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Abstract: In mild conditions (under air, room temperature, no monomer purification and without
any energy activation), redox free radical polymerization (RFRP) is considered as one of the most
effective methods to polymerize (meth)acrylate monomers. In the past several years, there has been
a growing interest in research on the development of new redox initiating systems (RISs), thanks
mainly to the evolution of toxicity labeling and the stability issue of the current RIS based on peroxide
and aromatic amine. In this study, a new, low-toxicity RIS based on thiophenium salt as the oxidant
species is presented with various reductive species. The reactivity and the stability of the proposed
RISs are investigated and the synthesis of new thiophenium salts reported.

Keywords: peroxide-free; redox polymerization; free radical polymerization; thiophenium salts

1. Introduction

Since the discovery of redox initiating systems (RISs) by German researchers trying
to improve thermal initiating systems using peroxide as a thermal accelerator [1], studies
have been carried out to optimize this new method of polymer synthesis.

In this context, new RISs were discovered. Most of these new systems rely on low-
energy bond dissociation, such as the O–O bond (peroxide) or the S–S bond (disulfide)
with various reducing agents (metallic ions, thiols, carboxylic acids, amines, etc.), as the
oxidizing agent [2]. Among these possible oxidizing agents, dibenzoyl peroxide (BPO) has
been extensively studied for its ability to work with a wide panel of reducing agents in
both aqueous and nonaqueous media [2].

Redox free radical polymerization (RFRP) using an RIS is one of the mildest methods
to reduce energy consumption in polymer synthesis [3,4]. Indeed, no additional stimuli
are needed to trigger the initiation step of the polymerization. In addition, RFRP can be
performed in mild conditions [5–8] (under air, no further purification of the monomers
and carried out at room temperature). The general mechanism of RFRP is illustrated in
Scheme 1.

The polymerization of monomers by using the RFRP method is based on the mixing of
an oxidizing agent and a reducing agent, which are able to generate in situ radical species
through a redox mechanism (Scheme 1, Kr, generation of radical species).

The radicals generated from the redox reaction (R•) may react with a monomer (M),
leading to a propagating polymeric radical (Scheme 1, Ki, initiation step). This small
polymeric radical is then able to react with other monomer units to yield a longer poly-
meric radical (Scheme 1, Kp, propagation step). Finally, the polymerization stops when a
polymeric radical reacts with another macroradical in combination or through dispropor-
tionation (Scheme 1, Kt, termination step).
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Scheme 1. General mechanism of RFRP.

The most common RIS used at the academic and industrial scales is based on dibenzoyl
peroxide and an amine compound. Dibenzoyl peroxide is used as the oxidizing agent
for the reasons mentioned above, and the amine compound is widely used as a reductive
reagent thanks mostly to its (i) low cost, (ii) high reactivity and (iii) possibility to polymerize
in solvent-free conditions (bulk), which is more challenging for other reductive reagents, such
as metallic complexes (solubility issue) [9]. Studies conducted on the amine structure revealed
the criteria needed to optimize the efficiency of the RIS [9]: (i) the primary and secondary
amines classes are not suitable for RFRP, because proton transfer is more favorable, resulting
in low yields in initiating radicals; (ii) among the tertiary amines class, aromatic amines with
the minimal steric hindrance have the best efficiency, but they also have higher toxicity.

Thus, the most widely used RIS at the industrial scale is based on a mixture of
dibenzoyl peroxide (BPO) and a tertiary aromatic amine such as 4-N,N-Trimethylaniline
(4-N,N-TMA) (Figure 1), which fulfills all the criteria mentioned above.
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Figure 1. Structure of BPO and 4-N,N-TMA (also noted DMpT).

Even though the system is very effective, it has some drawbacks, such as the low
stability of peroxide in monomers [10] and the relative toxicity of the aromatic amine
class [11]. The toxicity issue of the aromatic amine class may be overcome by playing on the
chemical structure of the amine. Indeed, 2-(N-methyl-p-toluidino)ethanol, for example, is
nontoxic and yields similar results compared with 4-N,N-TMA. However, the instability of
BPO in monomers is a dead end. Industrial formulations use BPO in an inert plasticizer to
avoid side reactions leading to instability. Given the major disadvantage of inert plasticizers
in formulations (unreacted material in the final polymer altering the mechanical properties),
new studies must be carried out to propose alternative redox agents that are stable in
monomers and nontoxic.

To replace the oxidizing agent (e.g., BPO), this work will focus on thiophenium salts
as new oxidant species. These salts have been used in organic chemistry but only for
trifluoromethylation reactions [12]. Our interest in these salts emerged from the struc-
tural similarity with sulfonium salts such as bis[4-(diphenylsulfonio)phenyl]sulfide and
bis(hexafluoroantimonate). Onium salts such as sulfonium and iodonium salts are well
known in the literature to generate radical species upon irradiation or heat [2,13]. Some
RISs were actually designed using iodonium salt as an oxidizing agent. [14,15]. In order
to fully characterize the reactivity of thiophenium salts, this study was conducted using
(i) different (meth)acrylate monomers (Figure 2), (ii) different reducing agents (Figure 3)
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and (iii) different thiophenium salts (Figure 4). The development of new RIS is a huge
challenge [16,17] that can also require the synthesis of new compounds [18].
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2. Results and Discussion
2.1. Synthesis of Thiophenium Salts
2.1.1. Synthesis of 3,7-Ditertiobutyl-5-(trifluoromethyl)dibenzothiophenium
Trifluoromethanesulfonate (Thiophenium (I))

In a 25 mL two-neck round bottom flask, 0.5 g of sodium triflinate (1 eq., 3 mmol)
are added under anhydrous and argon atmosphere conditions, followed by 10 mL of
anhydrous nitromethane as solvent. After total dissolution, 1 mL of triflic anhydride (2 eq.,
6 mmol) is added. After stirring for 10 min, the 4,4′-di-tert-butylbiphenyl (1 eq., 3 mmol,
0.799 g) is added as a solution in 5 mL of nitromethane. The reaction is monitored by TLC
using cyclohexane as eluent.

After 24 h, the nitromethane is distilled off under reduced pressure and washed several
times with toluene (4 × 3 mL) to remove as much nitromethane as possible.

The crude is then diluted in 3.5 mL of distilled water, followed by 3.5 mL of diethyl
ether, causing the precipitation of the product after stirring overnight.

After filtration and several washings with diethyl ether (4 × 3 mL), the product is
dried under reduced pressure at 40 ◦C, yielding a white solid (0.167 g, 21% yield).

2.1.2. Synthesis of 2,8-Difluoro-S-(trifluoromethyl)dibenzothiophenium
Hexafluorophosphate (Thiophenium IV)

In a 10 mL two-neck round bottom flask, 0.192 g of sodium hexafluorophosphate (1 eq.,
1.14 mmol) is added, followed by 5 mL of acetonitrile as the solvent. After complete dissolu-
tion, 0.5 g of 2,8-difluoro-5 (trifluoromethyl)dibenzothiophenium trifluoromethanesulfonate
(Thiophenium (II)) (1 eq., 1.14 mmol) is added. The mixture is heated at 60 ◦C for 2 h.

After evaporation of acetonitrile under reduced pressure, the crude is dissolved in
10 mL of dichloromethane and washed with a saturated solution of NaHCO3 (3 × 5 mL).
The dichloromethane is distilled off; 5 mL of acetonitrile is added; and a large excess of
diethyl ether is added until precipitation of the product occurred (approx. 20 mL). The
product is obtained as a white powder (0.413 g, 83%).

2.2. Thiophenium Salts in Redox Systems
2.2.1. Effect of the Reducing Agent

Thiophenium salts and reducing agents alone are stable in (meth)acrylic monomers. Poly-
merization occurs only by mixing the two formulations (cartridges), which clearly highlights
a radical generation through the reaction between thiophenium salts and reducing agents.

Thiophenium (III) is used in combination with different reducing agents, presented in
Figure 3, in the monomer (5-ethyl-1,3-dioxan-5-yl)methyl acrylate (EDMA). The efficiency
of the polymerization is followed by optical pyrometry (Figure 5).

Thiophenium (III)/reduction agents show approximately similarly short gel times
(Figure 5: 16 s, 11 s, 35 s and 32 s, curves 1, 2, 3 and 4, respectively), which could indicate a
high yield in radical generation for all tested systems. The maximum temperature reached
is different (Figure 5: 53 ◦C, 68 ◦C, 88 ◦C and 146 ◦C, curves 1, 2, 3 and 4, respectively),
which could indicate higher final acrylate function conversions for the systems with higher
temperatures reached.

The resulting polymers obtained from the system’s Thiophenium (III)/AEAE and
Thiophenium (III)/TEMED (Figure 5: curves 1 and 2, respectively) present tacky surfaces
(i.e., poor polymerization on the surface from high oxygen inhibition), whereas polymers
obtained from Thiophenium (III)/DHPP and Thiophenium (III)/Na-Tol-sulfinate (Figure 5:
curves 3 and 4, respectively) present tack-free surfaces (i.e., full polymerization on the
surface and low oxygen inhibition).

Finally, compared with BPO/4-N,N-TMA, all Thiophenium (III) systems with different
reducing agents yield better results, namely a faster gel time, a higher exothermic peak
(Figure 5: curve 5 compared with curves 1, 2, 3 and 4) and better polymer appearance
(gel-like polymer for reference BPO/4-N,N-TMA with a very poor surface curing).
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Figure 5. Optical pyrometry measurements (temperature vs. time; 6 mm thickness) under air
in EDMA with different RISs: (1) Thiophenium (III) 1%wt//AEAE 1%wt, (2) Thiophenium (III)
1%wt/TEMED 1%wt, (3) Thiophenium (III) 1%wt/DHPP 1%wt, (4) Thiophenium (III) 1%wt/Na-Tol-
sulfinate 1%wt, (5) BPO 1%wt/4-N,N-TMA 1%wt.

This first study on the nature of the reducing agent shows excellent results for re-
ducing agents selected from aromatic compounds (i.e., electron-rich compounds). For the
remaining work, Na-Tol-sulfinate was used instead of DHPP, for availability reasons.

2.2.2. Effect of the Oxidizing Agent

The reactivity of several thiophenium salts is investigated in the monomer EDMA using
Na-Tol-sulfinate as the most effective reducing agent identified in Section 2.2.1 (Figure 6).
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1%wt/Na-Tol-sulfinate 1%wt, (3) Thiophenium (III) 1%wt/Na-Tol-sulfinate 1%wt, (4) Thiophenium
(IV) 1%wt/Na-Tol-sulfinate 1%wt.
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Thiophenium (III)/Na-Tol-sulfinate compared with Thiophenium (II)/Na-Tol-sulfinate
(Figure 7: curves 3 and 2, respectively) shows higher reactivity (31 s vs. 52 s for gel time and
104 ◦C vs. 72 ◦C for maximum temperature reached). This may be due to the mesomeric
effect of fluorine [19], which leads to the electroenrichment of the sulfur and thus to a
less-potent oxidizer agent.
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in EDMA with different concentrations of the RIS: (1) Thiophenium (III) 1%wt/Na-Tol-sulfinate
1%wt, (2) Thiophenium (III) 0.25%wt/Na-Tol-sulfinate 0.25%wt, (3) Thiophenium (III) 0.1%wt/Na-
Tol-sulfinate 0.1%wt, (4) Thiophenium (III) 0.1%wt/Na-Tol-sulfinate 0.25%wt, (5) Thiophenium (III)
0.01%wt/Na-Tol-sulfinate 0.01%wt.

Thiophenium (III)/Na-Tol-sulfinate compared with Thiophenium (I)/Na-Tol-sulfinate
(Figure 6: curves 3 and 1, respectively) shows a shorter gel time (31 s vs. 91 s) but a lower
maximum temperature (104 ◦C vs. 111 ◦C). This may be explained by impurity traces from
the Thiophenium (I) synthesis. Another explanation is the difference in molar contents;
indeed, the molecular weight differences between Thiophenium (III) (402.3 g.mol−1) and
Thiophenium (I) (514.3 g.mol−1) (so, 1%wt of Thiophenium (I) are that the former contains
less quantity (in mol) than with Thiophenium (III)) compared with the others thiophenium
salts (Thiophenium (II): 438.3 g.mol−1 and Thiophenium (IV): 434 g.mol−1).

Thiophenium (II)/Na-Tol-sulfinate compared with Thiophenium (IV)/Na-Tol-sulfinate
(Figure 6: curves 2 and 4, respectively) shows lower reactivity (52 s vs. 21 s for gel time
and 72 ◦C vs. 98 ◦C for maximum temperature). This is due to the effect of the counter ion,
as described by the hard and soft acids and bases (HSAB) theory [20]. Indeed, the PF6

−

counter ion is considered as soft, whereas CF3SO3
− is listed as hard, resulting in a higher

ion-dissociation rate for the PF6
− counter ion and thus a higher reactivity.

The study of the chemical structure of the thiophenium itself and its associated counter
ion revealed (i) better reactivity with soft counter ions (according to the HSAB theory),
(ii) better solubility of the thiophenium salts in a monomer with lipophilic substituents
(tert-butyl groups) and (iii) lower reactivity with the electroenrichment of the sulfur.

2.2.3. Effect of the Concentration

Thiophenium salts are not commercially available in large quantities. In order to
find the optimum usage, the effect of the thiophenium salt concentration was studied,
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using Na-Tol-sulfinate as the reducing agent with EDMA as a monomer (Figure 7). The
RIS at 1%wt (29 s gel time, 146 ◦C maximum temperature reached) compared with the
RIS at 0.25%wt (58 s gel time, 122 ◦C maximum temperature reached) showed that the
concentration can be significantly decreased (Figure 7: curves 1 and 2, respectively).

However, the RIS at 0.1%wt (159 s gel time, 72 ◦C maximum temperature reached)
and the RIS at 0.01%wt (no polymerization occurs) showed that the concentration of the
initiating system cannot be lowered too much (Figure 7: curves 3 and 5, respectively).

Nonetheless, working with dissymmetric concentrations in each cartridge with Thio-
phenium (III) 0.1%wt/Na-Tol-sulfinate 0.25%wt (107 s gel time, 103 ◦C maximum tempera-
ture reached) yielded satisfying results compared with Thiophenium (III) 0.1%wt/Na-Tol-
sulfinate 0.1%wt (159 s gel time, 72 ◦C maximum temperature reached) (Figure 7: curves 4
and 3, respectively).

2.2.4. Effect of the Monomer

The respective reactivities of the various monomers were compared (Figure 2) to
determine the best RIS (e.g., Thiophenium (III)/Na-Tol-sulfinate) (Figure 8).
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Figure 8. Optical pyrometry measurements (temperature vs. time; 6 mm thickness) under air of
Thiophenium (III) 1%wt/Na-Tol-sulfinate 1%wt in various monomers: (1) in EDMA, (2) in GFMA,
(3) in IBA, (4) in a blend of 50%wt EDMA:50%wt IBA, (5) in a blend of 30%wt EDMA:70%wt IBA.

The RIS in EDMA (29 s gel time, 146 ◦C maximum temperature) compared with the
RIS in GFMA (176 s gel time, 88 ◦C maximum temperature) (Figure 8: curves 1 and 2,
respectively) showed a large difference in reactivity between the acrylate and methacrylate
monomers [21].

The RIS in isobornyl acrylate (Figure 8: curve 3, no polymerization) highlighted the
lack of solubility of thiophenium and sulfinate salts in a low-polar monomer. To improve
this solubility, blends of EDMA and IBA were tested (Figure 8: curve 4, blend of 50%wt
EDMA and 50%wt IBA, gel time of 131 s for 132 ◦C maximum temperature; Figure 8:
curve 5, blend of 30%wt EDMA and 70%wt IBA, gel time of 312 s for 98 ◦C maximum
temperature). However, the reactivity is lower thanks to the limited solubility of the RIS in
these monomer blends.

As mentioned in Section 2.2.2., the replacement of the CF3SO3
− counter ion by PF6

−

drastically increased the reactivity of the system, as shown in Figure 9 (gel time of 84 s and
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maximum temperature reached of 75 ◦C for Thiophenium (IV) vs. no polymerization for
Thiophenium (II)—curves 2 and 1, respectively).
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Figure 9. Optical pyrometry measurements (temperature vs. time; 6 mm thickness) under air of RIS in
IBA: (1) Thiophenium (II) 1%wt/Na-Tol-sulfinate 1%wt, (2) Thiophenium (IV) 1%wt/Na-Tol-sulfinate
1%wt.

2.2.5. Effect of Light Activation

For the different RISs based on Thiophenium (III)/Na-Tol-sulfinate (Figure 3), the
conversion of (meth)acrylate functions were followed by RT-FTIR with and without light
irradiation (Figure 10). The conversion of (meth)acrylate functions is greatly improved
by light excitation (Figure 10B: curve 1 (0% of acrylate function conversion without light)
vs. curve 2 (68% of acrylate function conversion with light excitation); Figure 10C: curve 1
(72% of methacrylate conversion without light) vs. curve 2 (84% of methacrylate conversion
with light excitation)).

Also, the rate of conversion seems to be improved (i.e., the slope of the curves)
(Figure 10C: curve 1 (72% of methacrylate function conversion without light after 283 s)
vs. curve 2 (80% of methacrylate function conversion with light excitation for the same
time), as an example). Nonetheless, the impact of light irradiation remains unclear because
the interaction of light in EDMA monomer results in a lower rate of acrylate function
conversion (Figure 10A: curve 1 (72% of acrylate function conversion without light after
62 s) vs. curve 2 (37% of acrylate function conversion with light excitation for the same
amount of time)).

As mentioned above, the benefits of light irradiation on an RIS remains doubtful:
in IBA, light irradiation drastically improved polymerization, whereas in EDMA, light
irradiation slightly decreased the reactivity. An explanation may be the quantity of inhibitor
present in the monomers (900 ppm of 4-methoxyphenol in EDMA, 250 ppm in IBA and
200 ppm in GFMA).

The light absorption properties of thiophenium salts were investigated (available in
the Supplementary Materials (Part III)). Weak but significant absorption was observed
between 380 and 400 nm, corresponding to one part of the emission spectrum of the LED
used during RT-FTIR experiments, in good agreement with the ability of this system to
perform photoactivation.
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Figure 10. Redox polymerization profiles using the Thiophenium (III)/Na-Tol-sulfinate RIS
((meth)acrylate function conversion over time) measured by RT-FTIR in different monomers: (A) in
EDMA, (B) in IBA, (C) in GFMA—(1) without light irradiation and (2) upon light irradiation.

2.2.6. Study of the System Stability

The stability of the system was investigated by aging the two formulations (for both
Thiophenium (III) and Na-Tol-sulfinate cartridges) in an oven at 40 ◦C. The degradation
of the system reactivity was followed by optical pyrometry every week during the aging
period (Figure 11).
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Figure 11. Accelerated aging of the RIS [Thiophenium (III) 1%wt/Na-Tol-sulfinate 1%wt], followed
by optical pyrometry in EDMA: (1) fresh samples, (2) one week at 40 ◦C, (3) two weeks at 40 ◦C,
(4) three weeks at 40 ◦C, (5) four weeks at 40 ◦C.

The Thiophenium (III)/Na-Tol-sulfinate system presents excellent stability with almost
the same amount of gel time (around 28 s) and the same maximum temperature reached
(around 141 ◦C) before and after aging, with no visible change in the viscosity of the samples.
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2.3. Mechanistic Consideration

Thiophenium salts are well studied in the field of organic chemistry for their effec-
tiveness in trifluoromethylation reactions [22]. In particular, they are used together with
sodium benzenesulfinate to produce phenyltrifluoromethylsulfone with good yields [23].
Although the thiophenium/sodium benzenesulfinate couple has never been used as an
RIS, its mechanistic behavior is well known and takes place in three steps [23]: (1) mixing
Na-Tol-sulfinate with thiophenium salts results in a counter ion exchange; (2) a single
electron transfer occurs, leading to the formation of •CF3 and Tol-SO2• radicals, and at
this stage, •CF3 is able to initiate the polymerization steps; whereas (3) Tol-SO2• evolves
toward the formation of Tol• (Scheme 2).
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Scheme 2. Proposed mechanism of the RIS according to Zhou et al. [23].

ESR spin trapping experiments were conducted to confirm the proposed mechanism.
Simulated spectra revealed the generation of •CF3 radical, whereas Tol-SO2• or Tol• were
not detected. Indeed, the hyperfine coupling constants for the PBN-CF3 spin adduct
(Figure 12: an = 14.0 ± 0.1 G; aH = 1.2 ± 0.1 G and aF = 1.7 ± 0.1 G) are in good agreement
with the data in the literature [24].
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Figure 12. ESR spectra for the sample [thiophenium (III)/Na-Tol-sulfinate] with PBN in TBB. Acqui-
sition parameters: receiver gain—1.0 × 105; sweep width—80 G (central field—3495 G); modulation
amplitude 1 G; time constant—20.48 ms; resolution—1024 pts; power—6.325 mW (15 dB); scans—10.
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2.4. Regulatory Labeling of the New Redox Agents

According to the REACh European regulation, Thiophenium (III) and Na-Tol-sulfinate
are both reported as skin and eye irritants (globally harmonized system (GHS) 07). Com-
pared with BPO (GHS 01, 02 and 07) and 4-N,N-TMA (GHS 06 and 08), the new RIS,
composed of Thiophenium (III)/Na-Tol-sulfinate, can be safer to use, leading to a huge
advantage for practical applications.

3. Experimental Section
3.1. Chemical Compounds

All chemicals were purchased with high purity and used as received (Figures 2–4).
2-(2-Aminoethylamino)ethanol (AEAE); N,N,N’,N’-tetramethylethylenediamine (TEMED);
and N,N-dimethyl-p-toluidine (4-N,N-TMA) were purchased from TCI-Europe (Bostik,
Venette, France). Further, 3,5-Diethyl-1,2-dihydro-1-phenyl-2-propylpyridine (DHPP);
5-(trifluoromethyl)dibenzothiophenium trifluoromethanesulfonate (Thiophenium (III));
and sodium p-toluenesulfinate (Na-Tol-sulfinate) were purchased from Merck. In ad-
dition, 2,8-Difluoro-5-(trifluoromethyl)dibenzothiophenium trifluoromethanesulfonate
(Thiophenium (II)) was purchased from Combi-Blocks. Dibenzoyl peroxide (BPO) was
provided by Bostik as a paste diluted by 50%wt in mineral oil, and 3,7-Ditertiobutyl-5
(trifluoromethyl)dibenzothiophenium trifluoromethanesulfonate (Thiophenium (I)) and
2,8-Difluoro-S-(trifluoromethyl)dibenzothiophenium hexafluorophosphate (Thiophenium
IV) were synthetized. The respective efficiencies of the RISs were benchmarked in two acry-
late monomers ((5-ethyl-1,3-dioxan-5-yl)methyl acrylate—EDMA; isobornyl acrylate—IBA),
provided by Arkema, and one methacrylate resin (glycerol formal methacrylate—GFMA),
provided by Bostik.

3.2. Two-Cartridge System Configuration for RFRP

Redox formulations were prepared as follows: in a first glass vial, 0.03 g (1%wt
based on total monomer mass after mixing) of an oxidizing agent is added to 1.47 g of a
(meth)acrylate monomer. In a second glass vial, 0.03 g (1%wt based on total monomer mass
after mixing) of a reducing agent is added to 1.47 g of a (meth)acrylate monomer. The two
vials are agitated for 2 h at ambient temperature with a magnetic stirrer. Then, the two
formulations are placed in a 1:1 Medmix mixpac mixing syringe dispenser (Figure 13).
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Polymerization experiments are carried out by mixing the two cartridges at ambient
temperature (±25 ◦C) and dispensing the mixture under air (an oxygen inhibition is then
expected, particularly at the surface of the polymer [16]).
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3.3. Efficiency of the RIS Followed by Optical Pyrometry

Redox polymerization is strongly exothermic, and optical pyrometry is a well-established
technique to follow redox polymerization (see [2,13–17]). Therefore, the efficiency of an
RIS can be easily followed qualitatively by optical pyrometry. An Omega OS552-V1-6
infrared thermometer (Omega Engineering, Inc., Stamford, CT, USA) with±1 ◦C sensitivity
was used to determine the temperature vs. time profiles, thus allowing for measuring the
gel time associated with the RIS (i.e., the time required after mixing the formulations to
transition from liquid to solid state). For simplification, in this work, the gel time will be
defined as the time needed by the system to reach the maximum temperature (exothermic
peak). The redox system was investigated in a solvent, and no significant increase of
temperature was found (<1 ◦C). This highlights that the temperature increase is related
to the monomer conversion, in full agreement with the conversion observed in RT-FTIR
spectroscopy (see below).

3.4. Real-Time Fourier Transform Infrared (RT-FTIR) Spectroscopy

The conversion of the (meth)acrylate C=C double bond over time was followed by real-
time Fourier transform infrared spectrometry (RT-FTIR) using a JASCO 4100 spectrometer
(JASCO, Les Lisses, France), as presented by P. Garra et al. [7].

Experiments were conducted by following the (meth)acrylate peak at 6100 cm−1 to
6200 cm−1 on samples having a thickness of 1 mm. Photopolymerization experiments using
an LED emitting at 405 nm with an irradiance of 170 mW.cm−2 were also investigated.

3.5. Synthesis of Thiophenium Salts

In order to characterize the reactivity of thiophenium salts, some of them were syn-
thetized according to the patent provided by Zhejlang Jiuzhou pharmaceutic [18], as
presented in Sections 2.1.1 and 2.1.2.

All chemicals were purchased with high purity and used as received. First, 4,4′-Di-
tert-butylbiphenyl, trifluoromethanesulfonic acid, trifluoromethanesulfonic anhydride and
nitromethane were purchased from Merck (Merck, Strasbourg, France). Second, sodium
hexafluorophosphate, sodium hydrogen carbonate, sodium chloride, acetonitrile, diethyl
ether, toluene and dichloromethane were purchased from TCI-Europe.

3.6. Electron Spin Resonance (ESR) Spectroscopy

Radical species generated during the reaction of thiophenium salt with sodium p-
toluenesulfinate were also studied using ESR spectroscopy (X-band spectrometer, Bruker,
EMXplus Biospin, Karlsruhe, Germany).

ESR experiments were performed under oxygen-free atmosphere (nitrogen) in tert-
butylbenzene (TBB) as a solvent. Concentrations of both thiophenium salt and sodium
p-toluenesulfinate were 10−3 mol.L−1 in TBB. The spin trap used for this study was N-
tert-butyl-α-phenylnitrone (PBN), also used at a concentration of 10−3 mol.L−1 in TBB.
Simulations of the spectra were carried out using the WINSIM software.

4. Conclusions

New redox systems have been developed on the basis of the chemistry of thiophenium
salts. Good reactivity is observed for thiophenium salts/Na-Tol-sulfinate and thiophenium
salts/DHPP systems in mild conditions (under air, at room temperature). By overcoming
most of the drawbacks of peroxide-based RISs, the proposed system fulfills important
criteria, such as (i) high stability, (ii) high reactivity, (iii) short gel time and (iv) lower
toxicity. A synthetic pathway for the thiophenium salts was validated at a small scale. The
study of other redox agents will be reported in forthcoming works.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/molecules28020627/s1: synthetic procedures and characterization
of thiophenium salts; light absorption properties of thiophenium salts.
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