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Abstract: (1) Background: Scopoletin and scoparone, two naturally occurring coumarins, have
garnered considerable attention and have been introduced to the market in China due to their
high insecticidal efficacy and low toxicity. To investigate the structure–activity relationship of these
coumarins, a series of scopoletin derivatives with aryl sulfate at C7 and different substitutes at C3
were designed and synthesized, and their insecticidal activity was studied. (2) Methods: A total of
28 new scopoletin derivatives were designed and synthesized. Most target compounds exhibited
moderate insecticidal activity against the phytophagous mite Tetranychus cinnabarinus and the brine
shrimp Artemia salina. (3) Results: Among these compounds, compounds 5a and 5j possessed
the best insecticidal activities against T. cinnabarinus, with LC50 values of 57.0 and 20.0 µg/mL,
respectively, whereas that of the control drug was 15.0 µg/mL. Compound 4j exhibited selective
insecticidal activities against A. salina, with an LC50 value of 9.36 µg/mL, whereas its LC50 value
against T. cinnabarinus was 93.0 µg/mL. The enzymatic inhibitory activity on acetylcholinesterase
(AChE) showed a consistent tendency with the insecticidal activity. Further molecular docking
analyses predicted the binding conformations of these compounds, which showed a good correlation
between the insecticidal activity and the binding scores. (4) Conclusions: In general, a decreased
electron cloud density of the ∆3,4 olefinic bond is beneficial for improving the insecticidal activity
against both T. cinnabarinus and A. salina. In addition, naphthyl or benzene groups with a sulfate
ester at the C7 position could further improve the insecticidal activity against A. salina. AChE was
implied to be a site of action for potential insecticidal activity. The results provide insight into the
rational design of a new generation of effective coumarin insecticides.

Keywords: scopoletin; coumarin; acaricidal; insecticidal; AChE

1. Introduction

Phytophagous mites are distributed in almost all crop production areas on earth. The
most seriously disruptive of these mites are Tetranychidae and Eriophyidae, which consist
of T. cinnabarinus, Tetranychus urticae, Panonychus citri and Panonychus ulmi [1,2]. These
mite species destroy vegetables, fruits, crops, cotton, etc., by sucking the fluid from these
crops [3–5]. Most plant pest mites are parthenogenetic, fertile, adaptive, mutagenic and
resistant, and they are considered among the most difficult pests to prevent [6,7]. To date,
using acaricides remains the most effective mode to control plant mites [8,9]. However,
the frequent and improper application of limited species of acaricides inevitably causes
mite resistance to acaricides [10–13]. Therefore, few optional chemicals are available to
effectively control pest mites and the development of new acaricides with novel targets to
prevent mite resistance. To this end, naturally occurring compounds could be used to fight
the adverse effects of disease pathogens, insects, weeds, etc.

As a typical natural insecticide, scopoletin (Figure 1(A1)) can be synthesized and
accumulated in many plants when they are infested by pathogens or insects [14–16], and
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this compound has been registered as a botanical acaricide in China. Scopoletin has been
demonstrated to have notable contact acaricidal and repellant activity, and it has been
shown to inhibit egg laying, which could also decrease the reproductive rate and restrain
population development [17,18]. Further research shows that scopoletin could suppress
the activity of mite acetylcholinesterase (AChE), Ca2+-ATPase, etc. [19–21]. In recent years
(from 2015 to the present), a series of excellent works on the structure–activity relationship
of scopoletin have been published to further study more active insecticides. For example,
Luo et al. (2018) reported that the etherification of 7-hydroxy of scopoletin could improve
acaricidal activity (Figure 1(A2,A3)) [22] N. Khunnawutmanotham et al. (2016) showed
that the introduction of a benzylpyridyl-4-methylene moiety to the hydroxy group at C7 of
scopoletin could greatly improve the inhibition of AchE (Figure 1(A4)) [23]. Furthermore,
Li et al. (2015) found that cinnamic amide at C3 of scopoletin could modify the antitumor
activity (Figure 1(A5)) [24].
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Figure 1. Chemical structures of scopoletin (A1) and its synthetic analogues (A2, A3, A4, A5).

To identify potential green insecticidal agents and investigate the structure–activity
relationship of these coumarins, a total of 28 scopoletin derivatives with aryl sulfate at C7
and different substitutes at C3 were designed and synthesized in this study (Scheme 1).
The acaricidal activities of the target compounds against A. salina and T. cinnabarinus were
screened, and the structure–activity relationship was summarized. The ability of these
compounds to inhibit AChE was examined, and molecular docking was explored. The
results provide information for designing compounds with higher acaricidal activity.
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2. Results and Discussion
2.1. Insecticidal Activities against T. cinnabarinus

The acaricidal activities (LC50, µg/mL) of the title compounds against the pest mite
T. cinnabarinus are shown in Figure 2 (Supporting Information, Table S1). For scopoletin
(4) and its sulfonate derivatives (4a–4j), all sulfonate-substituted compounds showed less
potential than the original compound scopoletin, except for the naphthalenesulfonate of
scopoletin (4j), whose LC50 is much lower than that of compound 4. In the substituted
benzene sulfonate derivatives 4a–4h, the electro-donating substituent (4-OCH3) on the
benzene ring appeared to be more favorable than the electro-withdrawing substituents
(4-F, Cl, Br or CF3), but 4-NO2 was the exception to this trend. The LC50 of compound
4b was less than those of compound 4a, 4c–4f and 4h but greater than that of 4g, which
proves that substitution 4-NO2 increased toxicity. The higher acaricidal toxicity of 4-NO2
benzene sulfonate (4g) may be attributed to its lower lipophicity and higher topological
polar surface area.
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Figure 2. Insecticidal activities against Acarid (LC50, µg/mL, 72 h) and Artemia (LC50, µg/mL,
12 h) and the AChE inhibition (IC50, µg/mL) of synthetic compounds. Cyetpyrafen was used as a
positive control.

For 3-(4-F-phenyl)-scopoletin (5) and its sulfonate derivatives (compounds 5a–5j), the
acaricidal activities of most the sulfonate-substituted compounds (except compound 5b)
were improved. In particular, naphthalene-2-sulfonate substituted compound 5j exhibited
a toxicity that was nearly 5 times higher than that of compound 5. Benzene sulfonate-
substituted compound 5a, 4-NO2-benzene sulfonate-substituted compound 5g, and thienyl-
2-sulfonate-substituted compound 5i are approximately 2 times more toxic than compound
5. Interestingly, electro-donating substituent (4-OCH3) on the benzene ring does not
favor acaricidal activity compared to the electro-withdrawing substituents (4-F, Cl, Br, CF3
and NO2).

The 2 sulfonate-substituted compounds (compounds 6d, 6h, 7a, and 7d) of 3-acetyl
scopoletin (6) and 3-(4-Br-aniline formyl) scopoletin (7) were less toxic than their original
compounds, indicating that sulfonate substitution does not help acaricidal activity.

Overall, 3-(4-F-phenyl) and 7-aryl sulfonate substitutions on scopoletin improved the
acaricidal activity of scopoletin. Naphthalene-2-sulfonate seems to be the best substitute
for the acaricidal activity of scopoletin, which may be attributed to its large volume.
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2.2. Insecticidal Activities against Artemia

The toxicity (LC50 values of 6 h and 12 h) of the title compounds against Artemia are
shown in Figure 2 (Supporting Information, Table S2). For scopoletin (4) and its sulfonate
derivatives (4a–4j), only the naphthalenesulfonate of scopoletin (4j) is more toxic than the
unsubstituted compound scopoletin (4). The 4-OCH3-benzene sulfonate of scopoletin (4b)
and the 4-Cl-benzene sulfonate of scopoletin (4d) are slightly less toxic to Artemia than
the unsubstituted compound scopoletin (4) at 12 h. For 3-(4-F-phenyl)-scopoletin (5) and
its sulfonate derivatives (5a–5j), only the naphthalenesulfonate-substituted compound (5j)
was slightly more toxic to Artemia at 12 h than the original compound 3-(4-F-phenyl)-
scopoletin (5). The 4-Cl-benzene sulfonate-substituted compound (5d) is nearly as toxic to
Artemia as the original compound (5) at 12 h. For 3-acetyl-scopoletin (6), benzene sulfonate
substitution may improve the toxicity (the LC50 of 6d and 6h at 6 h is less than that of
the original compound (6). For 3-(p-Br-aniline formyl) scopoletin (7), benzene sulfonate
substitution decreased the toxicity to Artemia (the LC50 values of 7a and 7d at 6 h and
12 h were higher than that of the original compound (7). Overall, naphthalenesulfonate
substitution at the 7-site of scopoletin may not only improve the acaricidal activity but also
increase the toxicity to Artemia compared to the lead compound Scopoletin.

2.3. AChE Inhibition

The in vitro AChE inhibition of the title compounds in T. cinnabarinus is shown in
Figure 2 (Supporting Information, Table S1). The results show that the AChE inhibitory rates
of the title compounds positively correlated with their acaricidal activities. Among all the
tested samples, compounds 4j, 5a, and 5j showed the most potent activities against AChE,
with IC50 values of 56.75 ± 2.10, 40.60 ± 4.16, and 54.83 ± 6.39 µg/mL, respectively, while
those of other compounds exhibited only moderate inhibition (Figure 2). For scopoletin (4)
and its sulfonate derivatives (4a–4j), the 4-Cl benzene sulfonate of scopoletin (4d) and the
naphthalenesulfonate of scopoletin (4j) exhibited the highest inhibition of AchE, which was
even greater than that of the original compound scopoletin (4). However, only compound
4j showed higher acaricidal activities than scopoletin. Moreover, compound 4b, 4c and
4g also showed higher inhibition of AchE than other sulfonate derivatives of scopoletin,
which is in consonance with their acaricidal activities.

For 3-(4-fluorophenyl)-scopoletin (5) and its sulfonate derivatives (5a–5j), compound
5c, 5d, 5e, 5g, 5i, and 5j all exhibited improved AChE inhibition compared with their
original compound 5. Accordingly, these compounds also have higher acaricidal activi-
ties than the original compound 3-(4-fluorophenyl)-scopoletin (5), with the exception of
compound 5a. Although its acaricidal activity is much higher than that of 5, its ability to
inhibit AChE did not markedly differ from that of compound 5. Conversely, compound
5f and 5h less potently inhibited AChE that compound 5 despite their higher acaricidal
activities, which suggests that AChE may not be the only action site of these compounds.
The 4 sulfonate-substituted compounds (6d, 6 h, 7a, and 7d) of 3-acetyl-scopoletin (6)
and 3-(4-bromoaniline formyl) scopoletin (7) showed lower AChE inhibition than their
respective original compounds 6 and 7, which is consistent with their acaricidal activities.

2.4. Molecular Docking

Molecular docking between the typical compounds and target protein (6ary) was
studied to elucidate their mutual effects and structure–activity relationship. The results of
molecular docking are shown in Figure 3, which presents appropriate interactions with the
main amino acid residues at the active site of the target protein. The docking pose analysis
suggested that compounds 4j, 5a, and 5j could easily fit in the catalytic pocket of AChE,
showing grid scores of −64.66 (4j), −65.41 (5a) and −72.95 (5j), respectively. Compound 4j
formed π–π stacking with the TRP245 residue, hydrogen bonds with the CYS447, SER283,
TYR489, and SER280 residues, and hydrophobic interactions with the TYR493, TYR489,
and PHE490 residues. Compound 5a mainly interacted with TRP245, TYR489, and TRP441
residues via π–π stacking, with SER283, TYR282 and TYR489 residues via hydrogen bonds
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and with TYR282, ILE231, and ASP233 residues via hydrophobic interactions. Similarly,
compound 5j formed π–π stacking with the TRP245 residue, hydrogen bonds with the
TYR282 and TYR489 residues, and hydrophobic interactions with the ILE604, TRP245,
TYR493, and TRP441 residues. This docking simulation revealed the importance of the
lactone ring in the structures of compounds 4j, 5a, and 5j, which could both form hydrogen
bonds with TYR489. The molecular docking results are consistent with the biodetection
data in vitro. Modifying the skeleton compound with a naphthalene nucleus may potently
enhance the ability of these compounds to inhibit AChE.
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3. Materials and Methods
3.1. General Remarks

All regular solvents and reagents were purchased from Qingdao Chemical Reagents Mar-
keting Companies without further treatment. 2,4,5-Trimethoxybenzaldehyde, 2,2-dimethyl-1,3-
dioxane-4,6-dione, 4-fluorophenylacetyl chloride, HATU (2-(7-azabenzotriazol-1-yl)-N,N,N’,N’-
tetramethyluronium hexafluorophosphate) and DIPEA (N,N-diisopropylethylamine) were
supplied by Saen Chemical Technology Co., Ltd.(Shanghai, China), Ethyl acetoacetate
(Tianjin Damao Chemical Reagent Factory, Tianjin, China) and all sulfonyl chlorides used
(Shanghai Macklin Biochemical Co., Ltd., Shanghai, China) were obtained separately from
the different commercial sources listed above. Reactions were monitored by thin-layer
chromatography (TLC) on silica gel GF254 and visualized under UV light (254 nm or 365
nm). The melting points (uncorrected) of compounds were measured using an X-4B micro
melting point instrument (Yidian Physical Optical Instrument Co., Ltd. Shanghai, China).
The 1H and 13C NMR spectra were obtained with a BRUKER AVANCE III HD 500 MHz
(Bruker-Biospin, Billerica, MA, USA) using dimethyl sulfoxide (DMSO-d6) or chloroform
(CDCl3) as the solvent. High-resolution mass spectra (HRESI TOF (+)) were recorded on a
SolariX70FT-ICR-MS (Bruker-Biospin, Billerica, MA, USA). X-ray diffraction was measured
with a Bruker D8 QUEST-X (Bruker-Biospin, Billerica, MA, USA).

3.2. Procedures for the Synthesis of Compounds in Scheme 1
3.2.1. Preparation of 2,4-dihydroxy-5-methoxybenzaldehyde (2) [23]

Aluminum (III) chloride (5.4 g, 40 mmol) was added in portions over 30 min to a
solution of 2,4,5-trimethoxybenzaldehyde (2.0 g, 10 mmol) in dichloromethane (120 mL).
After stirring at room temperature for 24 h, the reaction mixture was poured into ice
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water (200 mL); concentrated hydrochloric acid was added to adjust the pH to 1. The
dichloromethane layer was separated and washed with water. The organic layer was dried
with anhydrous sodium sulfate, filtered, and concentrated to produce 2,4-dihydroxy-5-
methoxybenzaldehyde. A white acicular crystal with the following characteristics was
obtained: yield 86.3%, m.p. 203–205 ◦C, 1H NMR (500 MHz, CDCl3) δ: 11.25 (s, 1H), 9.60 (s,
1H), 6.94 (s, 1H), 6.82 (s, 1H), 6.45 (s, 1H), and 3.84 (s, 3H).

3.2.2. Preparation of 7-hydroxy-6-methoxy-2-oxo-2H-chrom-ene-3-carboxylic Acid (3) [25]

A mixture of 2,4-dihydroxy-5-methoxybenzaldehyde (0.34 g, 2 mmol), 2,2-dimethyl-
1,3-dioxane-4,6-dione (0.29 g, 2 mmol), glycine (0.05 g, 0.7 mmol) and 5 mL ethanol was
heated to reflux for 2.5 h. After the reaction was complete, the mixture was cooled to
room temperature and then poured into ice-cold water. The resulting solid product was
filtered, washed with water and recrystallized (in methanol) to obtain the pure product
7-hydroxy-6-methoxy-2-oxo-2H-chrom-ene-3-carboxylic acid, which had the following
characteristics: green solid, yield 92.5%, m.p. 188–190 ◦C, 1H NMR (500 MHz, DMSO-d6): δ
12.82 (s, 1H), 10.91 (s, 1H), 8.67 (s, 1H), 7.44 (s, 1H), 6.82 (s, 1H), and 3.83 (s, 3H).

3.2.3. Preparation of 7-hydroxy-6-methoxy-2H-chromen-2-one (4) [26]

7-Hydroxy-6-methoxy-2-oxo-2H-chrom-ene-3-carboxylic acid (3, 0.47 g, 2 mmol) was
heated to reflux in a mixture of 4 mL of ethylene glycol and 5 mL of pyridine for 3.5 h.
After cooling to room temperature, the reaction mixture was acidified to pH = 4 using HCl
(10 M). The acid mixture was then extracted with CH2Cl2 (50 mL × 3), dried with Na2SO4,
and evaporated to yield the product, which was recrystallized from ethanol. The product
had the following characteristics: yellow solid, yield 67.9%, m.p. 204–206 ◦C, 1H NMR
(DMSO-d6): δ 10.3 (br, 1H), 7.88 (d, 1H, J = 8.0 Hz), 7.19 (s, 1H), 6.77 (s, 1H), 6.20 (d, 1H,
J = 8.0 Hz), and 3.81 (s, 3H).

3.2.4. Preparation of 3-(4-fluorophenyl)-7-hydroxy-6-methoxy-2H-chromen-2-one (5) [27]

2,4-dihydroxy-5-methoxybenzaldehyde (0.34 g, 2 mmol) was dissolved in dry acetone
(10 mL), and 4-fluorophenylacetyl chloride (0.38 g, 2.2 mmol) was then added dropwise.
The mixture was heated to reflux with anhydrous K2CO3 (1.10 g, 8.0 mmol) for 4 h. Acetone
was then removed under reduced pressure, and ice water (20 mL) was added. The resulting
mixture was extracted with EtOAc (100 mL × 3). The EtOAc layers were combined, dried
(Na2SO4), and evaporated under reduced pressure to give the crude product. The crude
solid was recrystallized from methanol, resulting in the corresponding 3-(4-fluorophenyl)-
7-hydroxy-6-methoxy-2H-chromen-2-one with the following characteristics: yellow solid,
yield 82.4%, m.p. 205–208 ◦C, 1H NMR (500 MHz, CDCl3): δ 7.71–7.65 (m, 3H), 7.11 (t,
J = 8.7 Hz, 2H), 6.94 (s, 1H), 6.90 (s, 1H), 6.24 (s, 1H), and 3.96 (s, 3H).

3.2.5. Preparation of 3-acetyl-7-hydroxy-6-methoxy-2H-chromen-2-one (6) [28]

To a cold mixture of 2,4-dihydroxy-5-methoxybenzaldehyde (0.34 g, 2 mmol) and
ethyl acetoacetate (0.26 g, 2 mmol), 2 mL piperidine was added by rapid stirring. After
30 min, the yellowish precipitate was filtered and subsequently washed with EtOH. This
precipitate had the following characteristics: yellow solid, yield 46.8%, m.p. 118–120 ◦C,
1H NMR (500 MHz, DMSO-d6): δ 9.64 (s, 1H), 8.57 (s, 1H), 7.23 (s, 1H), 7.10 (s, 1H), 3.92 (s,
3H), and 2.55 (s, 3H).

3.2.6. Preparation of 3-(4-bromoaniline formyl)-7-hydroxy-6-methoxy-2H-chromen-2-one
(7) [29]

HATU (0.27 g, 0.72 mmol) was added to a solution of 7-hydroxy-6-methoxy-2-oxo-
2H-chrom-ene-3-carboxylic acid (0.11 g, 0.48 mmol) in anhydrous DMF at 0 ◦C under
nitrogen. The resulting solution was stirred at 0 ◦C for half an hour. Thereafter, the
corresponding p-bromoaniline (0.083 g, 0.48 mmol) and DIPEA (0.19 g, 1.4 mmol) were
added, and the resulting solution incubated at room temperature overnight while stirring.
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Once the completion of the reaction was verified by TLC, the reaction mixture was poured
into ice water and extracted twice with ethyl acetate (100 mL). The ethyl acetate layers
were combined, washed with brine, dried over sodium sulfate and subjected to rotary
evaporation under reduced pressure. This process yielded a product with the following
characteristics: orange solid, yield 89.6%, m.p. 247–249 ◦C, 1H NMR (500 MHz, DMSO-d6):
δ 10.78 (d, J = 10.4 Hz, 1H), 8.82 (s, 1H), 7.68 (d, J = 8.8 Hz, 2H), 7.55–7.49 (m, 3H), 6.89 (s,
1H), and 3.85 (s, 3H).

3.2.7. General Procedure for the Synthesis of Compounds 4a–4j, 5a–5j, 6d, 6h, 7a, and
7d [30]

Benzenesulfonyl chloride with different substituents (a–j, 3.0 mmol) was added drop-
wise to a solution of compounds 4–7 (1.0 mmol) in 5 mL of anhydrous pyridine. The
reaction mixture was heated to reflux for 2 h, cooled to room temperature, poured into ice
water and acidified with HCl (10 M). The resulting precipitate was collected by filtration
and then purified by flash silica column chromatography using EA/PE as the eluent. As a
result, compounds 4a–4j, 5a–5j, 6d, 6h, 7a, and 7d were prepared via a similar method.

The 1H and 13C NMR spectra and the HRESIMS data of the targeted compounds are
detailed in the Supporting Materials. The X-ray diffraction structure of target compound 4c
is shown in Figure 4, and the Cambridge Crystallographic Data Centre (CCDC) number
is 2020935.
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3.3. Acaricidal Activities against T. cinnabarinus

An acaricidal activity assay of the test compounds against mites was conducted
according to procedures outlined in the literature [31]. Each title compound (10 mg) was
dissolved in 2 mL DMSO to give a 5 mg/mL stock solution. The stock solution was then
diluted to a series of working concentrations with 1% Tween 80 to obtain the test solutions.
Subsequently, the leaves of two-leaf-stage broad beans were inoculated with 150–200 female
adult T. cinnabarinus mites and reared in a greenhouse (26 ± 1 ◦C, 75–80% RH, 16 h light
and 8 h dark alternatively) for 8 h. The test solution of the compound was then evenly
sprayed on these leaves, which were then cultivated in the greenhouse for 72 h. In the blank
control group, Tween 80 (1%) was used instead of the treatment solution. Cyetpyrafen
(CAS NO. 1253429-01-4) was used as a positive control. Each treatment was repeated three
times. The dead insects were recorded under a stereoscope, and the corrected mortalities
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of mites treated with the compounds were calculated. Toxicity regression equations with
a correlation coefficient and lethal concentration that killed T. cinnabarinus by 50% (LC50)
were obtained using toxicity regression equation software. The experimental data are
detailed in the Supplementary Materials (Supporting Information, Table S1).

3.4. Toxicity to Artemia

The toxicity of the title compounds to the brine shrimp A. salina was evaluated accord-
ing to the reported method [32]. Each title compound (10 mg) was dissolved in 1 mL of
DMSO to give a 10 mg/mL stock solution, which was then diluted to a series of working
concentrations with 1% Tween 20—artificial seawater (5%). Subsequently, approximately
50 hatched (10 h instar) brine shrimp were transferred into each pore of a 24-well plate filled
with the test solutions. Finally, the brine shrimp were reared in an illumination incubator
(28 ± 1 ◦C, 12 h light and 12 h dark alternatively) for 24 h. DMSO—1% Tween 20 was
used as a blank control. Each treatment was conducted in triplicate. The dead insects were
recorded under a stereoscope, and the corrected mortalities of A. salina treated with the
compounds were calculated. Toxicity regression equations with a correlation coefficient and
lethal concentration that killed brine shrimp by 50% (LC50) were obtained using toxicity
regression equation software. The experimental data are detailed in the Supplementary
Materials (Supporting Information, Table S2).

3.5. AChE Inhibition

The effects of the title compounds on the in vitro AChE activity were evaluated using
ELISA technology [23]. AChE derived from electric eels was purchased from Sigma–Aldrich
Chemie GmbH (Buchs, Switzerland). Briefly, the AChE was preincubated with different
concentrations (500, 250, 125, 62.5, 31.25, 15.625, and 7.8125 µg/mL) of the compounds
in PBS solution. Then, the AChE activities after incubation were measured using the
corresponding ELISA kit according to the manufacturer’s instructions (Jiancheng, Nan-
jing, China). The detection was performed using a multifunctional microplate reader
(SpectraMax® M2e, Thermo Scientific, Waltham, MA, USA). The experimental data are
detailed in the Supplementary Materials (Supporting Information, Table S1).

3.6. Molecular Docking

Molecular docking was studied on the Yinfo Cloud Platform (http://cloud.yinfotek.
com, accessed on 25 March 2022). The chemical structures of compounds 4j, 5a, and 5j
were drawn by JSME and converted to 3D structures with energy minimization using
the MMFF94 force field. A crystal structure of Anopheles gambiae AChE in complex with
the AChE inhibitor PRC1214 (PDB accession no. 6ARY) was automatically downloaded
from the RCSB Protein Data Bank (http://www.rcsb.org/, accessed on 25 March 2022) [33].
All redundant atoms except chain A were deleted, and the protein structure was then
carefully treated in several steps, including residue repair, protonation, and partial charge
assignment, with the AMBER ff14SB force field. The DMS tool was employed to build the
molecular surface of the receptor using a probe atom with a 1.4 Å radius. The binding
pocket was defined by the crystal ligand, and spheres were created to fill the site by
employing the Sphgen module in UCSF Chimera. A box enclosing the spheres was set
with its center at (−59.984, 57.429, 17.731) and dimensions of (36.137, 28.151, 32.027), within
which grids necessary for rapid score evaluation were created by the grid module. Finally,
the DOCK 6.7 program was utilized to execute semiflexible docking, where 10,000 different
orientations were produced. A clustering analysis was performed (RMSD threshold was
set 2.0 Å) for candidate poses, and the best scored poses were output. The experimental
data are detailed in the Supplementary Materials (Supporting Information, Tables S3–S5).

4. Conclusions

As described above, several scopoletin analogs synthesized by introducing various
substitutes at the C3 and substituted-phenyl sulfate groups at the C7 of the coumarin

http://cloud.yinfotek.com
http://cloud.yinfotek.com
http://www.rcsb.org/
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skeletal lead were acaricidally active against T. cinnabarinus. Acetyl, 4-fluorophenyl, and
4-bromoaniline formyl at the C3 of scopoletin could all improve the acaricidal activity, but
the effect of substitution at the C7 of scopoletin depended on the phenyl sulfate group.
Specifically, 3-(4-F-phenyl) and 7-(naphthalene-2-sulfonate) seem to be the best substitutes
for the acaricidal activity of scopoletin, which may be attributed to their large volume. Most
of the target compounds exhibited moderate to strong inhibition of mite AChE in vitro, and
the degree of AChE inhibition was consistent with acaricidal activity. Molecular docking
showed that compounds with higher acaricidal activity could conjugate more tightly with
the target protein AChE by binding more main amino acid residues at the active site. The
above results imply that AChE may be one main action site of the title compounds. The
present data show that this design idea (Figure 5) is feasible and provides a reference
for later structural modification. It is worth mentioning that this study has been granted
Chinese patents (No. CN 110590725 A).
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