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Abstract: A series of novel chromophores A, B, C, and D, based on the julolidinyl donor and the
tricyanofuran (TCF) and CF3-tricyanofuran (CF3-Ph-TCF) acceptors, have been synthesized and
systematically investigated. The 3,5-bis(trifluoromethyl)benzene derivative isolation group was intro-
duced into the bridge in the chromophores C and D. These nonlinear optical chromophores showed
good thermal stability, and their decomposition temperatures were all above 220 ◦C. Density func-
tional theory (DFT) was used to calculate the energy gaps and first-order hyperpolarizability (β). The
macroscopic electro-optic (EO) activity was measured using a simple reflection method. The highest
EO coefficient of poled films containing 35 wt% of chromophore D doped in amorphous polycarbonate
afforded values of 54 pm/V at 1310 nm. The results indicate that the 3,5-bis(trifluoromethyl)benzene
isolation group can suppress the dipole–dipole interaction of chromophores. The moderate r33 value,
good thermal stability, and good yield of chromophores suggest their potential use in the nonlinear
optical area.

Keywords: nonlinear optical materials; organic electro-optic materials; electro-optic coefficient;
isolation group; chromophore

1. Introduction

With the rapid development of science and technology, the photon has gradually
replaced the electron as the carrier of information transmission, since it has a high trans-
mission speed. High-performance electro-optic (EO) modulators are key components
and can realize the photoelectric transformation for the boundaries of optical communica-
tion, computing, sensor technology, and ultra-broadband signal processing at GHz-THz
bandwidths [1–6].

There are many kinds of materials for electro-optic modulators, such as III-V semi-
conductor (electrical absorption materials, e.g., GaAs, InP) [7], lithium niobite [8–10], 2D
materials [11], and organic electro-optic (OEO) materials [12–17]. Among them, only
lithium niobate and organic EO polymer are based on the Pockels effect. Compared to the
lithium niobate, organic electro-optic polymers show large nonlinear optical coefficients,
design diversity, fast response speed, and low cost [18,19]. Organic electro-optic polymers
have great potential in the fields of Terahertz [20], electro-optic modulators, and other
technical fields. In order to meet the application requirements of these technologies, organic
electro-optic materials need to have a large EO coefficient (r33), robust thermal stability, and
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good chemical stability. Through rational chromophore design and supra-molecular engi-
neering such as molecular self-assembly and binary chromophore containing dendrimer
glasses and polymers, the properties of organic electro-optic polymer materials have been
greatly improved [21–25].

Typical organic electro-optic materials usually have a π electron conjugated system,
which is usually composed of an electron donor, an electron acceptor, and a π-conjugated
bridge. The nonlinear optical properties of the chromophore are related to the molecular
first hyperpolarize ability (β). The first step is to design and synthesize chromophore
molecules with large β values and high poling efficiency in the polymer to obtain large
electro-optic activity. The molecular structure relationship shows that the stronger the
electron push–pull ability of the electron donor and acceptor, the more obvious the charge
transfer and the larger the -β value. In some organic electro-optic polymers, chromophore
moieties with rod-like structures and strong dipole–dipole interactions result in antiparallel
packing of chromophores. Therefore, the strength of donor, bridge, and acceptor groups
can be modified, thus increasing the -β value. Different kinds of donors, acceptors, and
bridges have been extensively studied to enrich the understanding of essential structure-
nonlinear optical property and thermal stability correlations [26–29]. The introduction of
some isolation groups (IG) into the chromophore moieties should be an efficient approach
to decrease the interactions between chromophores and to enhance the nonlinear optical
properties and the poling efficiency of organic electro-optic polymer materials [30–32].
These chromophores improve the application of nonlinear small molecules in the field of
optical limiting and all-optical switching [33]. Future perspectives of the application of
these kinds of NLO chromophores should be considered.

In this work, the julolidinyl donor is used as the electron donor, and the tricyanofuran
(TCF) and CF3-tricyanofuran (CF3-Ph-TCF) acceptors are used as the electron acceptors,
which have super electron-withdrawing abilities. Furthermore, the 3,5-bis(trifluoromethyl)
benzene-based isolation group can also be introduced to modify a π-conjugated bridge
using a Cu(I)-catalyzed click reaction to enhance the electron-donating ability and reduce
the interaction between chromophores. Therefore, four chromophores with the julolidinyl
donor and TCF or CF3-Ph-TCF acceptors were designed and synthesized, as shown in
Scheme 1; the optimized structure of chromophore is closer to a spherical structure, which
makes the rotation of dipole molecules more favorable under polarization voltage. The
UV–Vis spectrum, solvatochromic behavior, thermal stability, DFT calculation, and EO
activity of the four chromophores were systematically studied, and the structure–property
relationships have been revealed.
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2. Results and Discussion
2.1. Synthesis and Characterization

As we all know, the 2-dicyanomethylene-3-cyano-4-methyl-2,5-dihydrofuran (TCF)
acceptors with CF3 substituents CF3-Ph-TCF (2-dicyanomethylene-3-cyano-4-methyl-5-
trifluorometheyl-5-(5-phenylthiophene-2-yl)-2,5-dihydrofuran) showed stronger electron-
withdrawing ability, so the CF3-Ph-TCF was used to obtain the new materials with the
higher electro-optic coefficient. The synthesis route of chromophores A, B, C, and D is
presented in Scheme 2. These NLO chromophores were composed of the same julolidinyl
electron donor, but they had different electron acceptors. Chromophores A and C had a
strong electron acceptor, while chromophores B and D had an ultra-strong CF3-Ph-TCF
electron acceptor. Compared with the chromophores A and B, chromophores C and D were
designed to introduce the new long-branched chain (3,5-bis(trifluoromethyl)benzene) to the
bridge of the chromophore using a Cu(I)-catalyzed click reaction. The flexible hindrance
groups on π-conjugated bridges not only can increase the electron-withdrawing ability but
also can reduce the interaction between chromophores.
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2.2. Thermal Stability

The electro-optic polymer material was poled under heating conditions to obtain an
EO coefficient with good nonlinear properties. Therefore, NLO chromophores must be
thermally stable enough to satisfy the temperature environment requirements (>200 ◦C) in
electric field poling and subsequent processing of chromophores/polymer films. Thermal
properties of the four chromophores were measured by thermogravimetric analysis (TGA)
with a heating rate of 10 ◦C·min−1 under a nitrogen atmosphere. The temperature of
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weight loss was 5% corresponding to the decomposition temperature (Td) with the curve
results as shown in Figure 1 and tabulated in Table 1. The Td of chromophores A, B, C,
and D are 249 ◦C, 221 ◦C, 243 ◦C, and 226 ◦C, respectively. The above results showed
that the Td of chromophores B and D with CF3-Ph-TCF was significantly lower than that
of chromophores A and C with TCF acceptors because of the worse thermal stability of
CF3-Ph-TCF acceptors than TCF. Among these chromophores, chromophore A shows
the highest Td of 249 ◦C indicating that the chromophores with the TCF acceptors but
without the long chain are thermally robust. The above temperature (>220 ◦C) can meet
the requirements of electric field poling near the glass transition temperature when the
chromophores doped polymer materials.
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Figure 1. TGA curves of chromophores A–D with a heating rate of 10 ◦C·min−1 under nitrogen.

Table 1. The thermal properties of the chromophores.

Chromophore Td (◦C) Tg (◦C)

Chromophore A 249 98.2
Chromophore B 221 90.4
Chromophore C 243 83.5
Chromophore D 226 80.2

In Figure 2, the glass transition temperature (Tg) of the chromophores was measured
by differential scanning calorimetry (DSC). The Tg of chromophores A and B are 98.2 ◦C
and 90.4 ◦C, and the Tg of chromophores C and D are 83.5 ◦C and 80.2 ◦C, indicating the
chromophores may be amorphous. The Tg of chromophores B and D are lower than the Tg
of chromophores A and C because of CF3-Ph-TCF acceptors in the chromophores B and D.
The Tg of chromophores C and D are lower than the glass transition temperatures Tg of
chromophores A and B because of flexible hindrance groups in the chromophores C and
D. The excellent thermal stability of the four chromophores makes them suitable for the
fabrication of practical devices and electro-optical devices.
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2.3. Optical Properties

In order to reveal the influence of electron acceptors and electron bridge structures on
intramolecular charge transfer (ICT), the UV–Vis absorption spectra of four chromophores
were measured in a series of solvents with different dielectric constants, as shown in
Figure 3 and Table 2. The solvatochromic behavior of the four chromophores can be
investigated to explore the polarizability of the chromophores.
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Table 2. The maximum UV–Vis–NIR absorption wavelength in different solvents.

Chromophore λmax
a/ε λmax

b/ε λmax
c/ε λmax

d/ε λmax
e/ε λmax

f/ε ∆λmax
g

(nm) (nm) (nm) (nm) (nm) (nm) (nm)

Chromophore A 666/11.6 702/18.2 674/12.6 625/11.2 685/13.2 693/13.8 77
Chromophore B 739/9.7 764/13.9 764/11.4 730/7.8 774/12.9 772/14.4 44
Chromophore C 670/16.8 702/11.6 671/11.7 625/11.7 683/11.8 690/13.0 77
Chromophore D 742/11.4 765/9.4 766/12.6 728/15.9 774/14.2 772/11.2 46

a–f λmax were measured in toluene, chloroform, tetrahydrofuran, dioxane, acetone, and acetonitrile, respec-
tively. g ∆λmax was difference between λmax

b (or λmax
e) and λmax

d. ε: molar extinction coefficient, unit:
104 L·mol−1·cm−1.

According to different structures, the absorption maxima (λmax) of chromophores A,
B, C, and D are 702, 774, 702, and 774 nm in chloroform or acetone. Firstly, compared with
chromophores A and C, chromophores B and D with the CF3-Ph-TCF acceptor showed
larger red-shift maximum absorptions due to their stronger electron-withdrawing ability,
which indicated that the introduction of a stronger acceptor can significantly improve
ICT properties. Secondly, the absorption wavelength of chromophores C and D with the
flexible hindrance group on the electron bridge was almost the same as chromophores
A and B, indicating that the flexible hindrance group contributed almost nothing to the
intramolecular charge transfer. In conclusion, the introduction of stronger acceptors can
lead to better polarization for chromophores.

Because of the same acceptor TCF, the absorption spectra of chromophores A and C
were similar, and the maximum absorption wavelength was measured in chloroform. The
chromophores B and D had similar absorption spectra due to CF3-Ph-TCF acceptors, and
the maximum absorption wavelength was measured in acetone. The minimum absorption
wavelengths of the four chromophores were measured in dioxane. With the increase of
the polarity of the solvent, the UV–Vis absorption initially exhibited a red shift and then
appeared as a blue-shift and showed good solvation effect. Table 2, ∆λmax (the difference
between λmax in chloroform or acetone and λmax in dioxane) shows a trend of B (44 nm)
< D (46 nm) < A (77 nm) = C (77 nm), and the peak wavelength of chromophores A and
C showed a bathochromic shift of 77 nm from dioxane to chloroform, suggesting that the
chromophores A and C were more easily polarizable than the chromophores B and D, and
they showed larger solvatochromism. The maximum absorption wavelength in chloroform
was normalized, and the absorption spectra is shown in Figure 4.
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2.4. Theoretical Calculations

In order to model the ground-state molecular geometries and understand the micro-
scopic NLO properties of the designed chromophores, the HOMO–LUMO energy gaps
and first-order hyperpolarizability β values of the four chromophores were calculated. The
DFT calculations were carried out at the hybrid B3LYP level by employing the split valence
6-31+G* basis set using Gaussian 09. The data obtained from the DFT calculations are
summarized in Table 3.

Table 3. Data from DFT calculations and CV measurements for chromophores.

Chromophores EHOMO/eV ELUMO/eV ∆E/eV βmax/10−30 esu µ (D)

A −6.10 −2.08 4.01 225 23.8
B −6.14 −2.19 3.95 241 24.0
C −6.16 −2.10 4.06 243 20.9
D −6.19 −2.20 3.99 255 21.3

∆E = ELUMO − EHOMO. Results were calculated from DFT. β values were calculated using Gaussian 09 at
the B3LYP/6-31G+*(d,p) level, and the direction of the maximum value is along the charge-transfer axis of
the chromophores.

The frontier molecular orbitals are often used to characterize the chemical reactivity
and kinetic stability of molecules, and they can obtain information about optical and elec-
trical properties of molecules. The HOMO–LUMO energy gap is often used to understand
the charge-transfer interaction that occurs in a chromophore molecule. The HOMO and
LUMO energy of chromophores A, B, C, and D were calculated by DFT, and the energy
gaps between the HOMO and LUMO energy for chromophores A and C were 4.01 eV
and 4.06 eV, respectively. When the stronger CF3-Ph-TCF acceptor was introduced to
the conjugated molecule, chromophores B and D were obtained, and their energy gaps
were 3.95 eV and 3.99 eV, which were smaller than A and C. After introducing the flexible
hindrance group to the electron bridge and CF3-Ph-TCF acceptor, the energy gaps (∆E)
showed a downtrend. As reported, the optical gap was lower, the ICT ability was higher,
and the nonlinear performance was greater. The results showed that the optical bandgap of
chromophores B and D is lower than that of chromophores A and C, which indicates that
chromophores B and D should exhibit better ICT and NLO properties than chromophores
A and C. As ∆E was reduced, chromophores B and D showed a bathochromic shift of λmax,
and these results were consistent with the conclusions of the UV–Vis spectra analysis.

The frontier molecule orbitals of these chromophores are shown in Figure S1. The elec-
tron density is concentrated on the donor moiety at the HOMO state, but it is concentrated
on the π-bridge and the acceptor moiety at the LUMO state. The comparison of the HOMO
and LUMO electron distribution in the julolidinyl donor indicated easy delocalization of
electrons in benzene rings. Consequently, both the hindrance groups can be treated as
additional donors, which efficiently enhances the electron density of the conjugated system
and increases the polarizability of chromophores.

In addition, the theoretical microscopic Zero frequency (static) molecular first hyperpo-
larizability (β) was calculated using Gaussian 09. As a reference reported earlier, β has been
calculated at the CAM-B3LYP/6-31+G* level under vacuum. From this, the scalar quantity
of β can be computed from the x, y, and z components according to the following equation:

β =
(

β2
x + β2

y + β2
z

)1/2

where
βi = βiii +

1
3 ∑

i 6=j

(
β .

ijj
+ β jij + β jji

)
, i, j ∈ (x, y, z)

The data obtained from DFT calculations are summarized in Table 3. When used
carefully and consistently, this method of DFT has been shown to give relatively consis-
tent descriptions of first-order hyperpolarizability for a number of similar chromophores.
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The β values of chromophores A, B, C, and D were 225, 241, 243, and 255 × 10−30 esu,
respectively. As reported earlier, the β value has a close relationship with the substituents,
steric hindrance, intra-molecular charge transfer, π-conjugation length, and so on. The
molecular quadratic hyperpolarizability (-β) values of CF3-Ph-TCF-based chromophores
B and D were 7% and 5% larger than those of TCF-based chromophores A and C. Most
remarkably, the extremely high β value (255 × 10−30 esu) was obtained by chromophore D,
which possessed two favorable factors at the same time: the flexible hindrance group and
the ultra-strong acceptor CF3-Ph-TCF. The λmax of chromophores B and D were larger than
that of chromophores A and C, so the trend of increasing β value was in good agreement
with the trend of increasing λmax.

We optimized the structures of the chromophores to keep them in the most stable
state using Gaussian 09 at the B3LYP/6-31g* level as shown in Figure S2. From the
side views, we found that chromophores A and B without a flexible hindrance group
on the electron bridge show good planarity, which may lead to serious dipole–dipole
interactions, a barrier in noncentrosymmetric arrays. In addition, as for chromophores
C and D, the flexible hindrance group occupied some steric hindrance; therefore, it kept
chromophore molecules away from adjacent ones when poling, thus increasing the number
of truly oriented chromophore molecules. More importantly, from the front views, the
optimized chromophore D molecular structure was close to spherical, which can reduce
the intermolecular dipole–dipole interaction and favor the movement of the chromophore
during polarization.

2.5. Electric Field Poling and EO Property Measurements

In order to study the relationship between macroscopic and microscopic properties
of organic electro-optical polymer materials, polymer films doped with 15 wt%, 25 wt%,
and 35 wt% chromophores in amorphous polycarbonate (APC) were prepared. Then, the
obtained solutions were filtered through a 0.22-µm PTEE filter and spin-coated onto indium
tin oxide (ITO) glass substrates. The contact poling process was carried out at a temperature
above the glass transition temperature (Tg) of the polymer, and the poling temperature is
shown in Table S1. In order to reduce the effect of multiple reflections, we selected ITO
thin-bottom electrodes with low reflectivity and good transparency. The golden film by
sputter has good antioxidant properties and conductivity, and it was chosen as the top
electrode for poling and the perfect reflection. The polymer was sandwiched between two
parallel electrodes, and a voltage with a typical 100 V/µm under the conventional contact
poling condition was applied to the polymer. The polarized film was measured for the r33
value at 1310 nm wavelength using the Teng-Man simple reflection method. The r33 values
were calculated with the following equation [34]:

r33 =
3λIm

4πVm Ic

(
n2 − sin2θ

)3/2

(n2 − 2sin2θ)

1
sin2θ

where r33 is the EO coefficient of the poled polymer; λ is the optical wavelength; θ is the
incidence angle; Ic is the output beam intensity; Im is the amplitude of the modulation; Vm
is the modulating voltage; and n is the refractive indices of the polymer films.

The measured r33 values depend on the chromophore number density (N), hyperpolar-
izability (β), and poling efficiency, described by the

〈
cos3 θ

〉
order parameter, as indicated

by Ref. [35].
r33 = |2N f (ω)β〈cos3 θ〉/n4|

where n is the refractive index of the film, and the f (ω) term describes the electric field
(Debye–Onsager) factors, which remain relatively constant for the associated chromophores
under similar loading densities. The cos3 θ term is the acentric order parameter. θ is
the angle between the permanent dipole moment of the chromophores and the applied
electric field.
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The electro-optical coefficient (r33) should increase linearly with chromophore den-
sity, dipole moment, first hyperpolarizability, and the strength of the electric field for
poling, when the intermolecular electrostatic interaction is neglected. However, these
chromophores with larger dipole moments actually generate an intermolecular electrostatic
field dipole–dipole interaction that leads to antiparallel stacking of chromophores. The
r33 value of films A/APC, B/APC, C/APC, and D/APC with different concentration are
shown in Table 4. For chromophore A, the r33 values gradually improved from 13 pm/V
(15 wt%) to 18 pm/V (25 wt%), but they decreased to 15 pm/V (35 wt%). For chromophore
B, the r33 values increased from 17 pm/V (15 wt%) to 28 pm/V (25 wt%) and also decreased
to 18 pm/V (35 wt%). However, the r33 values of chromophore C increased from 23 pm/V
(15 wt%), 32 pm/V (25 wt%) to 38 pm/V (35 wt%). A similar trend of improvement was
also observed for chromophore D, whose r33 values gradually improved from 29 pm/V
(15 wt%), 43 pm/V (25 wt%) to 54 pm/V (35 wt%). When the concentration of chromophore
is low (15 wt% and 25 wt%), the r33 values of all chromophores increased with the increase
of concentration. As the chromophore loading increased to 35 wt%, the intermolecular
electrostatic interaction cannot be ignored. The r33 values of the chromophores A and B
without hindrance groups showed a downward trend, but the r33 values of chromophores C
and D with hindrance groups were higher than the films with 25 wt% content. It indicated
that the 3,5-bis(trifluoromethyl)benzene hindrance group plays the role of an isolating
group well.

Table 4. The r33 values of films’ chromophore/APC with different concentrations.

Chromophores r33 with 15 wt% r33 with 25 wt% r33 with 35 wt%

A 13 pm/V 18 pm/V 15 pm/V
B 17 pm/V 28 pm/V 18 pm/V
C 23 pm/V 32 pm/V 38 pm/V
D 29 pm/V 43 pm/V 54 pm/V

The chromophores B and D showed the larger r33 than the relative chromophores A
and C, because of the stronger electron-withdrawing ability of CF3-Ph-TCF compared to
TCF. For chromophore D, the largest r33 value is attributed to both the CF3-Ph-TCF acceptor
and the large hindrance group. With the CF3-Ph-TCF electron acceptor, the EO coefficient
increased obviously, because the first hyperpolarizability (β) of chromophore D increased.
In addition, because the flexible hindrance group occupied some steric hindrance, which
weakened the dipole–dipole interaction during the poling process, the electro-optic activity
of chromophore D was greatly enhanced, which proved that the isolating group was very
effective in weakening the dipole-dipole interaction.

3. Experiments
3.1. Materials

All chemicals are commercially available and are used without further purification
unless otherwise stated. N,N-dimethylformamide (DMF), tetrahydrofuran (THF), and
ether were distilled over calcium hydride and stored over molecular sieves (pore size 3 Å).
TLC analyses were carried out on 0.25 mm-thick precoated silica plates, and spots were
visualized under UV light. Chromatography on silica gel was carried out on a Kieselgel
(200–300 mesh).

3.2. Measurements and Instrumentation
1H NMR, 13C NMR, 19F NMR spectra were recorded on an Advance Bruker 400 M

(400 MHz) NMR spectrometer (tetramethylsilane as the internal reference, Bruker, Zurich/
Ferrandon, Switzerland), and Fourier transform infrared (FTIR) spectra were recorded
using a Varian 3100 FT-IR spectrometer (Varian, Melbourne, Australia) as shown in Fig-
ures S3–S10. Electrospray ionization (ESI) mass spectra were recorded on an AB SCIEX
TripleTOF 4600 mass spectrometer (AB SCIEX, Foster City, CA, USA). The UV–Vis spectra
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were performed on a Cary 5000 photo spectrometer (Agilent, Palo Alto, CA, USA). The
TGA was determined by using a TA5000-2950TGA (TA Co., Delaware, OH, USA) with a
heating rate of 10 ◦C·min−1 under the protection of nitrogen. The Tg or melt points were
determined by TA DSC Q10 with a heating rate of 10 ◦C·min−1 under the protection of
nitrogen. The DFT calculations using Gaussian 09 were carried out at the hybrid B3LYP
level by employing the split valence 6-31+G* basis set [35]. The Au electrode was deposited
by LJUHV-SP3 magnetic sputter. The refractive index of the polymer film was measured
using Metricon Prism Coupler Model 2010/M (Metricon, Piscataway, NJ, USA).

3.3. Synthesis of Compound

8-(6-chlorohexyl)oxy)-1,1,7,7-tetramethyljulolidine-9-carboxaldehyde (compound 4)
and (compound 5) were synthesized according to our previous work [36]. 1-(Azidomethyl)-
3,5-bis-(trifluoromethyl)benzene (compound 7) was prepared according to the literature [37].
TCF and CF3-TCF acceptors were synthesized according to the literature [38].

3.4. Synthesis of Compound 2

A solution of compound 1 (1.62 g, 10 mmol) and tributyl phosphonium bromide
(PPh3·HBr) (3.43 g, 10 mmol) in a lot of chloroform was refluxed for 5 h, then cooled to
room temperature. After the removal of the solvent, the residue was dissolved using a
small amount of chloroform, and it was dropped into a large amount of ether and was
filtered to obtain white sediment in 85% yield (4.1 g). ESI–MS (C28H24BrOP): calcd: 486.07;
found: 486.22.

3.5. Synthesis of Compound 6

To a solution of compound 5 (6.4 g, 12.3 mmol) in anhydrous chloroform (50 mL) at
ambient temperature was successively added anhydrous DMF (1.0 mL, 12.3 mmol) and
POCl3 (1.7 mL, 18.5 mmol), and the mixture was refluxed for one night. After hydrolysis for
2 h under vigorous stirring at ambient temperature using an aqueous solution of sodium
acetate 2 M (400 mL), the product was extracted using CH2Cl2. When the solvent was
removed, the crude product was purified by chromatography to receive a product (56%
yield, 3.77 g). IR (KBr), vmax·cm−1: 3456 (Intramolecular hydrogen bond, O-H), 3268 (Ph-H,
C=C-H), 2937, 2866 (C-H), 1666 (-CHO), 1582, 1511,1433 (aromatic ring), 1265 (Ph-O-C),
1089 (C-Cl). HRMS (ESI) (M+H)+: calcd for (C34H42ClNO3+H)+: 548.2926; found: 548.2917.

1H NMR (400 MHz, CDCl3) δ 9.57 (s, 1H), 7.42 (s, 1H), 7.14 (d, J = 8.5 Hz, 2H), 6.96 (d,
J = 8.5 Hz, 2H), 6.68 (s, 1H), 4.62 (d, J = 2.2 Hz, 2H), 3.88 (t, J = 6.5 Hz, 2H), 3.50 (t, J = 6.6 Hz,
2H), 3.07 (m, 4H), 2.42 (s, 1H), 1.89–1.75 (m, 4H), 1.67–1.60 (m, 2H), 1.50 (m, 6H), 1.34 (s,
6H), 0.75 (s, 6H).

13C NMR (101 MHz, CDCl3) δ 193.79, 158.84, 157.14, 147.96, 145.28, 135.65, 131.04,
128.26, 127.22, 125.69, 121.67, 115.51, 114.64, 78.73, 76.45, 75.55, 55.95, 47.42, 46.84, 45.06,
39.84, 36.03, 32.64, 31.81, 30.39, 30.09, 27.01, 25.69.

3.6. Synthesis of Chromophore A

A solution of compound 6 (0.55 g, 1 mmol) and TCF acceptor (0.32 g, 1.6 mmol) in
ethanol (20 mL) was allowed to stir at 70 ◦C for 3 h, and after removal of the solvent under
reduced pressure, the crude product was additionally purified by silica chromatography to
obtain A as a green solid in 56% yield (0.04 g). IR (KBr), vmax·cm−1: 3437 (Intramolecular
hydrogen bond, O-H), 3288 (Ph-H, C=C-H), 2931, 2866 (C-H), 2218–2211 (C≡N, C≡C),
1614, 1556, 1511 (aromatic ring), 1310 (Ph-O-C), 1082 (C-Cl). HRMS (ESI) (M+H)+: calcd for
(C45H49ClN4O3+H)+: 729.3566; found: 729.3545.

1H NMR (400 MHz, CDCl3) δ 7.97 (d, J = 15.1 Hz, 1H), 7.31 (s, 1H), 7.12–7.03 (m, 4H),
6.47 (s, 1H), 5.69 (d, J = 15.1 Hz, 1H), 4.68 (d, J = 2.0 Hz, 2H), 3.85 (t, J = 6.5 Hz, 2H), 3.52
(t, J = 6.5 Hz, 2H), 3.15 (m, 4H), 2.46 (s, 1H), 1.83 (m, 4H), 1.69–1.61 (m, 2H), 1.58–1.48 (m,
12H), 1.33 (s, 6H), 0.73 (s, 6H).
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13C NMR (101 MHz, CDCl3) δ 176.70, 173.02, 160.20, 157.47, 154.76, 146.53, 144.74,
134.61, 130.68, 129.73, 127.33, 126.50, 122.06, 116.35, 116.26, 113.12, 112.21, 112.07, 110.97,
96.48, 91.83, 78.34, 75.82, 55.90, 53.57, 47.63, 47.02, 45.11, 39.25, 35.43, 32.51, 32.44, 31.68,
30.91, 29.99, 29.77, 29.66, 26.80, 26.40, 25.59, 24.40.

3.7. Synthesis of Chromophore B

A solution of compound 6 (0.55 g, 1 mmol) and CF3-Ph-TCF acceptor (0.45 g, 1 mmol)
in ethanol (20 mL) was allowed to stir at 70 ◦C for 3 h, and after removal of the solvent under
reduced pressure, the crude product was additionally purified by silica chromatography to
obtain B as a green solid in 70% yield (0.59 g). IR (KBr), vmax·cm−1: 3450 (Intramolecular
hydrogen bond, O-H), 3275 (Ph-H, C=C-H), 2937, 2859 (C-H), 2224–2211 (C≡N, C≡C),
1608, 1524, 1491 (aromatic ring), 1310 (Ph-O-C), 1089 (C-Cl). HRMS (ESI) (M+H)+: calcd for
(C50H48ClF3N4O3+H)+: 845.3440; found: 845.3408.

1H NMR (400 MHz, CDCl3) δ 7.44–7.33 (m, 3H), 7.30 (d, J = 6.2 Hz, 3H), 7.19 (s, 1H),
7.02 (s, 4H), 6.54 (s, 1H), 5.82 (d, J = 14.4 Hz, 1H), 4.68 (s, 2H), 3.80 (t, J = 6.3 Hz, 2H), 3.52 (t,
J = 6.4 Hz, 2H), 3.22 (d, J = 4.9 Hz, 4H), 2.45 (s, 1H), 1.79 (d, J = 5.8 Hz, 4H), 1.63 (s, 2H),
1.50 (s, 6H), 1.31 (s, 6H), 0.72 (s, 6H).

13C NMR (101 MHz, CDCl3) δ 176.40, 161.38, 160.45, 157.46, 156.00, 148.28, 147.54,
135.77, 130.79, 130.76, 130.60, 129.60, 129.31, 128.00, 127.33, 126.34, 123.63, 122.56, 120.78,
117.29, 116.27, 112.40, 112.30, 111.73, 111.59, 78.26, 77.67, 75.79, 55.90, 54.87, 54.51, 48.02,
47.35, 45.15, 38.82, 35.00, 32.45, 32.39, 31.63, 29.90, 29.39, 29.36, 29.33, 26.77, 25.65.

3.8. Synthesis of Compound 8

Compound 6 (0.66 g, 1.1 mmol), compound 7 (0.27 g, 1 mmol), CuSO4·5H2O (10 mol%),
NaHCO3 (20 mol%), and ascorbic acid (20 mol%) were dissolved in tert-butanol/H2O
(10 mL/10 mL) under nitrogen in a Schlenk flask. The mixture was stirred at 25 ◦C
overnight, then extracted with chloroform and washed with 1 N HCl, 1 N NH4OH and
water subsequently. The organic layer was dried over MgSO4. After filtration and removal
of the solvent under vacuum, the crude product was purified using silica chromatography
and eluted with acetone: petroleum ether (1:4) to renderw compound 8 as a red solid in 85%
yield (0.69 g). IR (KBr), vmax·cm−1: 3444 (Intramolecular hydrogen bond, O-H), 3152 (Ph-H,
C=C-H), 2937, 2859 (C-H), 1673 (-CHO), 1585, 1511, 1459 (aromatic ring), 1283 (Ph-O-C),
1174 (N=N), 1082 (C-Cl). HRMS (ESI) (M+H)+: calcd for (C43H47ClF6N4O3+H)+: 817.3314;
found: 817.3302.

1H NMR (400 MHz, CDCl3) δ 9.67 (s, 1H), 7.89 (s, 1H), 7.76 (s, 2H), 7.65 (s, 1H), 7.48 (s,
1H), 7.19 (d, J = 8.7 Hz, 2H), 7.02 (d, J = 8.7 Hz, 2H), 6.77 (s, 1H), 5.67 (s, 2H), 5.55–5.50 (m,
1H), 5.23 (s, 2H), 3.96 (d, J = 6.6 Hz, 2H), 3.57 (t, J = 6.6 Hz, 2H), 3.17 (t, J = 9.3 Hz, 3H), 1.88
(m, 6H), 1.61 (m, 6H), 1.43 (s, 6H), 0.81 (s, 6H).

13C NMR (101 MHz, CDCl3) δ 193.82, 158.74, 157.62, 148.02, 145.41, 145.38, 137.10,
133.01, 132.78, 132.56, 132.34, 131.12, 128.17, 127.97, 127.15, 123.77, 122.94, 122.92, 122.85,
122.82, 121.96, 115.25, 76.38, 62.25, 53.03, 47.39, 46.83, 45.02, 39.67, 35.84, 32.58, 32.53, 31.72,
30.36, 30.34, 30.26, 30.09, 29.98, 29.75, 29.68, 26.93, 25.62.

19F NMR (565 MHz, CDCl3) δ −62.89 (s, CF3).

3.9. Synthesis of Chromophore C

A solution of compound 8 (0.82 g, 1 mmol) and TCF acceptor (0.32 g, 1.6 mmol) in
ethanol (20 mL) was allowed to stir at 70 ◦C for 3 h, and after removal of the solvent under
reduced pressure, the crude product was additionally purified by silica chromatography to
obtain C as a green solid in 52% yield (0.52 g). IR (KBr), vmax·cm−1: 3456 (Intramolecular
hydrogen bond, O-H), 3199 (Ph-H, C=C-H), 2923, 2844 (C-H), 2225 (C≡N, C≡C), 1514,
1478 (aromatic ring), 1367 (Ph-O-C), 1183 (N=N), 1110 (C-Cl). HRMS (ESI) (M+H)+: calcd
for (C54H54ClF6N7O3+H)+: 998.3954; found: 998.3937.

1H NMR (400 MHz, CDCl3) δ 7.86 (s, 1H), 7.77 (d, J = 13.0 Hz, 3H), 7.68 (s, 1H), 7.36 (s,
1H), 7.27 (s, 1H), 7.15–7.10 (m, 4H), 6.62 (s, 1H), 5.79 (d, J = 15.1 Hz, 1H), 5.70 (s, 2H), 5.32 (s,
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2H), 3.92 (t, J = 6.6 Hz, 2H), 3.59 (t, J = 6.6 Hz, 2H), 3.44–3.15 (m, 4H), 1.99–1.91 (m, 2H),
1.86 (m, 2H), 1.75–1.52 (m, 14H), 1.48–1.37 (m, 6H), 0.91–0.73 (m, 6H).

13C NMR (101 MHz, CDCl3) δ 176.31, 173.22, 160.08, 157.88, 154.20, 146.43, 144.81,
144.18, 137.47, 134.74, 132.83, 132.60, 132.38, 132.16, 130.83, 129.70, 128.17, 127.37, 126.55,
123.82, 123.02, 122.75, 122.72, 122.70, 122.10, 122.01, 116.55, 116.28, 112.99, 112.19, 111.76,
111.66, 96.40, 62.34, 62.13, 53.75, 52.87, 47.63, 47.01, 45.04, 39.19, 35.31, 32.51, 32.45, 31.66,
30.03, 29.64, 26.81, 26.68, 25.65.

19F NMR (565 MHz, CDCl3) δ −62.84 (s, CF3).

3.10. Synthesis of Chromophore D

A solution of compound 8 (0.82 g, 1 mmol) and CF3-Ph-TCF acceptor (0.45 g, 1 mmol)
in ethanol (20 mL) was allowed to stir at 70 ◦C for 3 h, and after removal of the solvent under
reduced pressure, the crude product was additionally purified by silica chromatography to
obtain D as a green solid in 67% yield (0.74 g). IR (KBr), vmax·cm−1: 3437 (Intramolecular hy-
drogen bond, O-H), 2931, 2854 (C-H), 2231 (C≡N), 1569, 1439 (aromatic ring), 1310 (Ph-O-C),
1187 (N=N), 1109 (C-Cl). HRMS (ESI) (M+H)+: calcd for (C59H53ClF9N7O3+H)+: 1114.3827;
found: 1114.3811.

1H NMR (400 MHz, CDCl3) δ 7.87 (s, 1H), 7.75 (s, 2H), 7.67 (d, J = 8.1 Hz, 1H), 7.50 (dd,
J = 8.1, 5.0 Hz, 1H), 7.48–7.43 (m, 2H), 7.41 (d, J = 7.8 Hz, 2H), 7.26 (s, 2H), 7.08 (q, J = 8.6 Hz,
4H), 6.64 (s, 1H), 5.92 (d, J = 11.9 Hz, 1H), 5.68 (s, 2H), 5.31 (s, 2H), 3.84 (t, J = 6.6 Hz, 2H),
3.59 (t, J = 6.3 Hz, 2H), 3.38–3.18 (m, 4H), 1.85 (s, 4H), 1.76–1.66 (m, 2H), 1.55 (s, 6H), 1.38 (s,
6H), 0.76 (s, 6H).

13C NMR (101 MHz, CDCl3) δ 175.99, 161.35, 160.68, 157.98, 156.29, 148.53, 147.46,
144.77, 137.38, 135.77, 132.87, 132.65, 132.42, 132.20, 130.99, 130.79, 130.75, 129.39, 128.17,
127.98, 127.29, 126.71, 125.62, 123.81, 123.22, 123.02, 122.78, 122.44, 122.00, 121.32, 120.19,
117.15, 116.41, 112.30, 111.85, 111.73, 95.30, 95.09, 77.66, 62.32, 60.41, 54.33, 52.91, 47.99,
47.31, 45.10, 38.76, 34.89, 32.42, 32.39, 31.58, 29.91, 29.36, 29.34, 29.20, 29.16, 26.80, 25.49.

19F NMR (565 MHz, CDCl3) δ −62.87 (s, CF3).

4. Conclusions

In this work, the novel chromophores A, B, C, and D, based on the tricyanofuran (TCF)
and CF3-Ph-TCF acceptors, were synthesized and systematically investigated by NMR,
MS, and UV–Vis absorption spectroscopy. The energy gap between the ground state and
the excited state and the molecular nonlinearity were investigated by UV–Vis absorption
spectroscopy and DFT calculations. Theoretical and experimental studies showed that
CF3-Ph-TCF with super electron-withdrawing ability could greatly improve its microscopic
hyperpolarizability (β) and macroscopic EO property compared to conventional TCF
acceptors. The macroscopic and microscopic properties of chromophores, including thermal
stability, photo-physics, and EO performance, were investigated by experiments and
calculations. The different compositions of the chromophores led to the differences in
spatial structure, physical properties, and DFT calculation results. Chromophore D with a
flexible hindrance group and the CF3-Ph-TCF acceptor exhibited the highest EO coefficient
of 54 pm/V. The moderate r33 values and thermal stability indicate that these new second-
order nonlinear optical chromophores have attractive potential applications in devices.
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The frontier molecular orbitals of chromophores A, B, C and D; Figure S2: The optimized structures
of chromophores A, B, C, D; Figure S3: The 1H NMR spectra of the compound 6 and compound 8;
Figure S4: The 1H NMR spectra of the chromophore A, B, C, and D; Figure S5: The 13C NMR spectra
of the compound 6 and compound 8; Figure S6: The 13C NMR spectra of the chromophore A, B, C,
and D; Figure S7: The 19F NMR spectrum of the compound 8; Figure S8: The 19F NMR spectra of the
chromophore C and D; Figure S9: The FTIR spectra of the compound 6 and compound 8; Figure S10:
The FTIR spectra of the chromophore A, B, C, and D;
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