. The
major problem in the treatment is the mycobacterial resistance to antibiotics. Multidrug-
resistant (MDR) mycobacteria are resistant to treatment with two first-line anti-TB medi-
cations, isoniazid and rifampicin, whereas the forms that are also resistant to second-line
medications are called extensively drug-resistant (XDR) [5–8].

Mycobacterium tuberculosis is a rather complex organism containing a broad vari-
ety of targets that can be affected by drug compounds [9–11]. The established antimy-
cobacterial targets include specific processes of the cell wall biosynthesis [12–15], protein
synthesis [16], DNA replication and repair [17–19], DNA transcription [20], bioenergetic
metabolism [21–23], and other metabolic pathways [24,25]. In addition, massive and fruit-
ful efforts have been directed in recent years at the identification and exploitation of
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various emerging and potential targets as the basis for the development of novel antitu-
bercular drugs [26–33], especially with a focus on overcoming the drug resistance [34–36].
Besides the enzyme targets, the important roles of mycobacterial membranes [37] and
transporters [38,39] as drug targets has been recognized, as well as the opportunities of-
fered by the multi-target approaches [40] and host-directed therapies [35,41]. Promising
studies of novel preventive and therapeutic TB vaccines [42–44] and nanocarrier-based
approaches for the efficient and targeted delivery of anti-TB drugs and vaccines [45,46] are
also ongoing.

Nevertheless, the anti-tubercular drug discovery and development projects face many
complications that result in high attrition rates, leaving clinical needs unmet [47–49]. In
particular, the target-based approaches using biochemical screening assays and/or in silico
models [50] to identify and optimize inhibitors have so far failed to produce any clinical
drug candidates, primarily due to their lack of whole-cell activity [30,48]. It is commonly
accepted that one of the key causes for this is the extremely low permeability of the my-
cobacterial cell envelope [49]. Atypical among bacteria, the M. tuberculosis cell envelope
has an elaborate dense multilayered structure devoid of the majority of transporters, with
the wax-like outer membrane formed by mycolic acids and their derivatives [12,49]. Its
penetration is believed to be facilitated by the relatively higher lipophilicity of anti-TB
drugs (compared to other antibacterials), requiring reassessment of the standard drug-
likeness rules [38,49,51] and the shift of the overall ADME analysis towards the local
(microenvironment-based) drug exposure [52]. Although the whole-cell phenotypic screen-
ing followed by target elucidation is presently seen as the most efficient approach to the
tuberculosis drug discovery [30,48], the ability to predict and optimize envelope permeabil-
ity for a potential drug using in silico models would be very valuable in any pipeline.

The first steps towards this goal were made in the 1990s [53,54] by experimental
permeability measurements in the model Mycobacteria species for limited sets of antibiotics
and nutrients. They were shown to be much lower than in other bacteria, and rough
semi-quantitative correlations with lipophilicity and charges were established, highlighting
the diffusion-based and porin-assisted permeation mechanisms. In one study [55], the
M. tuberculosis cell wall permeabilities for a small congeneric series of antitubercular drugs
were estimated simply as their Caco-2 cell membrane permeabilities using correlations
with several physico-chemical descriptors. In another study [56], based on the simplistic
molecular dynamics simulations of solutes in pseudo-mycolic acid monolayers, the lateral
and transverse diffusion coefficients were calculated and the qualitative correlation between
the solute molecular shape and permeability was established.

Taking into account the difficulties of direct permeability measurement, later research
mostly relied on general-purpose quantitative structure–activity/structure–property re-
lationship (QSAR/QSPR) modeling techniques applied to more or less representative
structure–permeability datasets, wherein the permeability estimates were derived from
the publicly available activity data. In the MycPermCheck model [57] for permeability
classification, the 3727 compounds from the CDD TB database [58] that were active in
the cell-based inhibition assays were considered as permeable, whereas the “imperme-
able” examples were generated by a random sampling of drug-like compounds from the
ZINC12 database [59]. Using five previously selected physico-chemical descriptors, a
one-dimensional principal component model, and logistic regression, the model achieved
a sensitivity of 67.2% at the specificity of 90% (or sensitivity of 72.2% at the specificity of
75%) on the validation set.

In one study [60], the permeability was estimated from the ChEMBL [61] data using the
differences in activity between the cell-based and enzyme-based M. tuberculosis inhibition
assays. For various subsets of 366 common compounds and additional 273 compounds
highly potent in cell-based assays, the Partial Least Squares Regression (PLSR) models
based on the subset of PaDEL [62] 1D and 2D descriptors were built and further translated
to classification predictions, and the sensitivity of 70–95% and specificity of 8–45% were
achieved for the validation set. Developing this approach, the recent work [63] used
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a ChEMBL-derived dataset of 1114 compounds, PaDEL descriptors, and a variety of
machine learning methods to achieve the area under ROC curve (AUC) value of 0.81 for
the validation set of 40 compounds.

Inspired by these encouraging results, the goal of the present work was to develop a
predictive in silico model of Mycobacterium tuberculosis permeability based on the available
Big Data from the cell-based and enzyme-based inhibitory activity assays that would be
applicable to diverse drugs and drug-like compounds.

2. Results and Discussion
2.1. General Modeling Approach

For a broadly applicable predictive structure–permeability model, a key foundational
element is a sufficiently diverse and representative dataset. Following the approach pro-
posed and validated in the previous studies, the permeability data were derived from the
differences in the inhibitory activity measurements between the target-based and cell-based
assays, as reported in the publicly available Big Data sources (see Section 2.2).

For model construction, we decided to focus on the combination of artificial neu-
ral networks and the fragmental (substructural) descriptors representing the occurrence
numbers of various substructures. Providing efficient tools for various QSPR and QSAR
problems [64–66], this approach has been successfully employed to model the structure
influence on various pharmacokinetic, toxicity, and physico-chemical endpoints such as
human intestinal absorption [67], blood–brain barrier permeability [68,69], hERG-mediated
cardiac toxicity [70], lipophilicity [71], etc. Some of these models are available online
at our ADMET Prediction Service page (http://qsar.chem.msu.ru/admet/ accessed on
1 December 2022) and have been successfully used to evaluate the key absorption, distri-
bution, metabolism, excretion, and toxicity (ADMET) properties of diverse potential drug
compounds in virtual screening and molecular design studies [72–76].

2.2. Mycobacterium tuberculosis Inhibitor Permeability Dataset

As noted above, similar to the previous studies [60,63], the compounds that have
shown activity in any of the selected target-based assays were classified as permeable if
they were active in any of the selected cell-based assays; otherwise they were taken to be
impermeable. To this end, the publicly available PubChem 2022 database [77] was used
as the source of (Big) raw data (in particular, it included both the assays synchronized
with ChEMBL [61] and a number of additional assays). The Big Data resources offer
unprecedented opportunities for deep analysis of the structure–activity and structure–
property relationships and for the development of more accurate and broadly applicable
predictive models, but require additional efforts for data preparation and curation [78].
On the other hand, one should bear in mind that large diverse datasets, often comprising
compounds with different properties and mechanisms of action and based on only partially
comparable measurements (commonly approximate by design) that are performed in
different laboratories over significant time periods using varying techniques and conditions,
usually impose natural limits on the quality of the resulting models.

The detailed data preparation procedures reflecting the established guidelines [79–81]
are explained in Section 3.1, and only a brief overview of salient points is presented here.
Using the automated keyword search in the local database, the assays potentially relevant
for the antimycobacterial activity were identified. During the expert analysis of this list, the
key cell-based and target-based assays were selected that were required to be sufficiently
populated in terms of data point counts as well as sufficiently diverse and representative in
the chemical and endpoint spaces. In particular, the chemical space coverage was prioritized
over the maximum reliability of specific data points, and this was reflected both in the
assay selection and in the downstream standardization of the (binary) activity definitions.

Using custom Web scripts accessing both local and remote databases, the assay and
compound data were joined and downloaded as the TSV format files. After manual and
automated preprocessing and curation, the cleaned individual datasets were prepared

http://qsar.chem.msu.ru/admet/
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and then merged to produce the united datasets for the selected cell-based and target-
based assays. In total, the cell-based dataset contained 557,527 compounds, among which
96,040 compounds were active in at least one out of 11 assays. The target-based dataset
contained 926,660 compounds, among which 9450 compounds were active in at least one
out of 11 assays.

By matching this target-active dataset against the cell-based results, 8242 compounds
were identified that were active in at least one target-based assay and have also been tested
in at least one cell-based assay. In particular, 2671 compounds that have shown activity
in at least one cell-based assay were classified as penetrating the M. tuberculosis cell wall
(MtbPen = 1, positive result) whereas the remaining 5571 compounds (inactive in all 11 cell-
based assays) were classified as non-penetrating (MtbPen = 0, negative result). In the
present paper, this dataset will be called MtbPen8242.

As can be seen, the MtbPen8242 dataset is moderately imbalanced (the ratio of non-
penetrating to penetrating compounds is greater than 2.08). During subsequent structure-
property modeling, this imbalance was found to create problems limiting the model quality.
Thus, a balanced dataset MtbPen5371ad of 5371 compounds was prepared from it that
comprises all (2671) penetrating compounds as well as a diverse subset of 2700 out of
5571 non-penetrating compounds. This dataset is provided in the Supplementary Materials.

2.3. Molecular Descriptors

The fragmental (substructural) descriptors [64–66] representing the occurrence num-
bers of various substructures were calculated in the framework of the NASAWIN 2.0 [82]
software. Linear paths, cycles, and branches were generated using multi-level classifica-
tion that takes into account atom types, valence states, bonding patterns, and number of
attached hydrogens as well as bond types. The rare fragments that are present in fewer
than 100 compounds and thus cannot be used to detect general predictive relationships
were removed. The fragments containing up to eight non-hydrogen atoms were considered
in order to provide sufficiently detailed description of the structures without excessive
increase in the number of descriptors. In total, several thousands of descriptors (depending
on the fragment size) were generated.

2.4. Neural Network Modeling Procedure

As noted above, similar to our studies on the prediction of ADMET properties [67–70],
the combination of fragmental descriptors and artificial neural networks is especially suit-
able for modeling such primarily non-specific properties in diverse sets of organic and drug-
like compounds. Even the specific contributions (e.g., from various active transporters) are
implicitly taken into account by the neural network-based fragmental model [69].

Further developing the previously published modeling approach [69], we created
a novel network architecture that logically implements the same high-level modeling
workflow, integrating the classical feed-forward back-propagation neural network (BPNN)
and the repeated double cross-validation [83] approach (Figure 1). The double cross-
validation procedure involves two loops, and in each loop a fraction of the dataset is
randomly selected as a test subset. During each iteration of the inner loop, a neural network
submodel is built using the training subset while the prediction error on the test subset
is monitored to provide the early termination while the outer loop test subset is used
to validate the resulting model. Usually, the 5 × 4-fold double cross-validation scheme
is employed, corresponding to NO = 5 and NI = 4 in Figure 1. That is, in the outer
loop, the dataset is split into five subsets of approximately equal sizes and each of them
is used to validate four models built in the inner loop by splitting the remaining data
into four subsets of approximately the same size and using three of them for training the
model and one for early termination. The procedure can be repeated several times (NR)
to enhance the stability and reliability of the results [69]. The validation subset errors are
then consolidated and normalized into the appropriate cross-validation statistics (such
as the accuracy, balanced accuracy, sensitivity, and specificity for classification models).
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To reduce the risk of overfitting and chance correlations, the inner and outer splits are
randomly shuffled at each step. This approach not only provides quite reliable estimates of
the model predictivity but also generates an ensemble of neural network models based on
different subsets of data that can be used to improve prediction quality and evaluate the
model applicability.
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Figure 1. General modeling workflow.

However, although most commonly the double cross-validation procedure is per-
formed sequentially, in the present work, we implemented a parallelized version that
unrolls the loops and integrates the ensemble submodels (“trees”) into a single neural
network (“forest”) that is fed with input data from the generator objects. This approach
significantly enhanced the modeling performance (Figure 2).
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Figure 2. Basic architecture of the “forest” neural network model.

Most of the other key architecture decisions from the earlier study [69] were retained
(see the reference for the discussion of other available options). Each “tree” neural subnet-
work may include one or more fully connected (Dense) layers with the scaled exponential
linear unit (SELU) activation function [84] that provides the best results in terms of model
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quality and training efficiency. Optionally, the fully connected layers can be interleaved
with the AlphaDropout [84] regularization layers in order to prevent overfitting. For the
output layer in a classification model, the sigmoid activation function was used, which is
expected to provide an estimated probability of the compound penetrating the cell wall
(positive result). Binary cross-entropy (BCE) was used as a loss function for model train-
ing. For data preprocessing, the MinMaxScaler algorithm was used, which transforms
the descriptors by linear scaling to the [0, 1] range. Global descriptor selection (for the
entire modeling dataset after scaling) was performed to remove low-variable descriptors
(defined as variance below 10–6) and to identify the most relevant descriptor subset using a
stepwise descriptor selection procedure wherein the Partial Least Squares regression model
is iteratively refined by adding descriptors with the highest F-value score with the residual
endpoint. Since these models are sufficiently different from the resulting neural network
models, we can be reasonably confident that the descriptor selection procedure does not
lead to overfitting or chance correlations.

The neural network models were built using the in-house Python script based on the
TensorFlow 2.4.1/Keras 2.4.3 framework on a high-performance NVIDIA RTX3080Ti GPU.

The hyperparameters controlling the machine learning modeling workflow can sig-
nificantly affect its quality and efficiency. These include the neural network architecture
(number and size of the hidden layers) and training parameters as well as the descriptor
set (in particular, fragment size, selection algorithm, and the number of selected descrip-
tors) and the prediction and applicability control parameters (see below). In the present
study, hyperparameter optimization and model selection were performed using the Optuna
3.0.3 [85] library that implements the tree-structured Parzen Estimator algorithm. The goal
function for the maximization was defined as the cross-validated balanced accuracy of the
model. For some of the hyperparameters, the optimal values determined in the preliminary
tests were kept fixed during the final modeling.

As mentioned above, an ensemble of the neural network submodels generated by the
double cross-validation procedure from different subsets of data can be used to improve
prediction quality and evaluate the model applicability. In particular, for the classification
case, the mean and standard deviation of the individual predicted probability values are
computed, and a failed prediction is reported if the standard deviation is greater than a
specified fraction of the acceptable range (usually 30%).

2.5. Predictive Model of Mycobacterium tuberculosis Permeability

For the full MtbPen8242 dataset, three sets of fragmental descriptors were considered
during the hyperparameter optimization, containing up to 5, 6, or 8 non-hydrogen atoms.
Descriptor subsets of varying size (from 100 to 1000 descriptors) were selected. Two or
three hidden layers were considered in the neural network whereas the size of hidden
layers relative to the number of descriptors was varied in the ranges 0.80–0.01 and 0.30–0.10
or 0.80–0.01, 0.50–0.01, and 0.30–0.10, respectively. The dropout layers with probability
between 0 and 0.5 were used. The optimal model was based on 500 fragmental descriptors
containing up to six non-hydrogen atoms, and two hidden layers containing 296 and
75 neurons. Unfortunately, its predictivity was lower than desired (cross-validated accuracy
Acccv = 0.752, balanced accuracy BalAcccv = 0.683, sensitivity Senscv = 0.486, and specificity
Speccv = 0.880, the confusion matrix is presented in Table 1). These data, as well as the
inspection of individual predictions, indicated that the model failed to recognize many of
the penetrating compounds, producing many false negatives. It was suggested that this
bias could be caused by the dataset imbalance, with excessive non-penetrating compounds
implicitly increasing their importance and the model’s preference for them.

For this reason, the balanced MtbPen5371ad dataset was prepared as described in
Section 2.2, and the new model was built using hyperparameter optimization with the
same search space definition, except that the fragmental descriptors up to eight atoms were
not considered. The optimal model was based on 900 fragmental descriptors containing
up to six non-hydrogen atoms, and two hidden layers containing 46 and 270 neurons
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(interestingly, the network architectures with three hidden fully connected layers did
not provide significant improvements in model quality). The predictivity of this model
was significantly higher, with cross-validated accuracy Acccv = 0.768, balanced accuracy
BalAcccv = 0.768, sensitivity Senscv = 0.768, and specificity Speccv = 0.769 (the confusion
matrix is presented in Table 1). The ROC curve for this classification is shown in Figure 3A.
The area under ROC curve can be calculated as AUCROC = 0.911. The plot of the distribu-
tion densities of probability scores for the positive and negative compounds (Figure 3B)
demonstrates good separation of the penetrating and the non-penetrating compounds
whereas the plots of the sensitivity, specificity, and Youden’s J statistic values vs the score
threshold (Figure 3C) show that the natural threshold of 0.5 is close to optimal. These
parameters are similar or better than those of the most reliable models available in the
literature, whereas a substantially broader applicability domain can be expected thanks to
the significantly larger, representative, and diverse training set. The training of the model
was completed in about 260 epochs, indicating low risk of overfitting. Nevertheless, one
should bear in mind that the uncertainty of the data (stemming from the trade-offs inherent
in high-throughput screening as well as from certain heuristics employed in the analysis)
could limit the model predictivity.

Table 1. Confusion matrices for the MtbPen classification models.

Dataset MtbPen8242 MtbPen5371ad

Predicted Predicted
Positive Negative Positive Negative

Observed
Positive 1435 1236 2214 457
Negative 528 5043 437 2263
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curve (TPR, true positive rate; FPR, false positive rate). (b) The distribution densities (PDF, probability
density function) of the penetration probability scores for the positive and negative compounds.
(c) Dependence of the sensitivity, specificity, and Youden’s J statistic on the score threshold.

Overall, the resulting predictive model can provide useful guidance and improve
the efficiency of the virtual screening, multiparameter assessment, and lead optimization
efforts for the potential antitubercular drugs. However, similar to any in silico model, its
predictions should eventually be validated in vitro and/or in vivo since a specific com-
pound of interest might be outside of the model applicability domain or could interact with
the M. tuberculosis cell wall components (such as transporters) in some unexpected ways.

3. Materials and Methods
3.1. Mycobacterium tuberculosis Inhibitor Permeability Dataset

As noted above, similar to the previous studies [60,63], the compounds that have
shown activity in any of the selected target-based assays were classified as permeable if
they were active in any of the selected cell-based assays, otherwise, they were taken to
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be impermeable. As the source of (Big) raw data, the publicly available PubChem 2022
database [77] was employed. Using the automated keyword search in the local database
(assay name or description contain “mycobacter” or “tubercul”), the assays potentially
relevant for the antimycobacterial activity were identified. During the expert analysis of
this list, the key cell-based and target-based assays for Mycobacterium tuberculosis inhibition
were selected that were required to be sufficiently populated in terms of data point counts
as well as sufficiently diverse and representative in the chemical and endpoint spaces
(Table 2). In particular, the chemical space coverage was prioritized over the maximum
reliability of specific data points, and this was reflected both in the assay selection and
in the downstream standardization of the (binary) activity definitions that was based
preferentially on the primary screening inhibition percentages rather than on more accurate
but much less abundant secondary screening data.

Table 2. PubChem assays used in compiling the MtbPen datasets.

AID 1 ID Type Activity/Compound
Count 2 Description Activity

Condition 3

1332 C01 Cell 1118 High throughput screen to identify inhibitors of
Mycobacterium tuberculosis H37Rv Inh30

1626 C02 Cell 215,397 High throughput screen to identify inhibitors of
Mycobacterium tuberculosis H37Rv Inh30

1949 C03 Cell 100,697 High throughput screen of 100,000 compound library to
identify inhibitors of Mycobacterium tuberculosis H37Rv Inh30

2842 C04 Cell 23,823
High throughput screen of a putative kinase compound
library to identify inhibitors of
Mycobacterium tuberculosis H37Rv

Inh30

449762 C05 Cell 327,669
High throughput screening assay used to identify novel
compounds that inhibit Mycobacterium tuberculosis in
7H9 media

Inh30

1259343 C06 Cell 6225 High throughput screening of small molecules that kill
Mycobacterium tuberculosis Inh30

1259417 C07 Cell 1105 High throughput whole cell screen to identify inhibitors
of Mycobacterium tuberculosis Inh30

1671161 C08 Cell 96,022/86,588
Phenotypic growth assay for Mycobacterium tuberculosis
grown for 4 days on DPPC, cholesterol,
tyloxapol-based media

Inh30

1671162 C09 Cell 103,984/86,574 Phenotypic growth assay for Mycobacterium tuberculosis
grown for 3 days on 7H9, glucose tyloxapol-based media Inh30

1671174 C10 Cell 53,171/53,165 Phenotypic assay to identify agents that inhibit growth of
Mycobacterium tuberculosis Inh30

488890 C11 Cell 324,545 Elucidation of physiology of non-replicating,
drug-tolerant Mycobacterium tuberculosis Inh30

375 T01 Target 10,011/10,009 Mycobacterium tuberculosis pantothenate synthetase assay Outcome

1376 T02 Target 216,162/215,860 Inhibitors of mycobacterial glucosamine-1-phosphate
acetyl transferase (GlmU) Outcome

2606 T03 Target 324,858/324,747
Primary biochemical high throughput screening assay to
identify inhibitors of the membrane-associated serine
protease Rv3671c in M. tuberculosis

Outcome

504406 T04 Target 324,148/324,048
High throughput screening of inhibitors of
Mycobacterium tuberculosis UDP-galactopyranose mutase
(UGM) enzyme

Outcome

540299 T05 Target 103,205/102,628 A screen for compounds that inhibit the MenB enzyme of
Mycobacterium tuberculosis Outcome

588335 T06 Target 356,407/356,160 Counterscreen for inhibitors of the fructose-bisphosphate
aldolase (FBA) of M. tuberculosis Outcome



Molecules 2023, 28, 633 9 of 14

Table 2. Cont.

AID 1 ID Type Activity/Compound
Count 2 Description Activity

Condition 3

602481 T07 Target 356,486/353,572 Mycobacterium tuberculosis BioA enzyme inhibitor Outcome

1159583 T08 Target 301,203/300,060
High throughput screen for small molecule inhibitors of a
hypoxia-regulated fluorescent biosensor in
Mycobacterium tuberculosis

Outcome

1671160 T09 Target 8874/8841 Assay for Asp RNA synthetase-1 from
Mycobacterium tuberculosis Inh30

1671178 T10 Target 67,199/66,591 Mycobacterium tuberculosis polyketide synthase 13
thioesterase (PKS13) Inh30

2221 T11 Target 293,466/293,376 Cell-free homogenous primary high throughput screen to
identify inhibitors of RecA intein splicing activity Outcome

1 PubChem assay ID. 2 Number of raw activity records and (if different) number of compounds after deduplication
and preprocessing. 3 Conditions used to identify active compounds: Inh30–Inhibition > 30%; Outcome–Activity
Outcome = Active.

DataWarrior 5.5.0 software (Idorsia Pharmaceuticals Ltd., https://openmolecules.org/
accessed on 1 December 2022) was used for the management, search, and analysis of the
structure–activity databases.

Using custom PHP Web scripts accessing both local and remote databases, the assay
and compound data were joined and downloaded as the TSV format files. The cleaned
individual datasets were prepared using manual and automated data preprocessing and
curation involving the removal of unnecessary data columns, deduplication of activity
records for the compounds (that could contain different activities or equivalent or different
results of repeated measurements of the same activity), standardization of the chemical
structures (removal of smaller disconnected fragments, neutralization of salts), and stan-
dardization of the (binary) activity definitions and representations (see Table 2). Then, the
individual datasets were merged to produce the united datasets for the selected cell-based
and target-based assays. In total, the cell-based dataset contained 557,527 compounds,
among which 96,040 compounds were active in at least one out of 11 assays. The target-
based dataset contained 926,660 compounds, among which 9450 compounds were active in
at least one out of 11 assays.

By matching this target-active dataset against the cell-based results, 8242 compounds
were identified that were active in at least one target-based assay and have also been tested
in at least one cell-based assay. In particular, 2671 compounds that have shown activity
in at least one cell-based assay were classified as penetrating the M. tuberculosis cell wall
(MtbPen = 1, positive result) whereas the remaining 5571 compounds (inactive in all 11 cell-
based assays) were classified as non-penetrating (MtbPen = 0, negative result). In the
present paper, this dataset is called MtbPen8242.

Since the MtbPen8242 dataset is moderately imbalanced (the ratio of non-penetrating
to penetrating compounds is greater than 2.08), a balanced dataset MtbPen5371ad was
prepared from it that comprises all (2671) penetrating compounds as well a diverse subset
of 2700 out of 5571 non-penetrating compounds. This dataset is provided in the Supple-
mentary Materials.

3.2. Modeling Workflow

The fragmental (substructural) descriptors representing the occurrence numbers of
various substructures were calculated in the framework of the NASAWIN 2.0 [82] software.
Linear paths, cycles, and branches were generated using multi-level classification that
takes into account atom types, valence states, bonding patterns, and number of attached
hydrogens as well as bond types. The rare fragments that are present in fewer than
100 compounds and thus cannot be used to detect general predictive relationships were
removed. The fragments containing up to 8 non-hydrogen atoms were considered.

https://openmolecules.org/
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Predictive neural network models were built using the in-house Python script based
on the TensorFlow 2.4.1/Keras 2.4.3 framework on a high-performance NVIDIA RTX3080Ti
GPU. In addition to the standard libraries, the scikit-learn 1.1.3 machine learning frame-
work [86] and the Optuna 3.0.3 [85] hyperparameter optimization library were used.

4. Conclusions

Thus, we have developed a predictive in silico model of the Mycobacterium tuberculosis
cell wall permeability (MtbPen) derived from the extensive Big Data-based dataset and
applicable to diverse drugs and drug-like compounds. Using the fragmental (substructural)
descriptors representing the occurrence numbers of various substructures, we have refined
the modeling workflow and evaluated the performance of different options. Playing a
key role, the double cross-validation procedure generates an ensemble of neural network
models based on different subsets of data that can be used to improve prediction quality
and to evaluate the model applicability for a particular compound. Its novel parallelized
implementation integrates the ensemble submodels (“trees”) into a single neural network
(“forest”) that is fed with input data from the generator objects. This approach significantly
enhanced the modeling performance. It was also found that even moderate (2:1) dataset
imbalance could degrade the model quality since the excessive non-penetrating compounds
implicitly increase their importance and the model’s preference for them.

Our optimal model is based on a balanced dataset of 5371 compounds (including
2671 penetrating compounds as well as a diverse representative subset of 2700 non-
penetrating compounds) and 900 fragmental descriptors of up to six non-hydrogen atoms.
It has quite good predictivity parameters (cross-validated accuracy Acccv = 0.768, balanced
accuracy BalAcccv = 0.768, sensitivity Senscv = 0.768, specificity Speccv = 0.769, and area
under ROC curve AUCROC = 0.911) that are similar or better than those of the most reliable
models available in the literature, whereas a substantially broader applicability domain can
be expected thanks to the significantly larger, representative, and diverse training set. The
model can provide useful guidance and improve the efficiency of the virtual screening, mul-
tiparameter assessment, and lead optimization efforts for potential antitubercular drugs.
However, similar to any in silico model, its predictions should eventually be validated
in vitro and/or in vivo since a specific compound of interest might be outside of the model
applicability domain or could interact with the M. tuberculosis cell wall components (such
as transporters) in some unexpected ways.

This predictive model will be made available online at our ADMET Prediction Service
page (http://qsar.chem.msu.ru/admet/ accessed on 1 December 2022), enabling the evalu-
ation and optimization of the Mycobacterium tuberculosis cell wall permeability and other
key ADMET properties of potential antitubercular agents and other drug compounds.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28020633/s1, structure–permeability dataset.
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