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Abstract: N1,N2-diphenylacenaphthylene-1,2-diimines (BIANs) have been used to reduce the unde-
sired high viscosity of alkyl magnesium solutions, which are known to form polymeric structures. In
order to understand the mechanisms, analyses of the BIAN alkyl magnesium solutions have been
carried out under inert conditions with SEC-MS, NMR, and FTIR and were compared to the struc-
tures obtained from HPLC-MS, FTIR, and NMR after aqueous workup. While viscosity reduction
was shown for all BIAN derivatives used, only the bis (diisopropyl)-substituted BIAN could be
clearly assigned to a single reaction product, which also could be reused without loss of efficiency
or decomposition. All other derivatives have been shown to behave differently, even under inert
conditions, and decompose upon contact with acidic solvents. While the chemical reactions observed
after the workup of the used BIANs are dominated by (multiple) alkylation, mainly on the C = N
double bond, the observation of viscosity reduction cannot be assigned to this reaction alone, but
to the interaction of the nitrogen atoms of BIANs with the Mg of the alkyl magnesium polymers, as
could be shown by FTIR and NMR measurements under inert conditions.

Keywords: magnesium alkyls; viscosity reduction; inert SEC-MS; N1,N2-diphenylacenaphthylene-
1,2-diimines; structure elucidation; HPLC-MS; FTIR; NMR

1. Introduction

Organomagnesium compounds find important use in the metalation of aromatic
compounds, the alkylation of metal oxides or halides, and ketone reduction [1–4]. Further-
more, they are important in the application of polymerizations, such as the production
of polyethylene, polypropylene, polyethylene glycol [5], production of telomers [6] and
conjugated dienes, such 1,3-butadiene and isoprene.

Dialkyl magnesium compounds represent one of the most important organomag-
nesium substance groups [2]. Nevertheless, dialkyl magnesium compounds are not as
common as Grignard reagents (RMgX, X = Cl−, Br−, or I−), although they perform similar
reactions [7]. In the past, a reason for this was the lack of an industrially relevant synthesis
route to produce dialkyl magnesium compounds in large quantities [7,8].

In the meantime, certain dialkyl magnesium compounds can be produced on a large
scale by reacting magnesium powder with the alkyl halides in hydrocarbon solvents [2,7].
Especially, branched-chain alkyl groups, cyclic alkyl groups, or the linear residues of five
or more carbons are available, but there are also particular combinations of shorter-length
alkyl chains, such as butyl ethyl magnesium, which are all soluble in hydrocarbons [2].
Alkyls, such as n-butyl sec-butyl magnesium and di-sec butyl magnesium, are also readily
soluble in hydrocarbon solvents, but they have to be produced via lithium alkyls and are,
therefore, much more expensive [7,9].
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With the discovery of magnesium chloride supported Ziegler–Natta catalysts, mag-
nesium alkyls gained additional importance. Especially the specific morphology and
structure of the MgCl2 is a key parameter for highly active Ziegler–Natta catalysts [10–15].
Magnesium alkyls are one of the most important feedstocks for the large-scale production
of magnesium chloride, as they combine the advantages of being available in inert solvents,
such as hydrocarbons, and are, thus, free of water and ether. Major benefit is that the
resulting solutions can be handled more easily than moisture-sensitive solids [16–19].

The major problem of dialkyl magnesium in hydrocarbon solvents is their high viscos-
ity, which poses a significant problem in processibility [2,4]. The most relevant magnesium
alkyls in industry are butyl octyl magnesium (BOMAG) and butyl ethyl magnesium (BEM),
being sold in 10–20% solutions [1,20]. This concentration is the optimum between accessible
magnesium, industrial processability, viscosity, and economic factors [20].

An explanation for the high viscosity is the formation of a polymeric structure via two-
center three electron bonding, whereby the magnesium atom is tetrahedrally surrounded
by four alkyl groups (Figure 1) [20–22], which is based on the X-ray crystal structure of
dimethyl magnesium [23].
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Figure 1. Polymeric chain structure of dialkyl magnesium compounds [20,22,24].

As higher concentrations of alkyl magnesium solutions are desirable for economic and
technical reasons, the reduction of their viscosity is a key target of industrial research. How-
ever, only a few examples for viscosity modifiers are described in the literature, including
organometallic compounds of gallium, indium or lithium [2], benzene derivates [25], and
organoaluminum compounds [26]. From these groups, the latter ones are the only ones
used on a large scale [20,26,27]. Too high aluminum concentrations, however, cannot be
used, as they lead to catalyst poisoning [28]. New research identified heterocumulenes
as highly effective viscosity modifiers, particularly carbodiimides, such as dicyclohexyl
carbodiimide or trimethylsilyl carbodiimide [29,30]. Structural features of the reaction of
heterocumulenes with dialykl magnesium compounds in donating solvents, such as ethers,
were studied by Chlupatý et al. and Anga et al.; however, equimolar ratios were used
in their studies [31,32]. The structures and influence of the heterocumulenes and other
viscosity modifiers with magnesium alkyls remained unexplored. Only little data on the
structural elucidation of highly reactive water and air sensitive organometallic compounds
are available, e.g., by using mass spectrometry for methyl aluminoxanes [33,34].

It is the major goal of this work to investigate the interaction of N1,N2-diphenylacenaphthylene-
1,2-diimines (BIANs) with alkyl magnesium compounds in toluene to reduce the solutions’ vis-
cosities. By using various analytical techniques, such as FTIR, NMR, and mass spectrometry,
under inert conditions, we have tried to identify a stable compound that does not interfere with
future applications of the alkyl magnesium solutions. Furthermore, the reaction products ob-
tained after aqueous workup were isolated and identified, as well as tested for changes in their
viscosity-reducing properties.

2. Results and Discussion
2.1. Effect of BIANs on Viscosity of BOMAG

Four BIAN compounds were selected for the viscosity modification of alkyl magne-
sium solutions (Scheme 1). An unsubstituted BIAN (N1,N2-diphenylacenaphthylene-1,2-
diimine); (abbreviation: BIAN), BIAN with isopropyl groups in ortho positions (N1,N2-
bis(2,6-diisopropylphenyl)acenaphthylene-1,2-diimine; abbreviation: i-Pr BIAN), with
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methoxy groups in para position (N1,N2-bis(4-methoxyphenyl)acenaphthylene-1,2-diimine;
abbreviation: MeO-BIAN), and with trifluoromethyl groups in meta position (N1,N2-
bis(3-(trifluoromethyl)phenyl)acenaphthylene-1,2-diimine; abbreviation: F3C-BIAN). The
viscosity reduction effect was measured for BOMAG in solutions in heptane and in toluene.
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Scheme 1. Structures of the BIAN derivatives used in this study.

The reactions between the BIANs and BOMAG were all exothermic, and the colorless
BOMAG solution changed its color from a red to a purple solution (Table 1) in all cases.
The additives showed a drastic viscosity reduction of about 70% in both solvents (Table 1).
The viscosities in toluene are always higher, since the initial viscosity of BOMAG is already
higher in toluene. The BIAN substitution effect is of negligible importance on the viscosity-
reducing effect, except for F3C-BIAN. In the latter case, only 50% BIAN are present, and
50% of the singly substituted monoimine comprise only one C = N double bond (see NMR
measurements of all pure BIANs in Figures S1–S7). This is also in good agreement with the
lower viscosity reduction of 50%.

Table 1. Viscosity reduction effect and color change by the reaction of BOMAG (19.3% in toluene or
20.4% in heptane), with the respective BIANs.

Additive Solvent η
(mPa s)

wmol
(mol%) Color BIAN * Color

Reaction Solution

- toluene 66.7 - - colorless
- heptane 40.2 - - colorless

BIAN toluene 15.7 2.54 yellow dark purple
BIAN heptane 11.3 2.30 yellow red

i-Pr-BIAN toluene 23.2 2.45 orange purple
i-Pr-BIAN heptane 13.4 2.21 yellow/orange purple

MeO-BIAN toluene 23.2 2.48 red dark red
MeO-BIAN heptane 12.1 2.55 red violet/red
F3C-BIAN toluene 34.1 2.53 orange dark red
F3C-BIAN heptane 25.3 2.13 yellow dark red

* In solution.

2.2. SEC and SEC-MS Analysis under Inert Conditions

As alkyl magnesium compounds are extremely sensitive to water and all protic sol-
vents, a chromatographic separation of their solutions is not possible with standard equip-
ment. In our effort to perform size exclusion chromatography (SEC) analyses, we have
transferred the SEC system into a mobile fume hood that was flushed with nitrogen to
create an inert atmosphere. The solvent, toluene, was dried over sodium directly before
use to ensure absolute dry conditions. Seal washing and syringe washing solutions have
also been exchanged to absolute toluene. The samples were prepared in a glove box and
measured as quickly as possible.

As a first example, we will discuss unmodified BIAN and its interaction with BEM,
as well as BOMAG. Figure 2 shows the chromatograms of pure BIAN obtained with a UV
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detector (upper black trace) and with an RI detector (lower black trace). In UV, only the
intact BIAN molecule is visible with a retention time of 13.7 min (peak apex). In the RI
detector, a negative peak is visible at 10.8 min, which is due to the dissolved nitrogen in the
sample solution. The BIAN signal is found with an apex of 14 min, as the RI detector is
located after the UV detector. The expected separation range of the chosen SEC column is
typically between 6 and 8 min, as has been determined with polystyrene standards between
370 and 6600 g mol−1; thus, the high retention time of BIAN indicates a strong adsorption
on the column material using toluene as solvent and, thus, a separation mode that is not
only dependent on size.
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Figure 2. Size exclusion chromatograms using UV (top) and RI (bottom) detection: (a) analysis of
BIAN (black), BEM (red), and the mixture of BEM with BIAN (green) and (b) BIAN (black), BOMAG
(red), and the mixture of BOMAG with BIAN (green).

Analysis of pure BEM (Figure 2a, red trace) does not show any response in the UV
detector, except for a broad negative signal between 11 and 12.5 min, which cannot be
explained, even with mass spectrometric detection. The RI detector shows three negative
signals, from which one is centered at 10.8 min and, thus, assigned to nitrogen, with the
others being butane (9.6 min) and ethane (11.0 min). Those gases are formed in the reaction
of BEM with a proton source, indicating either incomplete inertness of the SEC system or
a catalytic reaction with some part of the injection system or column compartment. As
later investigations have shown, Mg(OH)2 could be identified with FTIR spectroscopy on
the inlet filter of the SEC column, indicating that the decomposition already takes place
before the sample enters the analytical column. Despite all efforts to exclude moisture any
further, those signals remained and showed that part of the sample is degraded during
the measurements. Figure 2b shows the analysis of pure BOMAG (red). While the UV
is identical to BEM, the RI trace now shows three well-separated peaks, from which two,
nitrogen (10.8 min) and butane (9.6 min), are already known. The third one at 8.7 min can
be assigned to octane.

When BIAN is mixed with BEM or BOMAG the chromatograms obtained from the
RI detector remain unchanged, the only small difference is that the shallow BIAN signal
at 14 min vanishes. Looking at the UV traces, a big difference can be observed. Again,
the BIAN signal (13.7 min) is completely gone, but new signals in the range of 7.6–10 min
and 11–12.5 min can be found. Combing these two observations gives a clear indication
that, despite a partial decomposition of the alkyl magnesium compounds, a chemical
interaction between them and the BIAN takes place. Given the fact that the newly formed
compounds all elute before the original BIAN, it can be deduced that these structures
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are either larger (size exclusion chromatography mechanism) or less polar (adsorption
chromatography mechanism).

To identify the newly formed products we have coupled the SEC system to a high
resolution Orbitrap mass spectrometer. This was accomplished by splitting the eluent before
the RI detector (to prevent over pressure in the optical cell) and inserting an about 70 cm
long PEEK tubing to transfer the samples into the APCI source of the mass spectrometer. In
a first run, pure BIAN was injected to verify whether the ionization process with an APCI
source and toluene as eluent works efficiently. A single broad peak at 13.4 min retention
time was found, and the mass signal was obtained with m/z = 333.1382, corresponding to a
singly protonated BIAN with a theoretical mass of m/z = 333.1386 and, thus, only 1.2 ppm
deviation (Figure 3a).
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Table 2. MS identification of the active BIAN—alkyl magnesium compounds.

Structure Alkyl Residue tR/min m/z Observed m/z Calculated

BIAN - 13.82 333.1382 333.1386
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Analysis of the BIAN + BEM sample resulted in two major signals that overlapped
with the first two UV signals and could be assigned to butyl- and ethyl-substituted BIAN;
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however, the m/z values indicate the species to be radical cations. This assumption is
also supported by MS results using negative ionization, which shows [M-H]− ions. The
alkyl group is most likely attached to the carbon of a C = N bond (Table 2). Furthermore,
at a retention time between 11 and 12.5 min, two signals were found, this time with the
proposed structure of an alkyl group substituting the aniline (Table 2), and in this case,
MH+ ions were detected (Figure 3d,e). When BEM is substituted by BOMAG, both butyl
substituted species could be found again, as well as those that are substituted with an octyl
group (Figure 3b,c, Table 2).

When doing the same type of analysis with the substituted BIANs shown in Scheme 1,
a similar behavior was found for MeO-BIAN and F3C-BIAN. Again, upon mixing them
with BEM, one species was found where the butyl and ethyl groups were added to the
double bond of the intact BIAN and a second species, where the alkyl groups replaced one
of the anilines. Reactions with BOMAG showed the same two structures, but this time with
butyl and octyl residues, respectively. Chromatograms and m/z values can be found in
the Supplementary Materials (Figures S8–S13 and Tables S1 and S2). i-Pr-BIAN is the only
species that shows a somewhat different behavior. Although, again, a structure bearing
an attached alkyl group could tentatively be identified, it must be noted that, in this case,
that it was not radical cations that were observed, but regular MH+ ions (Figures S14 and
S15, Table S3). The second species, with one aniline removed could not be found with
i-Pr-BIAN.

2.3. NMR Analysis of Inert Dibutyl Magnesium BIAN Mixtures

To find out if the structures identified with the SEC-MS in toluene are reactive species
or can be isolated, all BIANs were reacted with dibutyl magnesium. The latter was chosen
as it has only one alkyl group, thus the number of formed products should be reduced,
enabling easier identification. BIANs and dibutyl magnesium solution were thoroughly
mixed and then carefully quenched with water. During the exothermic reaction, the color
remained violet/dark red until all of the alkyl magnesium was destroyed. At this point,
the color changed to orange/yellow for all BIANs. This was interpreted in a way that
the interaction between the alkyl magnesium and the BIANs was very strong, and the
intermediates/complexes formed were stable until fully quenched. The organic phase
was then isolated, dried under reduced pressure, and analyzed with HPLC-MS, FTIR,
and NMR.

2.4. HPLC-MS Measurments of Quenched Dibutyl Magnesium BIAN Mixtures

In a first step, the pure BIANs were analyzed by HPLC-MS, and BIAN, MeO-BIAN
and F3C-BIAN all showed the same behavior, i.e., that, although being dissolved in dry
acetonitrile, they decomposed as soon as they came into contact with the acidic buffer
system (acetonitrile/water/formic acid). The products found were acenaphthoquinone
and the corresponding aniline or substituted anilines (Figure 4b–d). i-Pr-BIAN was the
only derivative that could be analyzed without decomposition, and it showed a single peak
(36.5 min) with an m/z value corresponding to the intact molecule (MH+ ion) (Figure 4a).

The quenched BIANs, however, showed very different results. The simplest example
is, again, i-Pr-BIAN, showing only one major reaction product, which is the singly butyl-
substituted i-Pr-BIAN (51.5 min) (Figure 4a). Additionally, small amounts of remaining
i-Pr-BIAN (36.6 min) were found, as well as one compound that had a butyl group attached,
but must have an additional double bond, according to the exact mass of 557.3887 Da
(48.3 min). Within this structure, the double bond is situated exactly cannot be identified
from the mass spectrum alone (Table 3).
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Table 3. HPLC-MS results of quenched BIANs reacted with dibutyl magnesium.

Educt Entry tR/min Structure * m/z Observed m/z Calculated

i-Pr-BIAN
1 36.56 i-Pr-BIAN 501.3260 501.3264
2 48.28 butylated BIAN with double bond 557.3887 557.3890
3 51.54 butylated BIAN 559.4045 559.4047

MeO-BIAN

4 2.03 methoxy aniline 124.0757 124.0757
5 9.02 N-butyl methoxy aniline 180.1380 180.1383
6 14.92 acenaphtoquinone 183.0439 183.0441
7 15.38 unknown 199.0388
8 18.64 unknown 304.0965
9 22.49 unknown 304.0965
10 23.25 unknown 304.0965
11 24.95 doubly butylated monoketone 402.2426 402.2428
12 26.15 butylated MeO-BIAN 451.2378 451.2380
13 29.81 doubly butylated MeO-BIAN 507.3004 507.3006
14 30.30 unknown 427.2741
15 31.79 doubly butylated MeO-BIAN 507.3007 507.3006
16 35.44 doubly butylated MeO-BIAN with double bond 505.2848 505.2850

F3C-BIAN

6 14.90 acenaphtoquinone 183.0439 183.0441
17 15.35 unknown 199.0387
18 18.81 butylated acenaphtoquinone 223.1115 223.1117
19 21.28 unknown 416.1466
20 23.98 N-butyl trifluoromethylaniline 218.1149 218.1151
21 24.60 unknown 342.0735
22 25.48 butylated monoketone 384.1568 384.1570
23 28.36 butylated butyl half-BIAN 424.2245 424.2247
24 29.68 doubly butylated monoketone 440.2193 440.2196
25 31.29 butylated F3C-BIAN 527.1913 527.1916
26 31.90 unknown 359.3154

BIAN

27 2.5 aniline 94.0652 94.0651
28 11.20 N-butyl aniline 150.1276 150.1277
6 15.10 acenaphthoquinone 183.0439 183.0441
29 18.84 unknown 274.0860
30 22.68 unknown 274.0859
31 24.03 butylated monoketone 316.1692 316.1696
32 24.67 unknown 330.1487
33 27.88 doubly butylated monoketone 372.2322 372.2322
34 28.25 butylated BIAN 391.2172 391.2169
35 31.87 doubly butylated BIAN (no more double bond left) 449.2950 449.2951
36 32.70 double butylated BIAN with double bond 447.2794 447.2795
37 35.15 isomer of 36 (N-butylated) 447.2793 447.2795

* Structures can be found in the Supplementary Materials Scheme S1.

The reaction products of MeO-BIAN are not so uniform (Figure 4b). Again, the most
intense peak can be assigned to a singly butylated BIAN structure, but in this case, a
small amount of the degradation product of the pure MeO-BIAN (methoxy aniline and
acenaphtoquinone) was also found, indicating that a certain amount of the MeO-BIAN
had not irreversibly reacted with the alkyl magnesium compound. The structures which
had further been identified were N-butyl aniline, two isomers of a doubly butylated BIAN
bearing an additional double bond, and one doubly butylated species with two additional
double bonds (Table 3).
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F3C-BIAN (Figure 4c) gives even more reaction products. Again, the singly butylated
BIAN is found, but only in small amounts. Dominating species are ones where one
aniline is substituted by a butyl group and the other aniline is cleaved off leaving a
carbonyl group behind, as known from the pure BIANs, as well as another one with two
butyl groups and one aniline removed. Of particular interest is the detection of N-butyl
trifluoromethylaniline, which shows that, although only in small amounts, alkylation of the
nitrogen occurs. If the alkylation takes place on the intact BIAN or already on the cleaved
off aniline cannot be determined from the data available. A list of all compounds found in
the HPLC-MS analysis can be seen in Table 3 and Scheme S1.

Unsubstituted BIAN (Figure 4d) yields the most complex mixture upon reaction
with dibutyl magnesium. While, again, the most intense peak can be assigned to the
butyl substituted BIAN, a good amount of aniline and acenaphtoquinone are also found,
indicating incomplete turnover. Other compounds present in larger quantities have been
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identified as the butyl substituted monoketone (as already found in F3C-BIAN), dibutyl-
BIAN, and several other alkylated BIAN derivatives (tentative structures can be found in
Table 3 and the Supplementary Materials Scheme S1). In contrast to all other BIANs, it was
possible to identify two isomers of a BIAN with two butyl groups attached, from which
one must bear a butyl group on a nitrogen atom (entry 37 in Table 3). This assignment is
performed on basis of the MS/MS fragmentation analysis, which clearly shows that a butyl
aniline is cleaved off the molecular ion, while, in the case of the other isomer (entry 36 in
Table 3), aniline is cleaved off.

2.5. NMR-Measurments of Inert and Quenched Dibutyl Magnesium BIAN Mixtures

NMR of the inert samples of dibutyl magnesium and its mixture with BIANs have been
recorded to further investigate the active species. i-Pr-BIAN was chosen as reference, as it
showed only one reactive intermediate in the SEC-MS experiments (Figures S16 and S17).
While it is possible to easily identify the aromatic peaks of the BIAN [35–38], the alkyl
region is extremely crowded. A couple of sharp alkyl signals at 0.6, 1, 1.4, and 1.5 ppm are
visible, too, which can be assigned to the newly formed butyl BIAN derivative found in
the SEC-MS experiments. A clear assignment, however, is not possible, as both the 1H, but
especially the 13C, spectra are very crowded and the alkyl groups of the reaction product
and the alkyl magnesium overlap. A possible reason might be the formation of a complex
between Mg and the BIAN, as found for Mg and carbodiimides [31], which cannot be
detected in SEC-MS, due to dissociation in the ionization process. One signal that can be
assigned in the 13C spectra is the carbon of the C = N double bond at 160.9 ppm in native
i-Pr-BIAN, which shifts to 194.5 ppm in the inert i-Pr-BIAN dibutyl magnesium mixture
and after aqueous workup back to 175.2 ppm. This shift indicates a change in the electron
density of this bond, especially under inert conditions, which is similar to the shift from
140 of dicyclohexylcarbodiimide to 181.7 ppm for the complex of dicyclohexylcarbodiimide
with dibutyl magnesium observed by Chlupaty et al. [31].

NMR measurements of the quenched samples were carried out, in order to understand
the structure of the resulting compounds. Since the quenched i-Pr-BIAN product is the
purest, it will be discussed here in more detail. In addition to a 1H-NMR (Figure 5) and an
APT (Figure 6), a HSQC-NMR was carried out (Figure 7).
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Using the HPLC-MS results as starting point, an alkylated i-Pr-BIAN is proposed as
a structure. The major question to be solved via NMR is the position of the alkyl group.
Comparison of the 1H-NMRs of i-Pr-BIAN and the quenched product (Figure 5) shows a
new signal at 3.85 ppm assigned to an NH-group and a splitting of aromatic, as well as
alkyl signals. The splitting can be explained by the fact that the addition of the alkyl group
to the C = N bond the aniline moieties are no longer symmetrical. Additionally, a triplet at
0.7 ppm, indicative of the CH3-group of an alkyl chain, can be seen, which is assigned to the
butyl group. Another good indicator for the structure proposed in Figure 5 can be found
in the HSQC spectrum (Figure 7), as the proton at 3.85 ppm is not attached to any carbon
and, therefore, must be attached to a nitrogen atom. In the APT spectrum (Figure 6), all
signals pointing up are quaternary carbons, except the carbons at 41.8, 26.8, and 23.2 ppm,
which are the CH2 groups of the butyl group. Again, this can only be explained if the butyl
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group is attached to the newly formed quaternary carbon at 71.7 ppm. The quaternary
C = N carbon in the initial substance is at 160.9 ppm and shifts to 175.2 ppm in the extracted
product, as already described above. Again, as seen in the 1 H-NMR spectrum, the loss
of symmetry leads to more chemically different carbons in the 13 C-NMR (Figure 6) and,
therefore, a higher number of signals.

The shift of the C = N carbon to higher ppm values can be observed in all other BIANs,
too, as well as the formation of a new quaternary carbon atom, confirming the alkylation of
the C = N carbon. Further interpretation of the spectra was not performed, as the quenched
products of BIAN, MeO-BIAN, and F3C-BIAN are all complex mixtures (Figures S18–S21).

2.6. FTIR-Analysis of Quenched Dibutyl Magnesium BIAN Mixtures

FTIR analysis of the isolated compounds was performed mainly to prove that the
alkylation of the BIANs took place on the carbon of the C = N double bond. Unreacted
BIAN shows aromatic C-H bands at 3000–3100 cm−1, and, after quenching, aliphatic C-Hs
from the alkyl chain are visible between 2800–3000 cm−1, as well as in intense band at
3270 cm−1, which can be assigned to the N-H valence vibration of a secondary amine. In
the fingerprint range a band at 1650 cm−1 becomes more intense, and two at 1495 cm−1

and 1318 cm−1 evolve (Figure 8a). The latter one can also be assigned to the N-H vibration,
confirming the alkylation of the BIAN at the carbon atom of the double bond. The 1640 and
924 cm−1 bands, which are assigned to the C = N valence and deformation, are significantly
lower in the quenched BIAN, also indicating reaction on one of the two C = N bonds [39,40].

As already known from the discussion of BIAN, the quenched i-Pr-BIAN shows
a distinct secondary N-H band at 3265 cm−1, and the broad C-N deformation band at
700 cm−1 is also visible. Aromatic, as well as aliphatic, C-H bands remain more or less
unchanged as the unreacted i-Pr-BIAN already contains 4 isopropyl groups, resulting in the
2800–3000 cm−1 bands. When looking closely, however, an increase of the aliphatic CH2
band (2932 cm−1), relative to the CH3 band (2964 cm−1), is visible. The C = N deformation
band at 926 cm−1 is, again, significantly lowered in the quenched i-Pr-BIAN (Figure 8d).

In MeO-BIAN (Figure 8b), the N-H valence band is seen at 3295 cm−1, together with
an increase in the CH valence bands between 2800 and 3000 cm−1. Again, the band at
927 cm−1, indicative for a C = N bond, almost disappears, indicating a reaction at this
position. It is also noted that there is an increased absorption at around 1750 cm−1, due to
the formation of a carbonyl bond in the MeO- and F3C-BIAN, which is in good agreement
with data obtained from the HPLC-MS experiments.

While the pure F3C-BIAN only shows signals from aromatic C-Hs (3000–3100 cm−1), the
quenched compound clearly shows aliphatic C-H bands from the alkyl group (2800–3000 cm−1)
and an additional broad band centered at 3400 cm−1 (Figure 8c). The latter one is a bit too
high for a secondary amine, as they have been found in all other BIANs, and it is also much
broader. The C = N band at 929 is again lowered dramatically, as already known from the other
quenched BIANs. While the CF3 bands at 1327 and 782 cm−1 remain unchanged, a series of
other bands become broader and of lower intensity, e.g., the ones at 1722, 1656, 1600, 1590, and
1275 cm−1, as well as the one at 1275 cm−1. The ones at 1423, 1186, 1031, and 716 seem to be
missing at all. As HPLC analysis has already shown, the quenched F3C-BIAN is composed of
many individual breakdown products; thus, the interpretation of the IR spectrum is not focused
on any further products.
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2.7. FTIR-Analysis of an i-Pr-BIAN BOMAG Solution

In order to prove the hypothesis that the metal of the alkyl magnesium polymers
interacts with the C = N double bond of the BIANs, experiments under argon atmosphere
have been performed. At first, the assignment of the C = N band at 1650 cm−1 was
verified by comparing the spectrum of i-Pr-BIAN with its fully hydrogenated derivative
(Figure 9a,b). The NH band of the hydrogenated i-Pr-BIAN can be seen at 3360 cm−1, and
no band at 1665 cm−1, as in i-Pr-BIAN, was found, confirming the assignment of the latter
to the C = N double bond. For the inert measurements of the i-Pr-BIAN BOMAG mixture
in heptane, a one-inch diameter polymer cylinder was placed around the diamond crystal
of the ATR unit, and the setup was flushed with argon from the top during collection of
background and spectra. The i-Pr-BIAN BOMAG heptane solution was transferred to the
FTIR spectrometer by means of an argon flushed syringe, a drop of the solution was placed
directly on top of the ATR crystal, and the first spectrum was recorded under a stream of
argon. In order to minimize the measurement time, the number of scans was reduced to 8.
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After this first spectrum was recorded, the argon stream was removed, and the mixture
started to react with air. While the initially deep red solution changed more and more into
an off-white solid, additional FTIR spectra were recorded (Figure 9c–f).
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Figure 9c shows the 1500–1800 cm−1 region of the spectrum of the i-Pr-BIAN and
BOMAG in heptane solution under argon, where a double band at 1624 and 1614 cm−1

is visible, but there is none at 1670 cm−1, as seen in i-Pr-BIAN, or 1664 cm−1, as in the
quenched (alkylated) i-Pr-BIAN (compare to Figure 8d). Such shifts to lower wavenumbers
have already been reported for C = N double bonds interacting with platinum [41], palla-
dium [42], ands chromium [43], as well as iron, cobalt, and copper [44], are attributed to a
decrease in the C = N bond order, due to the coordination of the metal with the imine lone
pair, thus proving the interaction of the magnesium in the BOMAG chains with the C = N
bind of the BIAN.

When the sample starts to react with moisture after removal of the argon stream, the
spectra show the evolution of the 1660 cm−1 band, indicating the destruction of the Mg–
imine complex. With an increase in time, the ratio of the 1660/1624 (1614) bands becomes
larger, until finally, only the 1660 cm−1 band remains (Figure 9d–f). Despite this change,
the formation of Mg(OH)2, indicated by a band at around 3720 cm−1, can be seen. Once no
further reaction can be observed, the off-white powder was extracted with acetonitrile, and
the solution subjected to HPLC-MS analysis, where the reaction product could again be
identified as alkylated i-Pr-BIAN, in this case with butyl and octyl residues.

2.8. Reusability of Quenched BIANs

The BIANs that have been reacted with dibutyl magnesium and then quenched with
water were isolated, as described in the HPLC section, and reused as viscosity modifiers.
Again, all the tested products reduced the viscosity of a BOMAG solution in toluene. The
effect of the reaction products of MeO-BIAN and F3C-BIAN was much smaller, and the
viscosity dropped by only about 40%, instead of the original 70% (Table 1). For both of these
substances, the HPLC-MS measurement demonstrated that many different compounds
were formed from the native BIANs (Figure 4), which presumably exhibit no viscosity-
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reducing effect, but on the other hand, might pose a problem for the further use of the
BOMAG solution. Still, very good results were obtained for the reaction product of i-Pr-
BIAN, which is essentially the butylated i-Pr-BIAN (Figure 5).

After measuring the viscosity with the above-mentioned products (Table 4), the reac-
tion mixtures were again quenched with water, extracted, and analyzed with HPLC-MS
to find out if the structures have changed. No major changes in any of the BIAN reaction
products were observed. The butylated i-Pr-BIAN was even reused as a modifier two more
times with subsequent HPLC-MS analysis, which showed no significant changes between
each use and extraction cycle (Figure 10). From the last reuse experiment, no viscosity
could be measured, as the amount of sample after workup was already too small.

Table 4. Viscosity results for the pure BIAN substances and reused quenched products with BOMAG
in toluene.

Additive Extraction
Number η (mPa s) mModifier (mg) mBOMAG (mg) ColorReaction Solution ColorExtracted Solid

- - 66.7 - - -

i-Pr-BIAN
1 17.2 150.4 7.153 purple brown
2 28.4 119.0 7.411 purple light brown

MeO-BIAN 1 44.5 97.9 7.351 red orange/yellow
F3C-BIAN 1 42.6 107.0 7.473 red orange/yellow
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extraction) and after additional viscosity measurements and extractions.

3. Experimental

All reactions were performed under inert conditions using Schlenk technique in an
argon (5.0, Linde) atmosphere or in a nitrogen-filled M. Braun glove box. The magnesium
alkyls butyl octyl magnesium (BOMAG), and butyl ethyl magnesium (BEM) in toluene or
heptane were provided by LANXESS Organometallics GmbH and di-n-butyl magnesium
(1 M in heptane) was obtained from Sigma Aldrich. Toluene (rotisolv®, Roth) was further
dried over sodium in argon atmosphere. The BIAN additives were synthesized by ourselves,
according to the literature [35–38].

3.1. Viscosity Reduction of Alkyl Magnesium Compounds

For the viscosity modification around 9 g of BOMAG solution (19.3% in toluene, or
20.4% in heptane) were used, and approximately 2.5 mol% (relative to the Mg content)
additive were added at room temperature. After stirring for 5 min, the temperature was
raised to 50 ◦C for half an hour.
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After cooling down to room temperature, the viscosity was measured using a DV2T
Brookfield spindle viscosimeter. The measurement was performed under an argon stream
at 21 ◦C and 40 rpm with a SC4-18 spindle. Depending on the viscosity, the rotational speed
was adjusted.

3.2. Synthesis and Reusability of Reaction Products with Dibutyl Magnesium

Approximately 4–5 mL of dibutyl magnesium were mixed with 10 mol% of the respec-
tive BIAN derivative. Then, 5 mL heptane were added, and the solution slowly mixed with
water. During the exothermic reaction, the alkyl magnesium is destroyed in a controlled
manner, and magnesium hydroxide is formed. The violet-reddish colors of the initial
mixture remained until the end, and after all the magnesium alkyl had reacted, the color
changed to orange/yellow.

The organic phase was separated from the aqueous phase, toluene was removed under
reduced pressure, and the resulting solid was dried in vacuo. The products were then
analyzed using FTIR, HPLC-MS, and NMR. Further, the newly formed compounds or
mixtures were tested again as viscosity modifiers, as described in Section 3.1.

3.3. Analytical Methods
3.3.1. NMR

The collection of the NMR data was achieved using an Avance III (Bruker, Birica,
MA, USA) spectrometer (300 MHz). For air and water sensitive compounds, benzene-d6
(deutero, 99%) was used, and for the pure BIANs and extracted products, CDCl3 (Roth,
99.8%, with TMS) was chosen.

3.3.2. SEC and SEC-MS

Size exclusion chromatography was performed on a Wyatt SEC system consisting
of an Agilent 1260 isocratic pump, Agilent 1260 VWD UV-Vis detector, Agilent 1260
Autosampler, Shodex RI-501 refractive index detector, and a Wyatt Treos II light scattering
detector. Samples were dissolved in toluene in a glove box at a concentration of around
1 mg mL−1 and 50 µL injected and separated on a Phenogel 50 A column (300 × 4.6 mm,
5 µm; Phenomenex) using 0.35 mL min−1 toluene as mobile phase. To exclude moisture,
the complete system was placed in a mobile fume hood and flushed with dry nitrogen.
Additionally, a beaker filled with water absorbing silica gel was placed in the autosampler
compartment. The solvent was dried over sodium prior to use. Data were recorded with
Astra software (Wyatt; version 7.1.4.8).

For the SEC-MS experiments, a T-joint was inserted before the RI detector to prevent
overpressure in the cell compartment, and a PEEK tubing of about 70 cm was used to
transfer the samples into an LTQ Orbitrap Velos (Thermo Fisher Scientific, Waltham, MA,
USA), with an APCI source operating in positive ionization mode. The resolution was set
to 30.000, and calibration was performed using external standards. Spectra were collected
from 80–1.000 m/z and data were analyzed using Xcalibur (Thermo Fisher Scientific; version
2.2 SP1.48).

3.3.3. HPLC-MS

Analyses were performed by reversed-phase chromatography using a Surveyor HPLC
(Thermo Fisher Scientific) equipped with a Zorbax SB-C18 column (150 mm × 2.1 mm,
5 µm; Agilent). The column temperature was set to 40 ◦C, and the injection volume was
1 µL. Analytes were separated by gradient elution with mobile phase A containing 0.1%
formic acid (FA) in water and mobile phase B containing 0.1% FA in acetonitrile at a flow
rate of 0.2 mL min−1. The elution gradient starting conditions were 90% A and 10% B.
After 1 min, the proportion of B was increased to 95% at 25 min, where it was held for
further 35 min. High-resolution mass spectra were obtained using an LTQ Orbitrap Velios
(Thermo Fisher Scientific), with an APCI source operated in positive ionization mode. The
resolution was set to 30.000, and diisooctylphthalate (m/z = 391.2843) was used as internal
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standard for mass calibration. Spectra were collected from 80–1.000 m/z, and data were
analyzed using Xcalibur (Thermo Fisher Scientific; version 2.2 SP1.48).

3.3.4. FTIR

Spectra were collected with a diamond ATR unit on an iZ10 bench attached to an iN10
MX FTIR microscope (Thermo Fisher Scientific). Resolution was set to 4 cm−1, spectral
range from 600–4000 cm−1, and 32 spectra were collected and averaged, except for the
experiments under argon, where only 8 scans were used.

4. Conclusions

Various BIANs have successfully been used to reduce the viscosity of alkyl magnesium
solutions in heptane and toluene. While, in part, they react with the alkyl groups and form
stable products, the mechanism of viscosity reduction is assigned to the formation of a
complex between magnesium and the C = N bonds of the BIANs, which interferes with
the polymeric structure of the alkyl magnesium in the solution, as could be shown with
inert FTIR and NMR measurements. This becomes evident as, especially, the i-Pr-BIAN,
respectively, its butylated derivative, can be reused for viscosity reduction several times,
and only after the first use is an alkylated moiety formed. In all further experiments, no
more change in the chemical structure, e.g., by alkylation, was observed; thus, it is unlikely
that alkyl transfer is the sole cause of the reduced viscosity. The influence of substituents
on the BIAN structure has been determined to be almost inexistant, in terms of viscosity
reduction behavior; however, the chemical stability of the reaction products is strongly
influenced by side groups. While the reaction products of BIAN, F3C-BIAN, and MeO-
BIAN might influence the further use of the alkyl magnesium solutions, i-Pr-BIAN has the
lowest risk of doing so and, thus, is found to be the best candidate for further use.

In order to better understand how type and position of substituents influence the
chemical stability, further experiments with additional BIANs and analogous compounds
must be performed to elucidate the exact mechanism involved.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28020489/s1, Figure S1: 1H-NMR of BIAN in CDCl3;
Figure S2: 13C-NMR of BIAN in CDCl3; Figure S3: 1H-NMR of i-Pr-BIAN in CDCl3; Figure S4:
13C-NMR of i-Pr-BIAN in CDCl3; Figure S5: 1H-NMR of MeO-BIAN in CDCl3; Figure S6: 13C-NMR
of MeO-BIAN in CDCl3; Figure S7: 1H-NMR of F3C-BIAN in CDCl3; Figure S8: Size exclusion
chromatograms using UV (top) and RI (bottom) detection: (a) analysis of F3C-BIAN (black), BEM
(red), and the mixture of BEM with F3C-BIAN (green) and (b) F3C-BIAN (black), BOMAG (red),
and the mixture of BOMAG with F3C-BIAN (green); Figure S9: SEC-MS results of F3C-BIAN. In
black pure F3C-BIAN with m/z = 468.1061, and furthermore the radical structures formed with
F3C-BIAN with BOMAG and BEM at the following m/z ratios: 582.2481 (red), 526.1847 (green and
blue) and 498.1534 (yellow); Figure S10: SEC-MS results of F3C-BIAN. In black pure F3C-BIAN with
m/z = 468.1061, and furthermore the double bound structures formed with F3C-BIAN with BOMAG
and BEM at the following m/z ratios: 422.2105 (red), 366.1470 (green and blue) and 338.1158 (yellow);
Figure S11: Size exclusion chromatograms using UV (top) and RI (bottom) detection: (a) analysis of
MeO-BIAN (black), BEM (red), and the mixture of BEM with MeO-BIAN (green) and (b) MeO-BIAN
(black), BOMAG (red), and the mixture of BOMAG with MeO-BIAN (green); Figure S12: SEC-MS
results of MeO-BIAN. In black pure MeO-BIAN with m/z = 393.1597, and furthermore the radical
structures formed with MeO-BIAN with BOMAG and BEM at the following m/z ratios: 506.2931
(red), 450.2314 (green and blue) and 422.1999 (yellow); Figure S13: SEC-MS results of MeO-BIAN. In
black pure MeO-BIAN with m/z = 393.1597, and furthermore the double bound structures formed
with MeO-BIAN with BOMAG and BEM at the following m/z ratios: 384.2326 (red), 328.1698 (green
and blue) and 300.1389 (yellow); Figure S14: Size exclusion chromatograms using UV (top) and
RI (bottom) detection: analysis of i-Pr–BIAN (black), BOMAG (red), and the mixture of BOMAG
with i-Pr–BIAN (green); Figure S15: SEC-MS results of i-Pr-BIAN. In black pure i-Pr-BIAN with
m/z = 501.3268 and furthermore the structures formed with i-Pr-BIAN with BOMAG and BEM at the
following m/z ratios: 615.4688 (red), 559.4050 (green and blue) and 531.3739 (yellow); Figure S16:
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1H-NMR of i-Pr-BIAN modified BOMAG in D6C6; Figure S17: 13C-NMR of i-Pr-BIAN modified
BOMAG in D6C6; Figure S18: 1H-NMR of quenched MeO-BIAN in CDCl3; Figure S19: 13C-NMR
of quenched MeO-BIAN in CDCl3; Figure S20: 1H-NMR of quenched F3C-BIAN in CDCl3; Figure
S21: 13C-NMR of quenched F3C-BIAN in CDCl3; Scheme S1: Tentative structures for the quenched
BIAN products with dibutyl magnesium; Table S1: MS identification of the active F3C-BIAN—alkyl
magnesium compounds; Table S1: MS iden-tification of the active MeO-BIAN—alkyl magnesium
compounds; Table S2: MS identification of the active i-Pr-BIAN—alkyl magnesium compounds.
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