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Abstract: Regulatory measures and public concerns regarding bisphenol A (BPA) have led to its
replacement by structural analogues, such as BPAF, BPAP, BPB, BPF, BPP, BPS, and BPZ. However,
these alternatives are under surveillance for potential endocrine disruption, particularly during the
critical period of fetal development. Despite their structural analogies, these BPs differ greatly in their
placental transport efficiency. For predicting the fetal exposure of this important class of emerging
contaminants, quantitative structure-activity relationship (QSAR) studies were developed to model
and predict the placental clearance indices (CI). The most usual input parameters were molecular
descriptors obtained by modelling, but for bisphenols (BPs) with structural similarities or heteroatoms
such as sulfur, these descriptors do not contrast greatly. This study evaluated and compared the
capacity of QSAR models based either on molecular or chromatographic descriptors or a combination
of both to predict the placental passage of BPs. These chromatographic descriptors include both
the retention mechanism and the peak shape on columns that reflect specific molecular interactions
between solute and stationary and mobile phases and are characteristic of the molecular structure of
BPs. The chromatographic peak shape such as the asymmetry and tailing factors had more influence
on predicting the placental passage than the usual retention parameters. Furthermore, the QSAR
model, having the best prediction capacity, was obtained with the chromatographic descriptors alone
and met the criteria of internal and cross validation. These QSAR models are crucial for predicting
the fetal exposure of this important class of emerging contaminants.

Keywords: bisphenols; QSAR; human placental transfer; endocrine disruptor; chromatographic descriptors

1. Introduction

Bisphenol A (BPA), which was widely used in everyday products, has been prohibited
in food packaging in several countries because of its endocrine disrupting properties. As
a result, structurally similar phenolic compounds such as BPAF, BPAP, BPB, BPF, BPP,
BPS, and BPZ (Figure 1) have gradually replaced BPA in the polymer industry. Because
of the wide use of these analogues in food packaging and personal care products [1–3],
human exposure to these compounds is ubiquitous, as demonstrated by their detection
in human urine [1,4,5]. These analogues may display endocrine disrupting properties
similar to those of BPA [6–10] particularly during the critical period of pregnancy [11–13].
In vivo studies performed in pregnant sheep showed that, similar to BPA, BPS and BPF
can also cross the placenta [14–16]. Recently, ex vivo human placental perfusion carried
out to assess the placental transfer of 15 bisphenols (BPs) has shown that despite their
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structural similarities, the efficiency of placental transport differs greatly among BPs, as
reflected in the large range of their clearance indices, from 0.065 to 0.842 [17]. Indeed, while
BP4-4, BPAP, BPE, BPF, 3-3BPA, BPB, and BPA cross the placenta by passive diffusion [14],
the materno-fetal placental transfer of BPS and BPFL is very limited and may involve
membrane efflux transporters [17,18].
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Figure 1. Molecular structure of the fifteen bisphenols with their respective name, abbreviation,
molecular weight, and CAS number.

The physicochemical properties of the molecules, such as molecular weight, degree
of ionization (pKa), and lipophilicity (LogP), are considered possible factors that deter-
mine the extent of placental passage and the mechanism of transfer [19]. In this context,
several studies have predicted the maternal-fetal transfer rates of many drugs or organic
compounds through quantitative-structure activity relationship (QSAR) modelling [20–23].
These models are mostly based on molecular descriptors in order to establish a relationship
between the biological activities or the toxicological responses of molecules and their molec-
ular, physicochemical, and structural properties [24]. However, these numerical descriptors
are calculated from the two- and/or three-dimensional structures of molecules and do
not take into account the dynamic interactions with their biological targets [25]. For BP
analogues, the physicochemical parameters generally involved in placental transfer (pKa
within 8.5–9, LogP within 2–7, and molecular weight (MW) below 600 Da) would imply
that their potential passive diffusion across the placenta would be high [17,20–22]. It is,
therefore, anticipated that the placental transfer efficiency of these structurally related BPs
will be hardly predicted by descriptors based on molecular structure alone. In many cases,
experimental descriptors such as chromatographic retention have been added to molecular
ones to improve the QSAR models [26,27]. Indeed, the chromatographic retention depends
on the interaction of the compound of interest, i.e., its structure, with the stationary phase
and the mobile phase. Thus, chromatographic retention of a molecule depends strongly on
both its physicochemical properties and its environment. To the best of our knowledge, few
studies have investigated the use of chromatographic descriptors alone in QSAR modelling,
and all of them have only considered retention parameters [28–30].
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The aim of the present study was to evaluate the reliability of the QSAR model
based on chromatographic descriptors compared to classical molecular descriptors to
predict the placental clearance of BPs, using the placental clearance indices determined
in a previous study [17] as the biological output. To that end, the set of 15 selected BPs
was eluted on thirteen chromatographic columns using two elution solvents. We then built
a QSAR model based either on classical molecular descriptors of the fifteen bisphenols
or on chromatographic descriptors, such as retention and peak shape parameters, or on
both molecular and chromatographic descriptors. Their performances for predicting the
BP placental transport efficiency were verified by cross validation procedures. This QSAR
approach, by allowing the prediction of a key parameter, i.e., placental clearance, should
provide new insight into screening of this important class of emerging BPs and assessing
the hazards of BPA substitution in a vulnerable developing fetus.

2. Results
2.1. Data Collection
2.1.1. Clearance Indices

Clearance indices (CI) of the 15 BPs perfused in cocktail were determined on five
placentae using the ex vivo human perfused placenta model described in our previous
study [17], as shown in Table 1. CI data were used as outcomes due to their ability to
eliminate inter-placental variation by standardizing BP clearance to the reference compound
antipyrine. These BPs were classified into two groups according to their mechanism of
placental passage, by passive diffusion for seven BPs (similar to antipyrine) or the limited
transport for eight BPs [17]. This data set obtained in the same experimental conditions
was relatively distributed in a wide range of placental CI and is, thus far, suited for the
QSAR modelling of the ability of these newly-introduced BPs to cross the placenta [22].
Moreover, the use of individual data of CI instead of the mean CI of both experimental and
biological variabilities needs to be taken into account and, thus, improves the predictive
capacity of the model [31].

Table 1. Mean ± standard deviation (SD) of CI of the 15 studied BPs (seven BPs with transfer rates
that did not differ significantly from that of antipyrine and eight BPs with a significantly lower
transfer rate than that of antipyrine) evaluated on five placentae. The clearance index corresponds to
the ratio of BP-studied placental transfer rate divided by the antipyrine transfer rate [17].

Bisphenol Mean CI ± SD (n = 5) Classification

BPFL 0.064 ± 0.021

Significantly different from
antipyrine transfer rate

BPS 0.082 ± 0.016
BPBP 0.256 ± 0.046
BPZ 0.318 ± 0.090
BPC 0.392 ± 0.076
BPM 0.442 ± 0.149
BPP 0.452 ± 0.048

BPAF 0.524 ± 0.071

BPAP 0.570 ± 0.062

Not different from antipyrine
transfer rate

BP4-4 0.662 ± 0.135
BPE 0.686 ± 0.158
BPF 0.696 ± 0.142

3-3BPA 0.722 ± 0.070
BPA 0.812 ± 0.065
BPB 0.842 ± 0.080

2.1.2. Molecular Descriptors

In total, 50 molecular descriptors were calculated for each BP with different algorithms
available in the ChemDraw Pro 17.1 software. Among these 50 descriptors, 16 concern
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physicochemical properties (e.g., pKa, LogP), 14 are topological descriptors (e.g., Balaban
index, polar surface), and 20 are involved with thermodynamic and electronic properties.

2.1.3. Chromatographic Descriptors

Figure 2 shows that the retention and the elution order of BPAF, BPAP, and 3-3BPA on
the C18 column change according to the elution solvent, whether AcN or MeOH, (Figure 2)
and the BPS peak shape is larger with MeOH than with AcN. Peak asymmetry, tailing factor,
peak width (5%), and k′ vs. BPA were determined with the two organic solvents and for the
13 columns, resulting in a total of 104 descriptors per BP (Supplementary Materials Table S2).
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Figure 2. Chromatograms of 15 studied BPs eluted on a BEH C18 column with an AcN/H2O gradient
elution (A) and with an MeOH/H2O gradient elution (B).

2.2. QSAR Modelling

First, the ability of the models with molecular descriptors obtained in silico to predict
the BP CI was investigated. Secondly, the chromatographic descriptors were added to the
molecular descriptors to assess whether this combination could improve the prediction abil-
ity of the model. Finally, a model using only chromatographic descriptors was developed
and compared to those using molecular descriptors.

2.2.1. Molecular Descriptors in the QSAR Model for Predicting Placental Passage

Among the 50 normalized molecular descriptors (Supplementary Materials Table S1),
eleven descriptors gave a weight greater than twice the median of the weights using arti-
ficial neural network (ANN) learning and were selected as significant descriptors in the
prediction of CI. Three of them were physicochemical descriptors (partition coefficients:
LP2 and CD2, and a melting point CPP10), two were steric descriptors (Connolly Molecular
Area CPS2, Connolly Solvent Excluded Volume CPS3), and two were topologic descriptors
(Cluster count MT2 and Polar Surface Area MT5). The other four were involved in electro-
static and thermodynamic interactions (heat of formation DE1, total energy DE2, cosmo
area DE5, and ionization potential DE7). Then, using these eleven descriptors, twenty-eight
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combinations were selected to build the model, considering low pair correlations among
the variables (determination coefficient < 0.5). Five of these combinations had a regression
R2 > 0.7 and significant parameters in the multilinear regression (MLR). The final model,
with significant and not correlated descriptors, was obtained with the following four molec-
ular descriptors: LogP (LP2), Polar Surface Area (MT5), the heat of formation (DE1), and
the total energy (DE2), and by using Equation (1) with a weighting by 1/Y:

CI = 0.46 + 0.23 × LP2 − 0.08 ×MT5 − 0.30 × DE1 + 0.41 × DE2 (1)

Regression-adjusted CI and leverage are reported in Supplementary Materials Table S3.
The criterion of the regression and of the cross validation are acceptable with a mean coefficient
of regression determination (R2) of 0.77 and mean cross-validated correlation coefficient (Q2)
higher than 0.70, respectively. However, the mean correlation coefficient of leave-many-out
(LMO) validation (QLMO2) and mean correlation coefficient of concordance (CCC) for the
three data sets were 0.57 and 0.64, respectively, which did not fulfill the recommended criteria
for validating the predictive ability of this model (i.e., QLMO2 > 0.6 and CCC > 0.85, Table 2).

Table 2. Statistical results of the QSAR for the three selected models built with either molecular,
chromatographic, or combined descriptors.

Regression Cross-Validation Leave-Many-Out (LMO)
Validation

RMSEC * R2 * BIC RMSECV * Q2 * QLMO2 * RMSEP ** CCC ** Rspearman **

Validation
Criterion

>
0.65 > 0.5 > 0.65 > 0.85

Molecular
Descriptors 0.14 0.77 −64 0.14 0.71 0.57 0.17 0.64 0.7

Chromatographic
Descriptors 0.11 0.84 −89 0.11 0.81 0.73 0.13 0.81 0.83

Both Descriptors 0.11 0.85 −86 0.11 0.82 0.47 0.19 0.67 0.71

* mean of validation parameters for the prediction of BPs of the three test data sets. ** parameters determined
with observed and predicted CI calculated with test data set 1, 2, and 3.

Moreover, the slope of the LMO validation curve [Ypred = f(mean(Yobs))] is significantly
different than 1 (Figure 3A), and for most of the BPs of the test sets, the predicted CI are
underestimated by the model except for BPZ (Figure 4A), for which its predicted CI were
twice as high as its observed CI (Figure 4A). The results suggest that these in-silico calculated
descriptors alone are not robust enough for predicting the clearance index of a new BP.
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Figure 3. LMO validation curves of the mean observed placental CI of BPs and predicted for the
three test data sets by multilinear regression based on molecular (A), both molecular and chromato-
graphic (B), or chromatographic (C) descriptors. The dotted line represents a perfect fit with the
equation CIobs = CIpred and the straight line is the representation of CIpred = a × CIobs + b where a
and b are the coefficients of the corresponding linear regression model.
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Figure 4. Mean± SD observed CI determined for the BPs on five perfused human placentae compared
to the CI predicted by QSAR models based on molecular descriptors (A), molecular combined with
chromatographic descriptors (B), and chromatographic descriptors (C). The placental CI of some BPs
cannot be predicted because they are pivotal in building the QSAR model (BPAF, BPFL, BPS in (A),
BP44, BPFL, BPS in (B) and (C)).

2.2.2. Combining Chromatographic Descriptors and Molecular Descriptors in the QSAR
Model for Predicting Placental Passage

The 104 chromatographic descriptors were combined with the 50 molecular descriptors.
Thirty-eight descriptors from these 154 descriptors were selected by ANN (Table 3), leading
to 341 combinations of descriptors without correlation. Interestingly, only five molecular
descriptors included in the previous molecular QSAR modelling (MT2, MT5, DE1, DE2, and
DE5) were also significant in this present model, whereas the molecular descriptors related
to LogP were not selected by ANN using molecular and chromatographic descriptors.
The retention factors related to BPA were first selected by ANN (k′ vs. BPA, #5), but
were progressively removed from the multilinear regression models because of their strong
correlations with the molecular and peak shape descriptors. After the MLR assay, 50 models
were chosen for their good fitting and the significance of their parameters. However, only a
few of them met the LMO validation criteria.

Table 3. Molecular and chromatographic descriptors selected to build QSAR for predicting placental CI,
i.e., with weight in the artificial neural networks higher than twice the median of all descriptors’ weight.

Molecular Descriptors Chromatographic Descriptors

Id Parameters Id Column—Solvent—
Parameters Id Column—Solvent—

Parameters

CPS3 Connolly Solvent
Excluded Volume

C18A2 C18—AcN—Width (5%) RCBA2 RCB—AcN—Width (5%)
C18A7 C18—AcN—Asymmetry RCBA8 RCB—AcN—Tailing factor

CD1 Mol Refractivity C18A8 C18—AcN—Tailing factor CC18A2 CC18—AcN—Width (5%)
MT2 Cluster Count PHA5 PH—AcN—k’ vs. BPA CC18A7 CC18—AcN—Asymmetry
MT5 Polar Surface Area FPA2 FP—AcN—Width (5%) C18M5 C18—MeOH—k′ vs. BPA

MT12 Total Connectivity C8A2 C8—AcN—Width (5%) C18M7 C18—MeOH—Asymmetry
DE1 Heat of formation T3A2 T3—AcN—Width (5%) PHM5 PH—MeOH—k′ vs. BPA
DE2 Total Energy T3A5 T3—AcN—k’ vs. BPA FPM7 FP—MeOH—Asymmetry
DE5 Cosmo Area T3A7 T3—AcN—Asymmetry T3M5 T3—MeOH—k′ vs. BPA
DE9 Lumo Energy T3A8 T3—AcN—Width (5%) PFPM2 PFP—MeOH—Width (5%)

RBA5 RB—AcN—k’ vs. BPA PFPM7 PFP—MeOH—Asymmetry
PFPA2 PFP—AcN—Width (5%) RPM7 RP—MeOH—Asymmetry
RPA2 RP—AcN—Width (5%) CNM7 CN—MeOH—Asymmetry
CNA5 CN—AcN—k’ vs. BPA CC18M2 CC18—MeOH—Width (5%)
FBA7 FB—AcN—Asymmetry

Furthermore, the influence of BPs (leverage) on the regression differed according to
the type of descriptors used. Indeed, BPAF, which had a strong influence using molecular
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descriptors, was no longer leveraged but was replaced by BP44, resulting in a change in the
arbitrary choice of BPs in the test set 1 for LMO validation [32]. The final model included
the following parameters: Connolly Solvent Excluded Volume (CPS3), cluster count (MT2),
and LUMO energy (DE9) as molecular descriptors, and shape peak parameters (width #2,
asymmetry #7, and tailing factor #8) on the biphenyl and BEH C8 column with AcN elution
(RCBA8 and C8A2) and on the PFP column with MeOH as the organic modifier (PFPM2
and PFPM7). The equation of the multilinear regression, assigning a weight 1/Y, was:

CI = 0.48 − 0.03 × CPS3 − 0.23 ×MT2 + 0.33 × DE9 − 0.25 × C8A2 + 0.37 ×
RCBA8 − 0.27 × PFPM2 + 0.23 × PFPM7

(2)

Regression-adjusted CI and leverage are reported in Supplementary Materials Table S3.
The R2 of the regression was 0.85, the Q2 of the cross validation was 0.82, and the Bayesian
information criterion (BIC) was lower than that of the model with molecular descriptors.
However, the QLMO2 of the LMO validation was lower than 0.5 (Table 2).

As shown in Figure 3B, the correlation curve (straight line) was systematically be-
low the perfect curve (dot line) and the predicted CI for the BPs having low CI were
misestimated (Figure 4B). The combination of chromatographic and molecular descrip-
tors was not able to improve the prediction capacity of the QSAR model based solely on
molecular descriptors.

2.2.3. Chromatographic Descriptors in the QSAR Model for Predicting Placental Passage

Among the 104 descriptors experimentally obtained by liquid chromatography, the
ANN selected 17 chromatographic descriptors with weights higher than twice the median
of all descriptors’ weight (Table 4). Eight chromatographic descriptors were also significant
in the QSAR model based on both molecular and chromatographic descriptors (Table 3).
Twenty-four models based on uncorrelated descriptors were identified, resulting in the
selection of eight models with significant descriptors for predicting CI.

Table 4. Chromatographic descriptors with weight in the artificial neural networks higher than twice the
median of all descriptors’ weight and selected to build the QSAR model for predicting placental passage.

Chromatographic Descriptors

Id Column—Solvent—
Parameters Id Column—Solvent—

Parameters

T3A2 T3—AcN—Width (5%) FPM7 FP—MeOH—Asymmetry
RBA7 RB—AcN—Asymmetry C8M7 C8—MeOH—Asymmetry
PFPA7 PFP—AcN—Asymmetry T3M5 T3—MeOH—k′ vs. BPA
FBA5 FB—AcN—k′ vs. BPA PFPM7 PFP—MeOH—Asymmetry

CC18A2 CC18—AcN—Width (5%) RPM8 RP—MeOH—Tailing factor
CC18A7 CC18—AcN—Asymmetry CNM8 CN—MeOH—Tailing factor
C18M2 C18—MeOH—Width (5%) FBM2 FB—MeOH—Width (5%)
C18M5 C18—MeOH—k′ vs. BPA FBM7 FB—MeOH—Asymmetry
C18M7 C18—MeOH—Asymmetry

The final model was obtained using six chromatographic descriptors with a weighting
by 1/Y according to the following Equation (3):

CI = 0.48 − 0.66 × T3A2 − 0.05 × PFPA7 + 0.07 × CC18A7 − 0.50 × C8M7 − 0.14 × PFPM7 + 0.38 × CNM8 (3)

Regression-adjusted CI and leverage of Equation (3) are reported in Supplementary Materials
Table S3. All of these descriptors referred to peak shape parameters, and half were eluted with
AcN and half with MeOH. Three of them were eluted on a hydrophobic phase (HSS T3, C18,
and C8), two on a fluorophenyl phase (PFP), and one on a phase containing a polar group
(CN). The asymmetry on the PFP column with MeOH elution (PFPM7) was the only descriptor
in common with the multilinear regression based on these molecular and chromatographic
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descriptors (Equation (2)). This model has the lowest BIC value and the R2 of the regression and
the Q2 of the cross-validation were 0.84 and 0.81, respectively. Moreover, the LMO validation
values (QLMO2 = 0.73 and CCC = 0.81) almost met the recommended criteria (Table 2), [33]. The
Spearman’s correlation coefficient (R2 spearman) was higher than 0.8 (Table 2), attesting to the
ability of the model to classify CI according to the BPs. In addition, the mean square error of the
calibration (RMSEC), cross-validation (RMSECV), and prediction (RMSEP) were low, between
0.11 and 0.13 (Table 2). The correlation curve (straight line, Ypred = f(mean(Yobs))) was close to
the perfect line (dotted line, Figure 3C) with an intercept not significantly different from 0 and a
slope close to 1. The predicted CI of BPs were grossly well estimated, with predicted CI included
in standard deviation intervals of experimented values, except for BPE, BPF, and BPAF, which
were slightly overestimated, and BPP, which was slightly underestimated (Figure 4C).

3. Discussion

This work aimed at developing a predictive model of placental transfer for newly emerg-
ing BPs. This approach was based on QSAR modeling of the CI of 15 BPs previously evaluated
using ex vivo human placental perfusion [17]. BPs were selected because of their occurrence
in foodstuffs [34,35], their production volume [36], and the diversity of their structures. In
the present study, we have shown that a QSAR model based on chromatographic parameters
provides more reliable predictions of BP placental transfer than QSAR models based on
molecular descriptors alone or in combination with chromatographic descriptors.

The classical QSAR model based on molecular descriptors (Equation (1)) showed
that physicochemical, topological, thermodynamic, and electronic parameters (LogP, total
energy, polar surface area, and heat of formation) were able to influence the placental
passage of this family of emerging BPs. Among physicochemical properties, the molecular
weight and the lipophilicity are known to be key factors determining the passage across
placenta [37–39]. The molecular weights of all BPs were below 600 Da and would not impact
their passage across the placenta. Moreover, in a QSAR methodology using multivariate
data analysis to model the placental passage of structurally diverse drugs and chemicals, the
polar surface area and lipophilicity proved to be the most important factors in the model [21].
A QSAR model using multilinear analysis identified molecular weight, polarity, and also
the heat of formation as important parameters to predict the materno-fetal transport of
organohalogen compounds [20]. Whatever the importance of these factors, our results
showed that a QSAR model based on molecular descriptors alone cannot provide a robust
prediction of the placental transport for this class of emerging BPs, even if the ranking
of their CI can be determined with a relatively good confidence level. It means that the
placental transfer efficiency of these structurally related BPs cannot be predicted solely
from their physicochemical properties determined in silico.

Chromatographic techniques offer the possibility of taking the interactions of the
molecules with different columns in several conditions (pH, solvent) into account, and
then better characterizing the molecular interactions with the biological system. That is
the reason why chromatographic descriptors were combined with molecular ones in the
QSAR models [26–30,40–42]. The most commonly used chromatographic descriptors are
the retention factors that can be determined on several orthogonal stationary phases with
different pH and solvents [26,28,30]. Indeed, many new reverse stationary phases were de-
veloped to extend the selectivity of chromatographic retention, involving many interactions
with the column during elution [43]. The use of these experimental tools might be of great
interest for QSAR modelling because these chromatographic parameters integrate several
physicochemical properties of the compound. In this study, we used 13 chromatographic
columns containing different stationary phases and two elution solvents, MeOH and AcN,
involving different interactions with the 3D structure of the chemical.

Indeed, the organic modifier used in the gradient mode influences the fluidity of the
alkyl chains of the stationary phases and then the mechanisms of molecular interactions
between the analytes and the stationary phases [44], leading to modification of the chro-
matographic parameters. In our experiment, the use of MeOH as an organic modifier in the
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gradient mode favors the H-bonding and π-π interactions, while ion-dipole interactions
are masked. Conversely, the use of AcN, due to the interactions of its cyano function with
the stationary phase, limits the π-π interactions [45] and promotes dipole-dipole interac-
tions [46]. The chromatographic behavior of the chemical is described not only by the
retention factors but also by the peak shape parameters, such as asymmetry, tailing factors,
or width at 5% [47,48], and can be linked to specific molecular descriptors [44].

Our modelling approach (Equation (2)) showed that the Connolly Solvent Excluded
Volume, which is the volume enclosed in the molecule, had a weak influence on the placental
passage prediction. The topological descriptor, cluster count, which reflects the complexity
of the molecule [49], had a negative contribution to the CI of bisphenols. Inversely, the
LUMO energy had a positive contribution. Our results are consistent with a previous QSAR
model [20] showing that electronic descriptors are important parameters that may predict
the ability of the molecule to cross the placenta. Surprisingly, although the goodness of fit
is better, the contribution of the chromatographic descriptors does not improve the global
predictive ability of our model based on the molecular descriptors. These results are not
consistent with a previous study showing that the nonlinear QSAR model of prediction
of gastrointestinal absorption was improved by adding the measured chromatographic
descriptors to the molecular ones [27]. This discrepancy could be attributed to the QSAR
model used, which was linear in our study and nonlinear in the Deconinck study, and to
differences in the chromatographic parameters used in our QSAR model, which not only
include the retention factors but also the peak shape parameters such as asymmetry, tailing
factor, and peak width. These chromatographic parameters evaluated in the same exper-
imental conditions reflect, in part, the mass transfer kinetics and thermodynamics of the
analytes between the mobile and the stationary phase [50]. The chromatographic stationary
phase selected in our model mainly involved polarizability (RCB) and π-π interactions (PFP)
of the analytes. Thus, the implementation of these chromatographic descriptors led to a com-
bination of uncorrelated descriptors having a great influence on the prediction of placental
passage, which was quite different from those selected in the two QSAR model based either
on molecular or chromatographic parameters. A significant influence of the thermodynamic
properties of the BPs at the expense of the lipophilicity parameters is observed. In fact, the
evaluation of the relationship between the molecular and the chromatographic descriptors
selected in the two chromatography-based QSAR models through the ANN learning showed
that the selected chromatographic descriptors are a combination of molecular descriptors
selected to describe CI. Nevertheless, the four chromatographic descriptors presented in
the model based on molecular and chromatographic descriptors are not directly related to
LogP, unlike the chromatographic descriptors selected by the chromatography-based QSAR
(Supplementary Materials Table S4).

When we developed a QSAR model based on chromatographic descriptors alone
to predict the passage of BPs across the placenta, the main chromatographic descriptors
selected by the ANNs involved the peak shape, such as asymmetry, width, and tailing
factor, as in the previous model. More specifically, the most important descriptors in the
validated model (Equation (3)) are the width peak on the HSS T3 column with AcN as the
eluent, followed by the asymmetry peak on the BEH C8 column with MeOH elution and
the tailing factor on the HSS CN column with MeOH elution. Several studies have shown
that residual silanols can increase the tailing factor of basic or polar compounds due to
hydrogen bonding between oxygen and hydroxyl groups or ion exchange [51]. The HSS CN
stationary phase is not end capped; thus, the silanols are accessible to the eluted compounds
and the CN group favors the retention of polar compounds due to dipole interactions. The
importance of this descriptor could reflect the involvement of H bond interactions in the
transplacental passage, which was highlighted in several QSAR studies [21–23]. Moreover,
the predictive capacity of the model obtained with the multilinear regression and based
on these chromatographic descriptors alone has been verified by an extensive internal
validation procedure. Therefore, chromatographic descriptors appear to be more relevant
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than molecular descriptors alone or in combination with chromatographic descriptors for
predicting the passage of BPs across the placental barrier [33,52,53].

The main limitation of this study is the restricted number of BPs included in the models,
which did not allow for an external validation, i.e., predicting the CI of BPs not included in
the QSAR development process. Consequently, leave-many-out validation was performed
with eleven BPs in the training set and four in the test set, and this validation was repeated
three times with three training and test sets. Moreover, unlike what is usually practiced in
QSAR modelling, our training sets contained five repeatedly measured CI for each bisphe-
nol, and it was previously shown that the incorporation of experimental errors improves
the predictive ability of the QSAR model [31]. Moreover, it is important to consider that
BPs with a high leverage value (as BPS and BPFL) must be included in the training set to
reinforce the model, and their prediction should be considered unreliable [32,54]. Indeed,
whatever the QSAR model may be, BPS and BPFL have a strong influence on the regression,
which explains the poor prediction of their CI when one of them was not included in the
training dataset. Interestingly, the placental CI of these two BPs were significantly lower
than those of the other BPs [17], and they are structurally different in terms of lipophilicity
for BPS and thermodynamic for BPFL. Regarding their chromatographic behavior, BPS
and BPFL showed inverse asymmetric parameters, especially on the HSS PFP column with
MeOH elution, reflecting the involvement of both H-bonds and π-π interactions. In the
same way, BP44, which has a significant influence on the prediction of placental passage
(high leverage) in the QSAR model based on chromatographic descriptors, was excluded
for prediction even if its CI could be predicted with good accuracy using QSAR based only
on molecular descriptors. Conversely, BPAF could not be included in the test set in the
QSAR model based only on molecular descriptors because of the great difference in its
thermodynamic properties, which is related to its fluorine atoms, whereas its CI could be
predicted with the QSAR model based on chromatographic descriptors. Thus, the inclusion
of new compounds containing more heteroatoms in the model would extend the range of
values of molecular and chromatographic descriptors, and thus improve the ability of the
QSAR model to predict the CL of BPs [55].

Further investigations including the quantitative structure-retention relationship stud-
ies (QSRR) are required to link the molecular properties and the chromatographic behavior
of these BPs [44,56] and, thus, to better understand the interactions involved in the placental
passage of BPs.

4. Materials and Methods
4.1. Data Set
4.1.1. Compounds

Bisphenol S (BPS) (purity ≥ 98%), Bisphenol A (BPA) (purity ≥ 99%), Bisphenol E (BPE)
(purity≥ 98%), 2,2-Bis(4-hydroxy-3-methylphenyl)propane (3-3BPA) (purity≥ 97%), Bisphe-
nol B (BPB) (purity ≥ 98%), Bis(4-hydroxyphenyl)-2,2-dichloroethylene (BPC) (purity≥ 98%),
Bisphenol BP (BPBP)(purity ≥ 98%), Bisphenol F (BPF) (purity≥ 98%), Bisphenol FL (BPFL)
(purity≥ 97%), Bisphenol Z (BPZ) (purity≥ 98%), 4,4′-Dihydroxybiphenyl (BP4-4) (purity≥ 97%),
Bisphenol AP (BPAP) (purity≥ 99%), Bisphenol AF (BPAF) (purity≥ 97%), Bisphenol P (BPP)
(purity≥ 98%), Bisphenol M (BPM) (purity≥ 99%) were purchased from Sigma-Aldrich (Saint
Louis, MO, USA).

4.1.2. Molecular Descriptors

The 3D structures of these bisphenols were minimized by MMFF94 (Merck Molecular
Force Field) using a semi-empirical molecular orbital package, MOPAC application, in
Chem 3D Ultra software (V17.1, Perkin Elmer informatics). An RMS gradient of 0.10 was
used to minimize energy with a maximum of 1000 iterations. Electrostatic (such as dipole
moment, HOMO and LUMO energy, etc.), thermodynamic (such as dipole heat of formation,
Gibbs free energy, etc.), steric (such as ovality, Connolly accessible area, etc.), topologic
(such as polar surface area, shape attribute, etc.), and physicochemical (such as molecular
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weight, pKa, LogP, etc.) descriptors were calculated. The set of molecular descriptors
calculated for each studied BP is detailed in the Supplementary Materials Table S1.

4.1.3. Chromatographic Descriptors

In most of the BP chromatographic studies, the BPs are eluted on a C18 column with
an H2O/AcN (Acetonitrile) gradient [57,58]. Therefore, the separation of the 15 BPs was
optimized using the conventional U-HPLC BEH C18 stationary phase with acetonitrile
as the organic modifier (Figure 2A). Next, the same solvent percentage, flow rate, and
time were applied to thirteen chromatographic columns (Table 5), either with AcN or with
MeOH (methanol), in order to compare the retention and peak shape of 15 BPs in all of
these chromatographic conditions. The chromatographic descriptors were calculated from
the chromatographic parameters determined by the analysis of the chromatogram of each
BP and injected alone in the aqueous gradient mode on 13 analytical stationary phases
listed in Table 5, using two solvents as the organic modifier: methanol and acetonitrile.

Table 5. Analytical columns used for determining the chromatographic descriptors with their
abbreviation, dimension, and selectivity [48,59].

Column Dimension—Granulometry—Supplier Selectivity

Raptor Biphenyl (RB) 100 × 2.1 mm; 2.7 µm, Restek Polarizability, aromatic and dipolar selectivity
Raptor Biphenyl Core-Shell (RCB) 100 × 2.1 mm; 1.8 µm, Restek Polarizability, aromatic and dipolar selectivity

Force Biphenyl (FB) 100 × 2.1 mm; 1.8 µm, Restek Polarizability, aromatic and dipolar selectivity
Cortecs C18 (CC18) 100 × 2.1 mm; 1.6 µm, Waters Hydrophobicity selectivity

BEH C18 (C18) 100 × 2.1 mm; 1.7 µm, Waters Hydrophobicity selectivity (reference)
BEH RP 18 Shield (RP18) 100 × 2.1 mm; 1.7 µm, Waters Basic compound selectivity

BEH C8 (C8) 100 × 2.1 mm; 1.7 µm, Waters Hydrophobicity selectivity
BEH Phenyl (P) 100 × 2.1 mm; 1.7 µm, Waters Pi-Pi selectivity

CSH Phenyl-Hexyl (PH) 100 × 2.1 mm; 1.7 µm, Waters Pi-Pi selectivity
CSH Fluoro-Phenyl (FP) 100 × 2.1 mm; 1.7 µm, Waters Halogenated and polar compound selectivity

HSS T3 (T3) 100 × 2.1 mm; 1.8 µm, Waters Polar and hydrophobic molecule selectivity

HSS PFP (PFP) 100 × 2.1 mm; 1.8 µm, Waters Pi-Pi, H-bonding, dipolar and
hydrophobicity selectivity

HSS CN (CN) 100 × 2.1 mm; 1.8 µm, Waters Alternative to hydrophobicity selectivity

Each BP solution was prepared in (H2O/MeOH: 50/50) at a concentration of 0.01 mg/mL.
Ten microliters of each solution were injected on an Acquity UPLC system with UV detec-
tion set at 210 nm (Waters, Milford, MA, USA). The column temperature was set at 40 ◦C,
and the BPs were eluted at 0.3 mL/min using the linear gradient mode with two organic
solvents (MeOH or AcN) and water: pump A (H2O)/pump B (MeOH or AcN): t(0→10 min)
84% A→5% A; t(10→15 min) 5% A. The retention time, peak asymmetry (4.4%), tailing
factor, and peak width (5%) were determined with Empower Suitability System software
(Waters®). A specific retention factor k′ vs. BPA (Equation (4)) relative to BPA was calculated
by Equation (4) to normalize all retentions:

k′ vs. BPA = (trBP − trBPA)/trBPA (4)

Descriptors corresponding to peak asymmetry, tailing factor, peak width, and retention
factor were identified as #7, #8, #2, and #5, respectively (Supplementary Materials Table S2).

4.2. QSAR Modelling
4.2.1. Variable Selection and Multi-Linear Regression

QSAR models were performed on RStudio software (Version 1.2.5001). The descriptor
values were centered and scaled to the unit standard deviation of each descriptor. An
artificial neural network (ANN) was created using the R package neural net (version:
1.44.2) with a sigmoid activation function and a backpropagation learning algorithm (code
in Supplementary Materials). The ANNs were adjusted by assigning a weight to each
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descriptor to minimize error between predicted and experimental clearance indices using a
sigmoid activation function and backpropagation learning algorithm [60]. The ANN was
structured with an input layer connected to each descriptor and an output layer linked to
the clearance indices (CI) for each BP. The stepmax and threshold were set at 100,000 and
0.005, respectively. After the learning cycles, descriptors with a weight (absolute value)
greater than twice the median of all descriptor weights were considered significant. To
avoid collinearities between descriptors, a correlation matrix was calculated with the
significant descriptors. When a correlation (R2 greater than 0.5) between two descriptors
was observed, two new matrices were created, one containing the first descriptor and
the other containing the other descriptor. This operation was carried out until a matrix
containing uncorrelated descriptors was obtained; these descriptors were then used to build
the final QSAR model. A multilinear regression (MLR) was then performed between the
selected descriptors and CI for each QSAR model using Rstudio software. The regression
was tested with three weightings: 1, 1/Y, and 1/Y2 with Y = observed clearance index, and
residuals and leverages were plotted to evaluate, by visual inspection, the quality of the
regression and to choose the weighting. The models with R-squared greater than 0.7 were
selected for further development. For these models, if the descriptors were not significant
(p < 0.05), sub-models were built by subtracting the non-significant descriptors one by one,
and multilinear regressions were performed until all descriptors were significant. When
too many descriptors were not significant to build the sub-models manually, the stepwise
method was used to obtain the best model simplification by Akaike information criterion
(AIC) [61]. The goodness of fit of each model was compared using the Bayesan information
criterion calculated from each of the multilinear regressions with the RStudio software.

4.2.2. Data Splitting

Clearance indices for fifteen BPs were determined on five placentae, corresponding to
a total of 75 values. This data set was divided into a training set (55 values, 11 BPs used for
model development) and a test set of 20 values corresponding to 4 BPs randomly selected
for model predictive assessment. Three prediction data sets were constructed to allow a
balanced distribution of the different structures of the BPs. Each BP was allocated to one test
set except BPs with high leverage in the multilinear regression model [54,62], i.e., BPS and
BPFL for the model using molecular and chromatographic descriptors, BPAF for the model
using only molecular descriptors, and BP44 for the model using only chromatographic
descriptors. Consequently, data set 1 included BP44, BPB, 3-3BPA, and BPZ in the test set
for the validation of the model based on molecular descriptors, and data set 1 included
BPAF, BPB, 3-3BPA, and BPZ for the models based on chromatographic descriptors or on
both types of descriptors. Data set 2 included BPP, BPM, BPAP, and BPBP in the test set,
and data set 3 included BPE, BPA, BPF, and BPC in the test set. The training set was used
for multilinear regression, and the corresponding test set was used for the predictive ability
validation for the three data sets separately.

4.2.3. Validation

Multilinear regression models were validated with the three data sets. For each
data set, the training set was used to configure regression and for cross-validation. The
CI of the four BPs included in the test set were predicted by data set regression. Test
set predictions were used for leave-many-out validation (LMO) according to the criteria
described for external validation [33,53,55,63,64]. Multilinear regression was estimated by
R2 (coefficient of regression determination, Equation (5)) and the root mean square error of
calibration (RMSEC, Equation (6)). The robustness of the QSAR model was validated by the
determination of Q2 (cross-validated correlation coefficient, Equation (7)) and the root mean
square error of cross validation (RMSECV, Equation (8)). The predictive quality of the model
was estimated with Q2

LMO (Equation (9)): the correlation coefficient of LMO validation, the
root mean square error of prediction (RMSEP, Equation (10)), the correlation coefficient of
concordance (CCC, Equation (11)), and the Pearson squared correlation coefficient between
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predicted and experimental values. Finally, the Spearman’s correlation squared coefficient
was determined to assess the model’s ranking capability [63]. The accepted criteria are
R2 > 0.65, Q2 > 0.5, QLMO2 > 0.65 [52,53], and CCC > 0.85 [33]. Additionally, RMSEC,
RMSECV, and RMSEP should be close and as low as possible [53].

R2 = 1−
[
∑I

i=1(y(i)− ŷc(i))
2 / ∑I

i=1(y(i)− y)2
]

(5)

RMSEC =
√

∑I
i=1(y(i)− ŷc(i))

2/(I − A− 1) (6)

Q2 = 1−
[
∑I

i=1(y(i)− ŷv(i))
2 / ∑I

i=1(y(i)− y)2
]

(7)

RMSECV =
√

∑I
i=1(y(i)− ŷv(i))

2/I (8)

QLMO2 = 1−
(
([∑nEXT

i=1 (ye(i)− ŷe(i))
2]/nEXT) /([∑nTR

i=1 (y(i)− y)2]/nTR)
)

(9)

RMSEP =
√

∑nEXT
i=1 ((ye(i)− ŷe(i))

2/nEXT (10)

CCC =
2×∑nEXT

i=1 (ye(i)− ye)
(
ŷe(i)− ŷe

)(
∑nEXT

i=1 (ye(i)− ye)
2 + ∑nEXT

i=1

(
ŷe(i)− ŷe

)2
+ nEXT

(
ye − ŷe

)2
) (11)

where y(i): experimental data values of the training set, ŷc(i): multilinear-regression
predicted values, ӯ: average of the experimental values of the training set, ŷv(i): cross-
validation predicted values, ye(i): experimental data values of the test set, ŷe(i): test pre-
dicted values, ӯe: average of the experimental values of the test set, ŷe: average of the
predicted values of the LMO validation, I: number of samples in the training set, A: number
of descriptors, nEXT: number of descriptors in the test set, nTR: number of descriptors in
the training set.

5. Conclusions

In this study, three QSAR models based either on molecular or chromatographic
descriptors alone or a combination of molecular and chromatographic descriptors were
developed, and their ability to predict the placental transfer of BPs was compared. The
model based on chromatographic descriptors alone showed a better predictive ability. To
the best of our knowledge, this study is the first to implement new sets of chromatographic
peak shape parameters in addition to the classical retention factors in QSAR modelling.
These parameters allow a better prediction of placental transfer of BPs than molecular
descriptors. This model may be a useful tool for a rapid screening and subsequent removal
of endocrine-active emerging BPs with a high fetal exposure potential. Further investigation
by means of QSRR is needed to establish a relationship between the chromatographic
behaviors of BPs in the diverse separation systems and the chemical structure to better
understand the interactions involved in the placental passage of BPs. Moreover, this
new concept deserves to be applied to other larger molecular families as well as to other
physiological processes, such as absorption or metabolism.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules28020500/s1, Table S1: Molecular descriptors
used in QSAR development. Table S2: Chromatographic descriptors used in QSAR development.
Table S3: Predicted clearance indices for the 15 bisphenols determined using three QSAR models
based on either molecular descriptors, a combination of molecular and chromatographic descrip-
tors or chromatographic descriptors. Table S4: Molecular descriptors significantly describing the
chromatographic descriptors selected in QSAR models based either on chromatographic parameters
alone or both chromatographic and molecular.
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