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Abstract: The gut microbiota has been confirmed as an important part in human health, and is even
take as an ‘organ’. The interaction between the gut microbiota and host intestinal environment plays
a key role in digestion, metabolism, immunity, inflammation, and diseases. The dietary component
is a major factor that affects the composition and function of gut microbiota. Food additives have
been widely used to improve the color, taste, aroma, texture, and nutritional quality of processed
food. The increasing variety and quantity of processed food in diets lead to increased frequency and
dose of food additives exposure, especially artificial food additives, which has become a concern
of consumers. There are studies focusing on the impact of food additives on the gut microbiota, as
long-term exposure to food additives could induce changes in the microbes, and the gut microbiota is
related to human health and disease. Therefore, the aim of this review is to summarize the interaction
between the gut microbiota and food additives.
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1. Introduction

Food additives are an important part of modern food industry, as they are used in food
to maintain or promote its taste, safety, freshness, appearance, and nutritional quality. There
are 22 categories and more than 2000 kinds of additives permitted in China [1], whereas this
number in European Union and United States is more than 1500 and 4000, respectively [2,3].
The regulations and rules set by different government organizations are not totally the same.
The regulations and rules of food additives used in food are authorized in the Code of
Federal Regulations Title 21 set by United States Food and Drug Administration. And a new
food additive application must include the basic physicochemical properties and provide
the information about safety assessment in human health [2]. For the European Union, food
additives are administrated by European Food Safety Authority (EFSA) and the Regulation
(EC) No. 1333/2008 of the European Parliament and of the Council [3]. In Canada, the
additives used in food are administrated by the List of Permitted Food Additives and
Marketing Authorization, whereas in Australia and New Zealand, the Australia New
Zealand Food Standard Code—Standard 1.3.1—Food Additives regulates the additives
that permitted using in food [2]. All those regulations and rules have limited the food
categories and dose which the additives can be used. The category of food additives
mainly includes flavor enhancers, antioxidants, preserves, colorants, and sweeteners. The
food additives are obtained from natural substances extraction or artificial synthesis. The
artificial food additives are widely used in processed food due to their low cost, better
stability, and uniformity [4]. In the French market, 53.8% (N = 126, 556) of food products
contained at least 1 food additive and 11.3% at least 5 food additives [5]. The safety and
toxic characteristics must be evaluated systematically before those additives are used in
food, including through in vivo and in vitro trial [6–8]. There are studies focusing on
the safety qualities of additives used in food, such as artificial sweeteners; the risk of
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cardiovascular diseases; and the metabolization of Allura red in vivo [9,10]. Azo dyes,
including Sunset Yellow, tartrazine, Allura Red, and amaranth, have been reported with
developmental toxicity potential in zebrafish embryos [11]. The EFSA Panel on Food
Additives and Flavourings [12] has revaluated the safety of phosphoric acid-phosphates as
food additive. In an in vitro study, butylated hydroxytoluene (BHT) induced non-apoptotic
cell death in rat thymocytes [13] and can potential in enhancing ELT-3 rat leiomyoma cell
proliferation [14]. However, most researches focus on the safety properties of artificial food
additives, and there have been fewer studies on the effect on gut microbiota characteristics
induced by food additives used in processed food. As the function of gut microbiota
on host gut health, metabolism, immune, inflammation, and diseases has been studied
deeply [15–18], researchers have raised concerns about the effect of food additives on the
gut microbiota. Food additives can affect the gut microbiota such as Firmicutes, Bacteroidetes,
Barnesiella, Prevotella, Ruminococcaceae, Bifidobacterium, etc. [19], and those microbiomes were
reported to maintain gut barrier, participate in short chain fatty acid (SCFAs) metabolism
as well as decomposition of fiber and sugar, and are associated with obesity and diabetes.
The question is whether the artificial food additives affect the health and diseases of the
host by regulating the gut microbiota.

This project is focused on artificial food additives, including antioxidants, preserva-
tives, sweeteners, flavor enhancers, and colorants. The keyword additives (flavor enhancer,
antioxidants, preservative, artificial colorants, and sweeteners), gut microbiota (or intesti-
nal microbiota, or gut flora) were searched in the title, abstract, and keywords that were
published in past ten years on the websites Web of Science, ScienceDirect, and PubMed.
This review was aimed at the impact of artificial food additives on gut microbiota.

2. Gut Microbiota
2.1. The Function of Gut Microbiota

The gut microbiota is the sum of different kinds of microbes in the gastrointestinal tract,
which influence the host’s health through the ability of digestion, metabolism, and excre-
tion. The main phyla of gut microbiota are Bacteroidetes, firmicutes, fusobacteria, proteobacteria,
cyanobacteria, verrucomicrobia, and actinobacteria [20]. The gut microbiota functioned in
human health has been reported to be associated with the digestion and adsorption of
nutrients through fermentation and decomposition of nutrients in the colony [21,22]. The
glycoside hydrolase gene representation in gut microbiota is associated with the degra-
dation of fiber and production of SCFAs [23]. The relative abundance of Ruminococcus 2,
Faecalibacterium, and Akkermansia was associated with increased neutrophil rates and the
total bacterial abundances of Faecalibacterium was associated with neutrophil dynamics,
which revealed the function of gut microbiota in the immune system [24]. In the gut-brain
axis, the modification of gut microbiota can promote endocrinal cells to release neuropep-
tides, peptides, and enteric neuroendocrinal factors [25]. Meanwhile, in the gut-liver axis,
the proinflammatory markers, iNOS and MMP-2, that released by gut microbiota are en-
riched due to the alteration of the gut microbe’s environment [26]. The gut microbiota also
acts as biomarkers in diseases, such as gout and lung cancer [27,28]. Furthermore, a cohort
study in an obese population found that the relative abundance of Prevotella was correlated
with Body Mass Index (BMI) [29]. The gut microbiota is also part of the intestinal barrier
and contributes to mucosal immunity [30,31]. The microbiota and its metabolites largely
impact the intestinal barrier integrity, host metabolism, and pathogen colonization [16].
Fermentation of carbohydrates is a core function of the gut microbiota [32]. In the colon
and cecum, the dietary fiber and some resistant starches are fermented by gut microbiota,
such as Bifidum, Bifidobacterium, Butyrivibrio, and generated SCFAs [33]. The SCFAs mainly
include acetate, propionate, butyrate, and pentanoate, which serve as signaling molecules
that activate the G-protein-coupled receptors (GPCRs) and contribute to the formation of
an anti-inflammatory environment in the intestinal trial [34]. Vernocchi et al. [28] have
found a strong correlation between the presence of SCFAs and the normal healthy gut
microbiome. Moreover, the microbial metabolite, urolithin A, derived from microbial trans-
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formation, displays serveries activities, including anti-inflammatory, antioxidative, and
anti-ageing [35]. The physiologic processes of lipid digestion and absorption are central
functions to the jejunum [36]. The bile acids can facilitate the digestion and adsorption of
lipids after secretion into the small intestine, and a small portion that enters the colon can
return to the liver after microbial biotransformation [37]. In addition, the function of gut
microbiota-derived vitamins plays an important role in psychiatric health and disease [38].
Instead, the gut microbiota was associated with diseases regulation, such as type 2 diabetes
and obesity. The interaction between the gut microbiota and the regulatory system have
been considered to affect human neurophysiology and mental health [39]. Therefore, the
microbiota and its metabolites play an important role in host physiology and pathology.

2.2. Effect of Dietary Component on Gut Microbiota

Intestinal microbiomes use dietary components as substrates for fermentation, and the
produced metabolites participate in various physiological processes. Normally, the gastroin-
testinal microbiota is stable and maintains balance in homeostasis with its host [40]. The
gut microbiota changes rapidly after dietary ingestion and responds rapidly to the altered
diet, those features potentially facilitating the diversity of human dietary lifestyle [41]. The
type and component of the food, non-nutritional materials, or the toxic substance that are
ingested into the gastrointestinal system can all induce structure and abundance alternation
of the gut microbiota in the intestine [23,42]. Therefore, metabolites generated by intestinal
microbiota using dietary nutrients as fermentation substrates will be changed [43]. Dietary
protein, including protein source [22,44], processing factors [45], and protein oxidation,
can affect the dietary protein digestibility on gut microbiota by influencing fermentation,
adsorption, and functional properties of protein in the intestine, and finally, can impact
the composition of the gut microbiota and thus affect human health [46]. A randomized
controlled-feeding trial with overweight adults has found that a fried meat diet lowered
the richness of the microbial community and decreased the abundance of Lachnospiraceae
and Flavonifractor, accordingly, the lower concentration of butyric acid, valeric acid, and
3-indolepropionic acid, and higher concentration of methylglutaric acid were observed;
those metabolites were associated with inflammation levels [45]. Lachnospiraceae can pre-
vent obesity, and the abundance of Flavonifractor is negatively correlated with obesity [45].
The stewed pork protein diet changed the production of SCFAs by increasing Sphingomon-
adaceae, while decreasing Eggerthellaceae and Lactobacillaceae [22]. Rats fed with hen egg
white induced an increase in the Akkermansia relative abundance, while those fed with duck
egg white observed a higher relative abundance of Peptostreptococcaceae and Proteobacteria,
and decreased in the relative abundance of Lachnospiraceae [47]. Considering the function
of those microbes in the intestine, Akkermansia were shown to be responsible for increased
intestinal permeability and facilitating pathogen entry [48]. Peptostreptococcaceae has the
potential to maintain intestinal homeostasis [47]. Proteobacteria can synthesize both pan-
tothenic acid and coenzyme A (CoA) [38]. While the complex plant material that cannot
be digested in the host gut, it can be decomposed by Lachnospiraceae [46]. Xie et al. [22]
found that soybean protein was beneficial for the microbial metabolism, but may reduce
the intestinal peristalsis of mice when compared with intake casein and processed meat
protein. Omnivore and vegan diets (containing fiber) can alter fecal amino acid levels by
promoting the growth of Firmicutes for amino acid metabolism [23]. The high-fiber diet
increased the Clostridiaceae abundance in the jejunum and ileum of mice, and decreased the
abundance of Bacteroidaceae and Bifidobacteriaceae in all intestinal tract [18]. Clostridiaceae
can increase the expression of enzyme Dgat2 that is critical for lipid TG synthesis and
storage both in in vitro and in vivo studies [18]. The increased abundance of genus Lachno-
clostridium and Lactobacillus induced by collagen-induced arthritis (CIA) was eliminated
in mice fed a high-fiber diet rich with resistant starch [49]. Lachnoclostridium has a known
function in butyrate production [43]. Bifidobacteriaceae and Lactobacillus are two important
components of the beneficial bacterial community and in cross-talk with the host through
adhering to epithelial cells, colonization in gastrointestinal mucosa, defensing pathogens,
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and regulating the immune system [50]. Moreover, minerals and vitamins also alter the
composition and diversity of gut microbiota, such as selenium [51] and vitamin E [21]. And
the express genetic machinery of majority gut microbes enables them to synthesize and
metabolize various vitamins, especially B vitamins [38]. Therefore, diet allows to affect the
component and abundance of gut microbiota, and the gut microbes also functioned in the
digestion and metabolism of dietary ingredients.

2.3. Gut Microbiota and Diseases

The dysbiosis of gut microbiota causes diseases or promotes the development of
disease. The gut microbiota has been found with typical composition and abundance in
special diseases. Microbial metabolites play an important role in developing obesity, acting
as a bridge linking diet and obesity [43]. Obesity was associated with elevated levels of
circulating succinate; the relative abundance of veillonellaceae and prevotellaceae, which pro-
duce succinate, was higher in obese individuals, while the abundance of clostridaceae and
odoribacteraceae, which consume succinate, was lower [52]. Faecalibacterium prausnitzii is a
marker of lower visceral fat mass, while Clostridium CAG 58 and Flavonifractor plautii are the
taxa that associated with obesity [53]. Gut dysbiosis was observed preceding clinic symp-
toms in rheumatoid arthritis (RA) and has been implicated in the initiation and persistence
of RA [49]. Furthermore, the increased abundances of Lachnospiraceae_NK4A136_group and
Bacteroidales_S24-7_group were observed in CIA mice [49]. Gut microbiota can be used as a
sensitive biomarker for diagnosing gout, since Bacteroides xylanisolvens and Bacteroides caccae
are enriched while Bifidobacterium pseudocatenulatum and Faecalibacterium prausnitzii are
depleted in diseased individuals [54]. In addition, the gut microbiota promotes catabolic
metabolism of purines and uric acid, and its metabolites increase uric acid excretion [55].
Compared to healthy controls, the relative abundances of Bacteroides, Prevotella, and Fusobac-
terium were increased in gout patients, whereas Enterobacteriaceae and butyrate-producing
species were decreased [27]. The gut microbiota and its metabolites regulate the gene
expression in liver, which can induce imbalance in the gut-liver axis and may cause disease,
including carcinogenesis [15]. Changes in the microbiomes in the gut were found to be
related with breast cancer [56]. Enterococcus faecalis levels were associated with variants at
the MED13L locus that linked to colorectal cancer [57]. The gut microbiota in non-small
cell lung cancer (NSCLC) patients was imbalanced, wherein the abundance of Akkermansia
muciniphila, Bacteroides, Rikenellaceae, Mogibacteriaceae, Clostridiaceae, and Peptostreptococ-
caceae were found lower than controls [28]. In the event of the COVID-19 pandemic, recent
research has found that gut microbiota-mediated amino acids, sugar metabolites, and
neurotransmitters are involved in multiple cytokine dynamics in COVID-19 [58]. Those
reveal the role of microbes in the gut-lung axis. The disordered gut microbiota will disrupt
the gut immune system and induce diseases, such as inflammatory bowel diseases (IBDs),
ulcerative colitis (UC), and Crohn’s disease (CD) [17]. The previous study observed that
Proteobacteria and Bacteroidetes were significantly increased in CD patients when compared
to healthy subjects; indeed, the diversity of Bacteroidetes was far less than Firmicutes in
CD patients [59]. Zhen et al. [60] found increased relative abundance of the Bacteroidetes
phylum and decreased Firmicutes phylum in the gut of ABX mice, thus leading to a disor-
der of SCFAs metabolism. Moreover, recognition and working memory can be influenced
by Lactobacillus acidophilus, Lactobacillus fermentum, Bifidobacteria, Bifidobacterium bifidum,
Lactobacillus casei, and C. difficile, through the gut-brain axis in Alzheimer’s disease [61].
Trimethylamine-N-Oxide produced by Proteobacteria metabolization in the gut is impli-
cated in developing Acute Coronary Syndrome (ACS) [62]. Based on those results, the gut
microbiota was proved to be associated with the host’s diseases.
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3. Effects of Food Additives on Gut Microbiota
3.1. Antioxidants

The food additives in one’s diet do affect the composition and abundance of the gut
microbiota in the intestine. The food additives and their association with gut microbiomes
summarized in this project are presented in Table 1.

Table 1. The effect of food additives on gut microbiota and its function.

Food Additives Experiment Trial Microbes Function References

Sodium benzoate C57BL/6 mice Coriobacteriaceae Convert carbohydrates
acetic acid and lactic acid [63]

Sodium benzoate,
Sodium nitrite,

Potassium sorbate
In vitro Clostridium tyrobutyricum or

Lactobacillus paracasei
Anti-inflammatory

properties [64]

Sodium benzoate,
Sodium nitrite,

Potassium sorbate
In vitro Bacteroides thetaiotaomicron or

Enterococcus faecalis
Pro-inflammatory or
colitogenic properties [64]

Benzoic acid Pig
Phylum of Bacteroidetes and the

genus of Prevotella in the
phylum of Bacteroidetes ↓

/ [65]

Benzoic acid (90%) and
essential oil (10%,
include thymol,

2-meth-oxyphenol,
and eugenol)

Pig

Fusicatenibacter,
Escherichia-Shigella, and

Ruminococcus ↑
Prevotella, and Coprococcus 1 ↓

/ [66]

Potassium sorbate Mice Coriobacteriaceae ↓ Convert carbohydrates to
acetic acid and lactic acid [63]

Benzoic acid (49%) Piglet Ruminococcus, Prevotellaceae,
and Fibrobacteraceae ↑ Fiber fermenting abilities [67]

Nitrite C57BL/6 mice

Falsiporphyromonas,
Alloprevotella, Acetatifactor, and

Coprococcus ↑
Akkermansia, and
Elusimicrobium ↓

/ [68]

Sodium benzoate Human Bifidobacterium ↑ / [69]

Sodium sulphite Human Escherichia/Shigella ↑
Bifidobacterium ↓ / [69]

Sulfite In vitro
Plantarum, rhamnosus,

Lactobacillus species casei, and
Streptococcus thermophilus ↓

/ [70]

NaNO3 Mouse
Lactobacillus,

Ruminococcaceae_UCG-014, and
Prevotellaceae_UCG-001 ↑

/ [71]

Monosodium
glutamate

(300 mg/kg)
Mice Patescibacteria ↑ / [72]

Monosodium
glutamate

(1500 mg/kg)
Mice Patescibacteria ↓ / [72]

Monosodium
glutamate
(2 g/day)

Human No significant difference / [73]

Xylitol
(10 g/L in high fat diet) C57BL/6 mice

Bacteroidetes, Actinobacteria,
and Proteobacteria ↓

Firmicutes ↑
/ [74]

Xylitol
(194 ± 25 mg/kg b.w.

in high fat diet)
C57BL/6J mice Bacteroidetes, Barnesiella ↓

Firmicutes, Prevotella ↑ / [75]
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Table 1. Cont.

Food Additives Experiment Trial Microbes Function References

Xylitol (10%) Rat Ruminococcaceae, Prevotella ↓
Bacteroides ↑ / [76]

Xylitol In vitro Clostridium,
Phascolarctobacterium ↑ Butyrate synthesizing [77]

Escherichia ↑ /

Sorbitol Mice

Bifidobacterium, Lachnospiraceae
UCG 001, Lachnospiraceae

NK4A136, Eubacterium
ventriosum, Candidatus

Arthromitus, Ruminococcus
torques ↓

Helicobacter, Tyzzerella, Alistipes,
and Prevotella 9 ↑

/ [78]

Sorbitol C57BL/6 mice
Escherichia, Klebsiella,

Enterobacter, and Proteus in
Enterobacteriaceae family↑

/ [79]

Lactitol Human

Actinobacteria, Actinobacteria,
Bifidobacteriales,

Bifidobacteriaceae and
Bifidobacterium ↑

/ [80]

Titanium dioxide ICR mice Verrucomicrobia, Bacteroidetes ↓
Firmicutes ↑ / [81]

Sunset yellow In vitro
Escherichia coli, Enterococcus

faecium, Aerococcus viridans, and
Bacillus cereus

Decolorized sunset yellow [82]

Resistant starch Mice Lactobacillus,
Lachnoclostridium ↑ / [49]

Sodium stearoyl
lactylate In vitro

Clostridia, Clostridiaceae,
Lachnospiraceae,

Ruminococcaceae ↓
Bacteroidaceae and

Enterobacteriaceae and
Desulfovibrionaceae ↑

/ [83]

/ means there is no function concerned in the cited literature. ↑ positive influence, ↓ negative influence.

Antioxidants are a kind of food additive that can be used in foodstuff with regulated
amounts to avoid oxidation of food products and improve the storage duration [84]. The
antioxidants include natural antioxidants (e.g., tocopherols) and synthetic antioxidants
(e.g., phenolic antioxidants); these antioxidants can prevent free radicals chain reactions of
oxidation [85]. Antioxidants are commonly used in the food processing industry, especially
in edible oil and fat; thus, oil and fat are widely used as materials in different kinds of
processed food.

A survey about the synthetic phenolic antioxidants (SPAs) in foodstuffs from ten
provinces in China found that more than 99% samples detected at least one of the SPAs, the
first three common SPAs being BHT, BHT-Q, and butylated hydroxyanisole (BHA), which
totally accounted for 83.2% of total SPAs contents in thirteen food categories (N = 289) [86].
Although the antioxidants were considered safe within moderate amounts, the consumers
were worried about the health effect induced by antioxidants added in food [87]. An in vitro
study has evaluated the susceptibility of human gut microbes to phenolic compounds.
Natural phenolic compounds (such as eugenol, ferulic acid, and vanillin) decreased the
growth of Agathobacter and Clostridium strains, and the Bacteroidetes and Actinobacteria
strains were mostly not susceptible to phenolics [88]. However, the effect of synthetic
antioxidants on the gut microbiota still needs to be studied.
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3.2. Preservatives

Food preservatives are used to ensure safety and prevent quality loss derived from
physical-chemical, microbial, or enzymatic reaction [89]. Some of the preservatives are also
active as antioxidants, such as sulfur dioxide, sodium metabisulphite, sodium sulfite, and
potassium sorbate [1]. In this project, synthetic preservatives were of concern, including
sodium benzoate, benzoic acid, ethylparaben, sodium nitrite, nitrite, sodium sulphite, and
potassium sorbate.

An in vivo study was done in pigs fed with a benzoic acid-supplemented nursery
diet. The transition of the bacterial community was mainly driven by the decreased
abundance of the genus of Prevotella and the phylum of Bacteroidetes [65]. The abundance of
Fusicatenibacter, Ruminococcus, and Escherichia-Shigella in pigs fed with a diet containing 90%
benzoic acid and 10% essential oil (include thymol, 2-meth-oxyphenol, and eugenol) were
significantly (p < 0.05) increased compared to control (without additive), while Prevotella,
and Coprococcus 1 were significantly decreased [66]. In another piglet trial, 49% benzoic
acid supplementation diet was observed with higher abundance of Ruminococcus (False
Discovery Rate, FDR < 0.01), Fibrobacteraceae (FDR < 0.05), and Prevotellaceae (FDR < 0.01),
bacteria which were confirmed with certain fiber fermenting abilities [67]. However, there
is also research that found no significant difference of benzoic acid supplementation on
pig jejunum and cecum microbial populations [90]. Meanwhile, the gut microbiota of
wild-type C57BL/6 mice (male) fed with sodium benzoate-supplemented diet for 8 weeks
was studied, and a significant decrease was observed in the Coriobacteriaceae family, which
can convert carbohydrates to acetic acid and lactic acid in mice [63]. Lastly, in human
volunteers, sodium benzoate promoted the growth of Bifidobacterium [69].

Xu et al. [68] found that both low dose nitrite (0.15 g/L) and high dose nitrite (0.30 g/L)
could significantly upregulate α-diversity in C57BL/6 mice on day 120. The result of α-
diversity includes the increase of Chao 1 and Shannon index, which revealed that the
total number of operational taxonomic units (OTUs) is increased and the diversity is
higher. In addition, the markedly different genera were higher in day 120 than in day 70.
The low dose nitrite–treated mice uniquely upregulated the abundances of Alloprevotella,
Coprococcus, Acetatifactor, and Falsiporphyromonas, while downregulated the abundances of
Elusimicrobium, and Akkermansia. Those results revealed that long-term exposure to nitrite
significantly alters the abundance of gut microbiota in C57BL/6 mice [68]. Akkermansia
was reported as a next-generation beneficial microbe, which is negatively associated with
obesity, diabetes, cardiometabolic diseases, and low-grade inflammation [91,92]. In a
dextran sodium sulfate (DSS)–induced mouse model, genus level of Prevotellaceae_UCG-
001, Ruminococcaceae_UCG-014, and Lactobacillus were increased in NaNO3 treated (2 mM in
drinking water, 5 days) mouse; moreover, the enriched metabolic pathways of p53 signaling
and colorectal cancer was partially decreased [71].

In an in vitro study, the human gut microbes were found to be highly susceptible
to sodium nitrite, sodium benzoate, and potassium sorbate, especially, Clostridium ty-
robutyricum or Lactobacillus paracasei, which have known anti-inflammatory properties,
were significantly more susceptible to those three preservatives than Enterococcus faecalis
or Bacteroides thetaiotaomicron that have known pro-inflammatory or colitogenic proper-
ties [64]. Potassium sorbate can significantly decrease the Coriobacteriaceae family, which
can convert carbohydrates to acetic acid and lactic acid in mice [63]. Compared to control
(sulfite free media), substantial decrease of Rhamnosus, Lactobacillus species casei, Strepto-
coccus thermophilus, and Plantarum were observed in media containing concentrations of
sulfites between 250 and 500 mg/L after being exposed to in vitro bacterial culture for
two hours [70]. In a human volunteer’s trial, the propionic acid was found to increase
while acetic acid decreased with the presence of sodium sulfite; indeed, the result of Shan-
non α-diversity showed that the addition of sodium sulfite increased the abundance of
Escherichia/Shigella. In addition, sodium sulfite had an inhibitory effect on the growth of
Bifidobacterium [69]. In wild C7BL/6 mice, ethylparaben showed significantly (p = 0.0424)
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hyperglycemic, and the relative abundance of Proteobacteria was enriched by ethylparaben
compared to the control group [63].

3.3. Flavor Enhancers

Flavor enhancers are multiple substances used in food to promote taste, especially
umami. Amino acids and nucleotides are flavor enhancers in common use, among which
monosodium glutamate (MSG) is most widely used in processed food and is presented
in this section. In addition, novel umami agents, such as protein hydrolysate and umami
peptides [93,94], attract increasing attention and have the potential to become new flavor
enhancers. However, the effect of flavor enhancers on gut microbiota is mainly focused on
MSG, and relevant experimental data for those novel umami agents are still lacking.

The most commonly used flavor enhancer is monosodium glutamate (MSG, C5H8NO4
Na), whose chemical structure is sodium salt from glutamic acid. Xu et al. [72] have
studied the intestinal structure and the intestinal microbiota with MSG oral gavage to mice.
The ratios of Bacteroidetes and Firmicutes in the 30 mg/kg (L-MSG) group were lower
than those in the 300 mg/kg (M-MSG) and 1500 mg/kg (H-MSG) groups. Additionally,
compared with the control group, the proteobacteria decreased in H-MSG group, but
increased in M-MSG group. On the other hand, Peng et al. [73] have observed that MSG did
not significantly alter the community structure and functional features of gut microbiota in
human volunteers during a four-week experiment with 2 g MSG per day. Although some
bacteria including Megamonas, Faecalibacterium, Collinsella, and Blautia tended to change,
there was no significant difference in the alteration of all genera. At the functional level,
the microbial functions were rich, mainly distributed in membrane transport, amino acid
metabolism, and carbohydrate metabolism, but there was no significant difference between
samples obtained at different times.

3.4. Sweeteners

Sweeteners are closely related to food flavor and human health, as consumers are more
and more considering the health problems both certainly and potentially related to sugars.
A prospective NutriNet-Santé cohort (103,388 participants) suggested that artificial sweet-
eners might represent a modifiable risk factor for cardiovascular disease prevention [10].
The effect of artificial sweeteners, acesulfame-K, aspartame, saccharin, sucralose, cyclamate,
and neotame, on gut microbiota has been reviewed by Cao et al. [95], whereby those
sweeteners could cause gut dysbiosis, which could lead to impaired glucose metabolism in
rodents. Similar results were also reviewed by Ruiz-Ojeda et al. [96]. Gultekin et al. [97]
have summarized that acesulfame-K, aspartame, saccharin, and sucralose are likely to de-
stroy glucose tolerance and support weight gain by negatively affecting microbiota. Sugar
alcohols are a group of polyols which are produced from sugars and are less digestible
since they are difficult to totally digest in small intestine; therefore, some of them can be
fermented in the colon [97]. The polyols can be used in sugar free food, since they do not
induce salivation and do not interfere with the glucose levels in blood [98]. In a previous
review, sugar alcohol was known to increase the number of bifidobacteria in the microbiomes
and can induce dose-dependent flatulence in the colon [96]. Studies on the effect of sugar
alcohol on the gut microbiota have been conducted within the last ten years. In this section,
xylitol, sorbitol, erythritol, and lactitol are evaluated.

There are some in vivo data about the effect of xylitol on the gut microbiota in the intes-
tine. Due to it characteristic of being less digestible in the intestine, the specific experiments
on high-fat diet with xylitol supplement were evaluated in mice. Compared to the high-fat
diet mice, the relative abundances of Proteobacteria, Bacteroidetes, and Actinobacteria were
decreased, while the relative abundances of Firmicutes and ratio of Firmicutes/Bacteroidetes
were increased in C57BL/6 mice that fed with high-fat diet supplemented with 10 g/L
xylitol [74]. In addition, Uebanso et al. [75] gave a high-fat diet with 194 ± 25 mg/kg b.w.
supplement of xylitol to C57BL/6J mice and found that the Bacteroidetes phylum and
genus Barnesiella abundance were reduced, while the abundance of Firmicutes phylum and
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genus Prevotella were increased. Altered gut microbiota composition was present in the
rats fed with 10% xylitol for 15 days, wherein the genera Ruminococcaceae and Prevotella
was significant decreased, while Bacteroides was notably increased [76]. The results above
showed similar changes of gut microbiota after the xylitol intake from feed. It has been
reported that xylitol consumption by mice showed positive effect on the metabolic activ-
ity of a number of gut microbial populations [99]. However, in an in vitro single-phase
continuous fermentation model, the gut microbiota composition was found differentiated
after xylitol supplementation (1.67 g/L) only for the first 3 days; additionally, xylitol sig-
nificantly enhanced the relative amount of Clostridium and Phascolarctobacterium, which
act as butyrate synthesizing bacteria [77]. Meanwhile, xylitol has increased the production
of butyrate and propionic acid. The same result was reported by Yue et al. [100] that
xylitol produced mainly butyrate, which may play a major role in improving gut barrier
function. The population sizes of Escherichia were increased beyond expectation after
xylitol supplementation [77]. On the contrary, Xiang et al. [101] observed no significant
of xylitol on the composition of gut microbiota both in vivo and in vitro, but observed
the increasing contents of all SCFAs. This may be induced by key enzymes (xylulokinase,
xylitol dehydrogenase, and xylulose phosphate isomerase) in xylitol metabolism which
present in Bacteroides and Lachnospiraceae metabolites [101].

For long-term intake of sorbitol, Li et al. [78] found that the relative abundances of
Bifidobacterium, Lachnospiraceae NK4A136, Lachnospiraceae UCG 001, Candidatus Arthromitus,
Eubacterium ventriosum, and Ruminococcus torques were significantly decreased, while the
relative abundances of Tyzzerella, Helicobacter, Prevotella 9, and Alistipes were increased
in mice. An in vitro growth assay using no carbon-defined media with sugar alcohols
supplement showed that Clostridia and Erysipelotrichia were isolated only in sorbitol as a
carbon source [102]. Furthermore, Hattori et al. [79] found that the gut microbiota showed
a positive impact on sorbitol-induced diarrhea; treatment with sorbitol resulted in the
greatest increase at genus level of the abundance of Klebsiella, Escherichia, Proteus, and
Enterobacter in the family Enterobacteriaceae. Those results revealed that sugar alcohols are a
major carbon source for the fermentation of gut microbiota.

Erythritol (E968) was proposed as a food additive by EFSA in 2015 [103]. Ninety
percent of erythritol is absorbed in the small intestine, and ten percent enters the colon,
and the in vitro trial found that no consistent disruption in the α-diversity was observed
in human gut community [104]. In participants (diabetic and non-diabetic patients) with
lactitol administration for two weeks, the abundance of Actinobacteria, Actinobacteria, Bifi-
dobacteriales, Bifidobacteriaceae, and Bifidobacterium were found with an increasing trend [80].
Moreover, an in vitro colonic fermentation study observed that fermentation of lactitol
produced mainly acetate [100]. This may result in gut microbiota that metabolize SCFAs.

3.5. Colorants

The synthetic food colorants used by food manufacturers have been increasing due
to their low cost, better stability, high color intensity, and uniformity [4]. The food safety
management of government and non-government organizations have strictly defined the
range and dosage of using colorants. The synthetic colorants, including tartrazine, Sunset
Yellow FCF, ponceau 4R, Allura Red AC, quinoline yellow, and carmoisine, have been
reported associated with hyperactivity in children [25]. Another colorant, titanium dioxide,
is forbidden for use in food in the European Union [105]. However, those additives were
permitted for use in specific food categories with limited doses. This section evaluates the
information about artificial colorants that are used in processed food with their effect on
the gut microbiota.

Tartrazine exposure induced gut microbiota dysbiosis in the juvenile crucian carp fish
(Carassius carassius) [106]. In an in vitro trial, Escherichia coli, Enterococcus faecium, Aerococcus
viridans, and Bacillus cereus can decolorize Sunset Yellow, and tartrazine after 30 min contact,
which means those microbiomes have azoreductase activity [82]. In animal studies, ponceau
4R was found merely absorbed in the digestive tract, where it is anaerobically reduced
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by microflora, with small levels of the resulting metabolites systemically absorbed [107].
Allura Red AC has been reported to induce colitis in the context of dysregulated interleukin
-23 [108]. An in vivo challenge of primed mice with Red 40 (Allura Red AC) promoted
rapid activation of CD4+ T cells [109], while in CD4+ T cells, the gut microbiota-reactive
interleukin -17-producing Th17 cells are central to the pathogenesis of certain types of
IBD [110]. The results presented that Allura Red AC can induce inflammation of intestine
by regulating the immune cell secretion. At phylum level, the proportion of Verrucomicrobia
after oral administration of micro-TiO2 (10, 40, 160 mg/kg bw) was significantly lower than
that in the control group (p < 0.05), and the proportion of Bacteroidetes at 10 mg/kg group
decreased to 28.20%, while that of Firmicutes increased significantly to 70.23% (p < 0.05) [81].

3.6. Other Food Additives

There are several artificial food additives which are not included above, such as
emulsifiers carboxymethylcellulose, polysorbate 80, resistant starch, sodium stearoyl lacty-
late, maltodextrin, and carboxymethyl cellulose. Those food additives are evaluated in
this section.

Emulsifiers, carboxymethylcellulose, and polysorbate 80 (P80) develop dysbiosis with
overgrowth of mucus-degrading bacteria, as well as further deficiency in interleukin-10 or
toll-like receptor 5 [111]. However, the emulsifiers used to maintain food-specific properties
may increase the translocation of pathogenic microbes in the intestinal epithelial barrier
and cause the initiation of intestinal inflammation and consequently cause the increase
in the incidence of inflammatory bowel disease [30]. Maltodextrin and carboxymethyl
cellulose induced the decreasing of α-diversity, and both decrease in acetic acid levels,
whereas the lower acetic acid levels were correlated with higher Akkermansia abundance
and lower abundance of Bacteroides and Streptococcus [112]. The increased Lachnoclostridium
and Lactobacillus genera abundance concomitant with CIA were eliminated by a resistant
starch-high fat diet. Notably, resistant starch supplement also led to a predominance
of Bacteroidetes, and increased the abundances of Bacteroidales_S24-7_group and Lach-
nospiraceae_NK4A136_group genera in CIA mice [49]. The effect of sodium stearoyl lactylate
(SSL) on fecal microbiota was studied in vitro, wherein 0.025% (w/v) of SSL was found to
reduce the relative abundance of the Clostridia class. The relative abundance of the families
Lachnospiraceae, Ruminococcaceae, and Clostridiaceae was substantially reduced, whereas
that of Bacteroidaceae and Enterobacteriaceae, Desulfovibrionaceae was increased. The genome
reconstruction analysis found that SSL significantly reduced concentrations of butyrate and
increased concentrations of propionate compared to control cultures [83].

4. Summary

As summarized from the literatures, food additives can induce the alteration of the
gut microbiota in the host intestine. The in vivo animal model and in vitro bacteria culture
were used to evaluate the effect of food additives on the gut microbiota. The association
between artificial antioxidants and gut microbiota was minor; conversely, the natural
antioxidants attract more attention. Preservatives highly showed association with the
microbes with SCFAs generation. Monosodium glutamate presented a positive (or no
difference) effect on the composition of gut microbiota. The sugar alcohol sweeteners can
be used as fermentation of gut microbiota, and most polyols will alter the composition
of gut microbiota. However, the definite impact of food additives on gut microbiota is
not illustrated clearly, even though various studies have been reviewed. Different food
additives lead to different effects on the same phylum or genus of gut microbiota. It is
difficult to summarize what kind of changes will be induced by those food additives.

Even though there are several studies on the additives that affect the gut microbiota,
the knowledge about the effects on gut microbiota induced by multiple artificial, especially
synthetic, additives are not sufficient. The systematic studies about the effects and functions
of artificial antioxidants and synthetic colorants on gut microbiota are few. Therefore, those
food additives should be studied further.
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