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Abstract: The electrochemical oxidation of amines is an essential alternative to the conventional
chemical transformation that provides critical routes for synthesising and modifying a wide range
of chemically useful molecules, including pharmaceuticals and agrochemicals. As a result, the
anodic reactivity of these compounds has been extensively researched over the past seven decades.
However, the different mechanistic aspects of the electrochemical oxidation of amines have never
been discussed from a comprehensive and general point of view. This review examines the oxidation
mechanism of aliphatic amines, amides, aniline and aniline derivatives, carbamates, and lactams,
either directly oxidised at different electrode surfaces or indirectly oxidised by a reversible redox
molecule, in which the reactive form was generated in situ. The mechanisms are compared and
simplified to understand all possible pathways for the oxidation of amines using only a few general
mechanisms. Examples of the application of these oxidation reactions are also provided.
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1. Introduction

A normal synthetic reaction implies the attack of a nucleophile on an electrophilic
centre, with the reaction between molecules of similar polarity being considered inviable.
In this scenario, the inversion of the polarity of one of those molecules is required, which is
not an easy task in conventional organic synthesis. However, it is commonly realised in
electrochemical organic synthesis, making possible a large variety of reactions [1,2].

Amines are a family of chemical compounds that share as a common feature the
presence of at least one nitrogen atom whose hybridisation depends on the structure of
the molecule. For example, aliphatic amines contain sp3-hybridised nitrogen atoms. This
hybridisation lies between sp3 and sp2 when the amine is part of a resonance structure.
Alternatively, it shows sp2-hybridisation when forming part of a heterocycle. In all cases,
the amines contain a lone pair of electrons in the unbounded orbital, which is responsible
for their relatively easy electrochemical oxidation.

Due to the large variety of amine-containing molecules available and extensive re-
search on them over the past seven decades, it is impossible to discuss and cite all work
performed in this area in a single paper. Nevertheless, several review articles and book
chapters have been published summarising the impressive advances in this field over the
years [3–8]. However, a detailed discussion of the different mechanistic aspects of the
electrochemical oxidation of amines is still elusive. Therefore, this manuscript focuses on
the comprehensive discussion of the oxidation mechanism of aliphatic amines, amides,
aniline and its derivatives, and carbamates and lactams, the respective similarities and
differences between their mechanisms, and catalysed electrochemical oxidations. Examples
of the application of these oxidation reactions are also provided.

2. Aliphatic Amines

The potential at which aliphatic amines can be electrochemically oxidised depends
on their structure (Table 1), with secondary or tertiary amines being easier to oxidise than

Molecules 2023, 28, 471. https://doi.org/10.3390/molecules28020471 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28020471
https://doi.org/10.3390/molecules28020471
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-8616-365X
https://doi.org/10.3390/molecules28020471
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28020471?type=check_update&version=2


Molecules 2023, 28, 471 2 of 32

primary amines. Nevertheless, the general mechanism for the electrochemical oxidation of
simple aliphatic amines is the same and independent of the number of organic substituents
attached to the nitrogen atom [9–15]. Upon the oxidation of a tertiary amine, the overall
reaction provides a secondary amine, an aldehyde, and protons. These protons protonate
the starting amine or the secondary one (product from this reaction) to give an electro-
chemically inactive ammonium ion, and the reaction consumes one electron per starting
molecule [10,13,16–18]. Similarly, the oxidation of a secondary amine produces a primary
ammonium ion as the product, while the oxidation of primary amines forms ammonia [19].

Table 1. Oxidation potential of different aliphatic and aromatic amines.

Amine Solvent Supporting Electrolyte Working
Electrode

Eox a

(V vs. SCE) Ref.

propylamine CH3CN 0.1 M Na[ClO4] Pt 1.38 [10]

butylamine

DMF 0.1 M [Bu4N][BF4] GC 1.36 [16]

EtOH 0.1 M LiClO4 GC 1.22 [20]

THF 0.1 M LiClO4 GC 1.15 [21]

pentylamine CH3CN 0.1 M Na[ClO4] Pt 1.45 [10]

hexylamine DMF 0.1 M [Bu4N][BF4] GC 1.36 [16]

nonylamine CH3CN 0.1 M Na[ClO4] Pt 1.48 [10]

t-butylamine

DMF 0.1 M [Bu4N][BF4] GC 1.44 [16]

THF 0.1 M LiClO4 GC 1.21 [21]

CH3CN 0.1 M Na[ClO4] Pt 1.40 [10]

butylamide THF 0.1 M LiClO4 GC 0.16 [21]

t-butylamide THF 0.1 M LiClO4 GC −0.10 [21]

cyclohexylamine
DMF 0.1 M [Bu4N][BF4] GC 1.39 [16]

THF 0.1 M LiClO4 GC 1.26 [21]

cyclohexylamide THF 0.1 M LiClO4 GC 0.05 [21]

N-methylacetamide CH3CN 0.2 M NaClO4 GC 1.81 [12]

N-acetylethylenediamine EtOH 0.1 M LiClO4 GC 1.27 [20]

dopamine EtOH 0.1 M LiClO4 GC 1.22 [20]

N-(5-aminopentyl)biotinamide EtOH 0.1 M LiClO4 GC 1.22 [20]

diethylamine CH3CN 0.1 M [Bu4N][PF6] GC 1.10 [18]

dipropylamine CH3CN 0.1 M NaClO4 Pt 1.00 [10]

dibutylamine

DMF 0.1 M [Bu4N][BF4] GC 1.11 [16]

THF 0.1 M LiClO4 GC 0.94 [21]

CH3CN 0.1 M NaClO4 Pt 1.07 [10]

dibutylamide THF 0.1 M LiClO4 GC −0.12 [21]

dibenzylamine CH3CN 0.1 M NaClO4 Pt 1.23 [10]

di-isopropylamine DMF 0.1 M [Bu4N][BF4] GC 1.15 [16]

di-isobutylamine DMF 0.1 M [Bu4N][BF4] GC 1.11 [16]

di-sec-butylamine
DMF 0.1 M [Bu4N][BF4] GC 1.16 [16]

CH3CN 0.1 M NaClO4 Pt 1.16 [10]

dipentylamine CH3CN 0.1 M NaClO4 Pt 1.11 [10]
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Table 1. Cont.

Amine Solvent Supporting Electrolyte Working
Electrode

Eox a

(V vs. SCE) Ref.

bis-2-ethylhexylamine DMF 0.1 M [Bu4N][BF4] GC 1.07 [16]

N-methylbutylamine EtOH 0.1 M LiClO4 GC 1.00 [20]

N-ethylbutylamine EtOH 0.1 M LiClO4 GC 0.99 [20]

dicyclohexylamine
DMF 0.1 M [Bu4N][BF4] GC 1.06 [16]

CH3CN 0.1 M [Bu4N][PF6] GC 1.49 [17]

N,N-dimethylacetamide CH3CN 0.2 M NaClO4 GC 1.32 [12]

trimethylamine CH3CN 0.1 M NaClO4 Pt 1.05 [10]

triethylamine

EtOH 0.1 M LiClO4 GC 0.83 [20]

DMF 0.1 M [Bu4N][BF4] GC 0.94 [16]

CH3CN 0.1 M [Bu4N][PF6] GC 0.88 [18]

CH3CN 0.1 M NaClO4 Pt 0.95 [10]

tripropylamine
DMF 0.1 M [Bu4N][BF4] GC 0.95 [16]

CH3CN 0.1 M NaClO4 Pt 0.93 [10]

tributylamine
DMF 0.1 M [Bu4N][BF4] GC 0.88 [16]

CH3CN 0.1 M NaClO4 Pt 0.78 [10]

tripentylamine
DMF 0.1 M [Bu4N][BF4] GC 0.91 [16]

CH3CN 0.1 M NaClO4 Pt 0.89 [10]

tribenzylamine CH3CN 0.1 M NaClO4 Pt 0.99 [10]

tri-isopropylamine THF 0.1 M [Bu4N]ClO4 GC 0.76 [19]

tri-isobutylamine DMF 0.1 M [Bu4N][BF4] GC 0.98 [16]

N,N-dicyclohexylmethylamine CH3CN 0.1 M [Bu4N][PF6] GC 1.04 [17]

N,N-dimethylcyclohexylamine CH3CN 0.1 M [Bu4N][PF6] GC 1.18 [17]

N,N-dimethylbutylamine EtOH 0.1 M LiClO4 GC 0.99 [20]

4-nitrobenzylamine
DMF 0.1 M [Bu4N][BF4] GC 1.42 [16]

CH3CN 0.1 M [Bu4N][BF4] GC 1.58 [16]

3-nitrobenzylamine
DMF 0.1 M [Bu4N][BF4] GC 1.51 [16]

CH3CN 0.1 M [Bu4N][BF4] GC 1.78 [16]

N-methyl-3-nitrobenzylamine
DMF 0.1 M [Bu4N][BF4] GC 1.25 [16]

CH3CN 0.1 M [Bu4N][BF4] GC 1.33 [16]

N,N-dimethyl-3-nitrobenzylamine
DMF 0.1 M [Bu4N][BF4] GC 1.01 [16]

CH3CN 0.1 M [Bu4N][BF4] GC 1.07 [16]

pyrrolidine CH3CN 0.1 M [Bu4N][PF6] GC 1.16 [18]

pyrrole CH3CN 0.5 M NaClO4 Pt 1.06 * [22]

pyridine CH3CN 0.5 M NaClO4 Pt 2.12 * [22]

N,N-dipropylpropionamide CH3CN 0.2 M NaClO4 GC 1.26 [12]

aniline CH3CN 0.5 M NaClO4 Pt 0.90 * [23]

p-nitroaniline CH3CN 0.5 M NaClO4 Pt 1.39 * [23]

p-bromoaniline CH3CN 0.5 M NaClO4 Pt 0.97 * [23]
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Table 1. Cont.

Amine Solvent Supporting Electrolyte Working
Electrode

Eox a

(V vs. SCE) Ref.

p-chloroaniline CH3CN 0.5 M NaClO4 Pt 0.96 * [23]

p-anisidine CH3CN 0.5 M NaClO4 Pt 0.62 * [23]

o-anisidine CH3CN 0.5 M NaClO4 Pt 0.70 * [23]

diphenylamine CH3CN 0.1 M NaClO4 Pt 0.83 * [24]

triphenylamine CH3CN 0.1 M [Et4N]ClO4 Pt 0.98 [25]

N,N-dimethylaniline CH3CN 0.1 M [Bu4N][PF6] Pt 0.76 [26]

N,N-diethylaniline CH3CN 0.5 M NaClO4 Pt 0.70 * [23]

N,N-diethyl-p-chloroaniline CH3CN 0.5 M NaClO4 Pt 0.83 * [23]

N,N-dimethyl-p-chloroaniline CH3CN 0.5 M NaClO4 Pt 0.85 * [23]

ethylphenylamine CH3CN 0.5 M NaClO4 Pt 0.76 * [23]

di-4-tolylamine CH3CN 0.1 M NaClO4 Pt 0.70 * [24]

N,N-tetramethylbenzidine CH3CN 0.1 M [Pr4N]ClO4 Pt 0.43 * [27]

1-dimethylaminonaphthalene CH3CN 0.1 M [Pr4N]ClO4 Pt 0.75 * [27]

2-dimethylaminonaphthalene CH3CN 0.1 M [Pr4N]ClO4 Pt 0.67 * [27]

azobenzene CH3CN 0.5 M NaClO4 Pt 1.69 * [23]

4,4-dichloroazobenzene CH3CN 0.5 M NaClO4 Pt 1.80 * [23]

4,4-dimethoxyazobenzene CH3CN 0.5 M NaClO4 Pt 1.34 * [23]

N,N,N′,N′-tetramethyl-m-
phenylenediamine CH3CN 0.1 M [Pr4N]ClO4 Pt 0.62 * [28]

N,N,N′,N′-tetramethyl-p-
phenylenediamine CH3CN 0.1 M [Pr4N]ClO4 Pt 0.20 * [28]

N,N-dimethyl-m-anisidine CH3CN 0.1 M [Pr4N]ClO4 Pt 0.79 * [28]

N,N-dimethyl-p-anisidine CH3CN 0.1 M [Pr4N]ClO4 Pt 0.63 * [28]

3,4-dimethoxy-N,N-
dimethylaniline CH3CN 0.1 M [Pr4N]ClO4 Pt 0.50 * [28]

3,5-dimethoxy-N,N-
dimethylaniline CH3CN 0.1 M [Pr4N]ClO4 Pt 0.80 * [28]

N,N,N′,N′-tetramethyl-o-
phenylenediamine CH3CN 0.1 M [Pr4N]ClO4 Pt 0.58 * [28]

N,N-dimethyl-o-anisidine CH3CN 0.1 M [Pr4N]ClO4 Pt 0.78 * [28]

2,4-dimethoxy-N,N-
dimethylaniline CH3CN 0.1 M [Pr4N]ClO4 Pt 0.57 * [28]

a oxidation peak potential is reported, except those with (*), which are the E1/2. Abbreviations: DMF = dimethyl-
formamide; CH3CN = acetonitrile; EtOH = ethanol; THF = tetrahydrofuran; [Bu4N] = tetrabutylammonium;
[Et4N] = tetraethylammonium; [Pr4N] = tetrapropylammonium; [PF6] = hexafluorophosphate; [BF4] = tetrafluo-
roborate; SCE = saturated calomel electrode.

The one-electron oxidation reaction starts with the amine oxidation to the respective
radical cation (Equation (1)), which deprotonates to give a radical at the α-carbon connected
to the nitrogen atom (Equation (2)).
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It is important to highlight that although the mechanism postulates the consumption
of two electrons, coulometry generally shows the consumption of one electron per molecule
of starting amine because an extra molecule is inactivated by protonation.

Because of its positive charge, 2 is a better electron acceptor than a ketone carbonyl.
Thus, any weak or strong nucleophile can react with 2 to form various products. For
example, Equations (6) and (7) show the reaction of 2 in the presence of water. It begins
with the nucleophilic addition of water to the iminium group (Equation (6)), followed by
the transfer of a proton from oxygen to nitrogen to yield the protonated amino alcohol 3 (or
carbinolamine), which converts the amine into a better leaving group. Next, the E1-like
loss of amine produces a protonated aldehyde (Equation (7)). Finally, the loss of a proton
from oxygen gives the final aldehyde and a quaternary ammonium product (Equation (7)).
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Ross considered that the hydrolysis reaction follows a concerted or two-step base-
catalysed mechanism (Equation (8)) [30], which produces the aldehyde in the enolic form
and the amine. Then, keto-enol tautomerisation produces the final aldehyde product.
However, this is not ubiquitous, and the following evidence confirmed that Equations (6)
and (7) are more appropriate in specific situations [17]:

(1) Equation (8) cannot explain the demethylation of trimethylamine or other methy-
lated amines.

(2) Experimental evidence confirmed that the reaction produces an ammonium ion
and not an amine.
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The electrochemical oxidation of benzylamine in acetonitrile at a stainless-steel mesh
anode in the presence of 0.1 M tetrabutylammonium perchlorate as the supporting elec-
trolyte was studied [34]. Due to the absence of methyl groups, the formation of an in-
termediate equivalent to 2b occurs, which reacts with starting material (Equation (10)),
resulting in the formation of N-benzylidenebenzylamine (7) and a small percentage of
benzonitrile [34].
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A similar situation to that described above for N,N-dimethylbenzylamine was ob-
served in our group during the electrochemical oxidation of N,N-dicyclohexylmethylamine,
N,N-dimethylcyclohexylamine, and N,N-dicyclohexylamine [17]. Using N,N-dicyclohexyl-
methylamine as an example, the initial oxidation affords a radical cation (Equation (1)),
which can deprotonate following two possible paths to give a radical. One pathway
is the formation of cyclohexyl radical 8 (Equation (11)), and the second option is the
formation of methylene radical 9 (Equation (12)). From the electrolysis results of N,N-
dicyclohexylmethylamine and N,N-dimethylcyclohexylamine, it was possible to observe
that the formation of radical 9 is preferential over that of radical 8.
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However, in the absence of methyl groups, the formation of radical 8 occurs, as
was observed with N,N-dicyclohexylamine. It seems worthwhile to point out that in
the case of radical 9, an enamine intermediate cannot be formed. Nevertheless, the
demethylation process still takes place. Water molecules in the organic solvent reacted
with the N,N-dicyclohexylmethylamine and N,N-dimethylcyclohexylamine iminium prod-
ucts to yield formaldehyde and protonated N,N-dicyclohexylamine and N-methylcyclo-
hexylamine, respectively. N-cyclohexylamine was obtained as the oxidation product of
N,N-dicyclohexylamine [17].

The experimental results were rationalised by considering that planarity at the iminium
intermediate (sp2-hybridised carbon) is required (Equation (5)), which will be favoured
in the methyl group rather than in the cyclohexyl functional group. Moreover, steric ef-
fects contribute to the difficulty in accessing the α-carbon hydrogens in highly substituted
tertiary amines (e.g., tri-isopropylamine and 9-t-butylazabicyclo[3.3.1]nonane) showing
electrochemical reversible oxidation processes [19,35,36]. Similar reversibility is also ob-
served with amines containing no hydrogens on the α-carbons [35,36]. Interestingly, the
reversibility of 9-t-butylazabicyclo[3.3.1]nonane is partially lost when the t-butyl group is
replaced by i-propyl [36].

Despite the well-known mechanism, research on adding nucleophiles to 2 is limited.
Table 2 summarises the anodic oxidation of aliphatic and alicyclic amines in the presence of
different nucleophiles.

Table 2. Oxidation of tertiary amines in the presence of different nucleophiles.

Entry # Starting Amine Nucleophile Product % Yield Ref.

1
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Table 2. Cont.

Entry # Starting Amine Nucleophile Product % Yield Ref.
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Aziridines are extremely reactive cyclic secondary amines that undergo ring-opening
reactions in the presence of nucleophiles. They are used in textile chemicals, adhesives,
binders, petroleum refining chemicals, fuels, lubricants, hardeners, etc. [54]. Aziridines
undergo ring cleavage by anodic oxidation. For example, the electrochemical oxidation
of 2-phenyl-2-ethylaziridine was studied in anhydrous methanol at 0 ◦C under a nitrogen
atmosphere using a platinum working electrode [55]. The electrolysis showed a four-
electron process with the production of (1,1-dimethoxypropyl)benzene in 50% yield. The
reaction was postulated to proceed via initial two-electron oxidation to form an azaallyl
cation intermediate (10, Equation (13)), which reacts with methanol to produce the imine 11.
This imine can suffer further two-electron oxidation to make 12 (12% yield, Equation (14))
and react with water to form propiophenone (observed in 6% yield) or react again with
methanol to produce (1,1-dimethoxypropyl)benzene [55].
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2.1. Catalysed Oxidation of Amines

To decrease the overpotential needed for the direct oxidation of amines, as well as min-
imise the electrode surface fouling effect, increase the sensitivity, and enhance the reliability
and reproducibility of the data, the catalytic oxidation of aliphatic amines with reversible
redox couples acting as a mediator has been introduced. As discussed by Torriero et al.,
an ideal redox catalyst (or mediator) needs to have a standard reversible potential less
positive than the oxidation potential of the substrate, exhibit fast electron-transfer kinetics,
and be stable in both the oxidised and reduced form toward the species present in the
reaction media [17,18,56,57]. Effective mediators that meet these requirements are based on
ruthenium complexes, quinone, ferrocene (Fc), and their derivatives, either homogeneously
dispersed in the solution or immobilised in a monolayer or multilayer configuration onto
the electrode surface [17,18,58–61]. However, other options were equally reported. For
example, the anodic oxidation of primary amines at nickel hydroxide electrodes in alkaline
solutions forms nickel oxide hydroxide at a potential of 0.39 V vs. SCE, which reacts with
propylamine and butylamine, forming propionitrile (84% yield) and butyronitrile (85%
yield), respectively [62]. Nevertheless, when i-propylamine was used, acetone was formed
in an 80% yield (Equation (15)).
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(15)

Chloride, bromide, and iodide have been used as redox catalysts (Table 3). For example,
sodium chloride and sodium bromide were used as redox catalysts in a CH3CN-saturated
NaCl aqueous (pH 4) solvent mixture using platinum as the working electrode for the
electrochemical oxidation of cyclic aziridines to form keto nitriles in an 80% yield [63]. Keto
nitriles are valuable intermediates for various synthetic transformations [64]. This reaction
was explained by the generation of an azaallenyl intermediate cation, which is hydrated to
form an α-hydroxyimine. Second oxidation by Cl+ followed by a rearrangement leads to
the final keto nitrile (13, Equation (16)) [63].
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hydrated to form an α-hydroxyimine. Second oxidation by Cl+ followed by a rearrange-
ment leads to the final keto nitrile (13, Equation (16)) [63]. 
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or multilayer configuration onto the electrode surface [17,18,58–61]. However, other op-
tions were equally reported. For example, the anodic oxidation of primary amines at 
nickel hydroxide electrodes in alkaline solutions forms nickel oxide hydroxide at a poten-
tial of 0.39 V vs. SCE, which reacts with propylamine and butylamine, forming propi-
onitrile (84% yield) and butyronitrile (85% yield), respectively [62]. Nevertheless, when i-
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requirements are based on ruthenium complexes, quinone, ferrocene (Fc), and their de-
rivatives, either homogeneously dispersed in the solution or immobilised in a monolayer 
or multilayer configuration onto the electrode surface [17,18,58–61]. However, other op-
tions were equally reported. For example, the anodic oxidation of primary amines at 
nickel hydroxide electrodes in alkaline solutions forms nickel oxide hydroxide at a poten-
tial of 0.39 V vs. SCE, which reacts with propylamine and butylamine, forming propi-
onitrile (84% yield) and butyronitrile (85% yield), respectively [62]. Nevertheless, when i-
propylamine was used, acetone was formed in an 80% yield (Equation (15)). 
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Chloride, bromide, and iodide have been used as redox catalysts (Table 3). For exam-
ple, sodium chloride and sodium bromide were used as redox catalysts in a CH3CN-sat-
urated NaCl aqueous (pH 4) solvent mixture using platinum as the working electrode for 
the electrochemical oxidation of cyclic aziridines to form keto nitriles in an 80% yield [63]. 
Keto nitriles are valuable intermediates for various synthetic transformations [64]. This 
reaction was explained by the generation of an azaallenyl intermediate cation, which is 
hydrated to form an α-hydroxyimine. Second oxidation by Cl+ followed by a rearrange-
ment leads to the final keto nitrile (13, Equation (16)) [63]. 
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requirements are based on ruthenium complexes, quinone, ferrocene (Fc), and their de-
rivatives, either homogeneously dispersed in the solution or immobilised in a monolayer 
or multilayer configuration onto the electrode surface [17,18,58–61]. However, other op-
tions were equally reported. For example, the anodic oxidation of primary amines at 
nickel hydroxide electrodes in alkaline solutions forms nickel oxide hydroxide at a poten-
tial of 0.39 V vs. SCE, which reacts with propylamine and butylamine, forming propi-
onitrile (84% yield) and butyronitrile (85% yield), respectively [62]. Nevertheless, when i-
propylamine was used, acetone was formed in an 80% yield (Equation (15)). 
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Chloride, bromide, and iodide have been used as redox catalysts (Table 3). For exam-
ple, sodium chloride and sodium bromide were used as redox catalysts in a CH3CN-sat-
urated NaCl aqueous (pH 4) solvent mixture using platinum as the working electrode for 
the electrochemical oxidation of cyclic aziridines to form keto nitriles in an 80% yield [63]. 
Keto nitriles are valuable intermediates for various synthetic transformations [64]. This 
reaction was explained by the generation of an azaallenyl intermediate cation, which is 
hydrated to form an α-hydroxyimine. Second oxidation by Cl+ followed by a rearrange-
ment leads to the final keto nitrile (13, Equation (16)) [63]. 

(16)

Table 3. Oxidation of amines using halides as redox catalysts. 
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8 H2O Br− 50 [68]
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propylamine was used, acetone was formed in an 80% yield (Equation (15)). 
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requirements are based on ruthenium complexes, quinone, ferrocene (Fc), and their de-
rivatives, either homogeneously dispersed in the solution or immobilised in a monolayer 
or multilayer configuration onto the electrode surface [17,18,58–61]. However, other op-
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nickel hydroxide electrodes in alkaline solutions forms nickel oxide hydroxide at a poten-
tial of 0.39 V vs. SCE, which reacts with propylamine and butylamine, forming propi-
onitrile (84% yield) and butyronitrile (85% yield), respectively [62]. Nevertheless, when i-
propylamine was used, acetone was formed in an 80% yield (Equation (15)). 
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ple, sodium chloride and sodium bromide were used as redox catalysts in a CH3CN-sat-
urated NaCl aqueous (pH 4) solvent mixture using platinum as the working electrode for 
the electrochemical oxidation of cyclic aziridines to form keto nitriles in an 80% yield [63]. 
Keto nitriles are valuable intermediates for various synthetic transformations [64]. This 
reaction was explained by the generation of an azaallenyl intermediate cation, which is 
hydrated to form an α-hydroxyimine. Second oxidation by Cl+ followed by a rearrange-
ment leads to the final keto nitrile (13, Equation (16)) [63]. 
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requirements are based on ruthenium complexes, quinone, ferrocene (Fc), and their de-
rivatives, either homogeneously dispersed in the solution or immobilised in a monolayer 
or multilayer configuration onto the electrode surface [17,18,58–61]. However, other op-
tions were equally reported. For example, the anodic oxidation of primary amines at 
nickel hydroxide electrodes in alkaline solutions forms nickel oxide hydroxide at a poten-
tial of 0.39 V vs. SCE, which reacts with propylamine and butylamine, forming propi-
onitrile (84% yield) and butyronitrile (85% yield), respectively [62]. Nevertheless, when i-
propylamine was used, acetone was formed in an 80% yield (Equation (15)). 
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Chloride, bromide, and iodide have been used as redox catalysts (Table 3). For exam-
ple, sodium chloride and sodium bromide were used as redox catalysts in a CH3CN-sat-
urated NaCl aqueous (pH 4) solvent mixture using platinum as the working electrode for 
the electrochemical oxidation of cyclic aziridines to form keto nitriles in an 80% yield [63]. 
Keto nitriles are valuable intermediates for various synthetic transformations [64]. This 
reaction was explained by the generation of an azaallenyl intermediate cation, which is 
hydrated to form an α-hydroxyimine. Second oxidation by Cl+ followed by a rearrange-
ment leads to the final keto nitrile (13, Equation (16)) [63]. 
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requirements are based on ruthenium complexes, quinone, ferrocene (Fc), and their de-
rivatives, either homogeneously dispersed in the solution or immobilised in a monolayer 
or multilayer configuration onto the electrode surface [17,18,58–61]. However, other op-
tions were equally reported. For example, the anodic oxidation of primary amines at 
nickel hydroxide electrodes in alkaline solutions forms nickel oxide hydroxide at a poten-
tial of 0.39 V vs. SCE, which reacts with propylamine and butylamine, forming propi-
onitrile (84% yield) and butyronitrile (85% yield), respectively [62]. Nevertheless, when i-
propylamine was used, acetone was formed in an 80% yield (Equation (15)). 
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Chloride, bromide, and iodide have been used as redox catalysts (Table 3). For exam-
ple, sodium chloride and sodium bromide were used as redox catalysts in a CH3CN-sat-
urated NaCl aqueous (pH 4) solvent mixture using platinum as the working electrode for 
the electrochemical oxidation of cyclic aziridines to form keto nitriles in an 80% yield [63]. 
Keto nitriles are valuable intermediates for various synthetic transformations [64]. This 
reaction was explained by the generation of an azaallenyl intermediate cation, which is 
hydrated to form an α-hydroxyimine. Second oxidation by Cl+ followed by a rearrange-
ment leads to the final keto nitrile (13, Equation (16)) [63]. 

(16)

Table 3. Oxidation of amines using halides as redox catalysts. 
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4 
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or multilayer configuration onto the electrode surface [17,18,58–61]. However, other op-
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nickel hydroxide electrodes in alkaline solutions forms nickel oxide hydroxide at a poten-
tial of 0.39 V vs. SCE, which reacts with propylamine and butylamine, forming propi-
onitrile (84% yield) and butyronitrile (85% yield), respectively [62]. Nevertheless, when i-
propylamine was used, acetone was formed in an 80% yield (Equation (15)). 
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ple, sodium chloride and sodium bromide were used as redox catalysts in a CH3CN-sat-
urated NaCl aqueous (pH 4) solvent mixture using platinum as the working electrode for 
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Keto nitriles are valuable intermediates for various synthetic transformations [64]. This 
reaction was explained by the generation of an azaallenyl intermediate cation, which is 
hydrated to form an α-hydroxyimine. Second oxidation by Cl+ followed by a rearrange-
ment leads to the final keto nitrile (13, Equation (16)) [63]. 
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requirements are based on ruthenium complexes, quinone, ferrocene (Fc), and their de-
rivatives, either homogeneously dispersed in the solution or immobilised in a monolayer 
or multilayer configuration onto the electrode surface [17,18,58–61]. However, other op-
tions were equally reported. For example, the anodic oxidation of primary amines at 
nickel hydroxide electrodes in alkaline solutions forms nickel oxide hydroxide at a poten-
tial of 0.39 V vs. SCE, which reacts with propylamine and butylamine, forming propi-
onitrile (84% yield) and butyronitrile (85% yield), respectively [62]. Nevertheless, when i-
propylamine was used, acetone was formed in an 80% yield (Equation (15)). 
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Chloride, bromide, and iodide have been used as redox catalysts (Table 3). For exam-
ple, sodium chloride and sodium bromide were used as redox catalysts in a CH3CN-sat-
urated NaCl aqueous (pH 4) solvent mixture using platinum as the working electrode for 
the electrochemical oxidation of cyclic aziridines to form keto nitriles in an 80% yield [63]. 
Keto nitriles are valuable intermediates for various synthetic transformations [64]. This 
reaction was explained by the generation of an azaallenyl intermediate cation, which is 
hydrated to form an α-hydroxyimine. Second oxidation by Cl+ followed by a rearrange-
ment leads to the final keto nitrile (13, Equation (16)) [63]. 
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or multilayer configuration onto the electrode surface [17,18,58–61]. However, other op-
tions were equally reported. For example, the anodic oxidation of primary amines at 
nickel hydroxide electrodes in alkaline solutions forms nickel oxide hydroxide at a poten-
tial of 0.39 V vs. SCE, which reacts with propylamine and butylamine, forming propi-
onitrile (84% yield) and butyronitrile (85% yield), respectively [62]. Nevertheless, when i-
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reaction was explained by the generation of an azaallenyl intermediate cation, which is 
hydrated to form an α-hydroxyimine. Second oxidation by Cl+ followed by a rearrange-
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The previously postulated aziridine oxidation mechanism (Equations (13) and (14)) 
was also reported using different catalysts. For example, the acid-catalysed oxidation of 
N-benzylaziridine in methanol was reported to form 1,4,7,10-tetraphenyl-1,4,7,10-
tetraazacyclododecane in 60% yield [72,73]. The same reaction catalysed by tris(4-bromo-
phenyl)amine was also reported [4]. However, 1,4-dibenzylpiperazine was described as 
the product when the reaction was catalysed by iron porphyrin in a 5:1 CH3CN/H2O de-
aerated solvent system [74]. 

The two-electron oxidation of (3-amino-2,4-dihydroxyphenyl)(phenyl)methanone 
(14) to the corresponding benzoquinoneimine in the presence of different amines was 
studied in methanol containing either LiClO4, [Et4N][PF6], or [Et4N]ClO4 as the supporting 
electrolyte and using platinum as the working electrode (Equation (17)) [59,75]. The oxi-
dation peak of the catalyst was observed at a potential of 0 V vs. SCE under these condi-
tions.  

 

(17)

The amine transfers one electron per molecule to the benzoquinoneimine to regener-
ate the catalyst and afford the imine dimeric product. It was reported that only primary 
alkyl amines react with this mediator, with linear alkyl groups more reactive than 
branched ones, such as cyclohexyl or t-butyl groups. Meanwhile, phenylethylamine deac-
tivates the catalyst following the reaction shown in Equation (18). It involves the reaction 
of the enamine form of the product (see Equation (5)) with the benzoquinoneimine form 
of the mediator following a Diels–Alder-type mechanism. The product 15 is unstable. 
Nevertheless, its two-electron oxidation product was isolated in a 65% yield [59]. 
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the catalyst and afford the imine dimeric product. It was reported that only primary alkyl
amines react with this mediator, with linear alkyl groups more reactive than branched ones,
such as cyclohexyl or t-butyl groups. Meanwhile, phenylethylamine deactivates the catalyst
following the reaction shown in Equation (18). It involves the reaction of the enamine
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two-electron oxidation product was isolated in a 65% yield [59].
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triphenylamines depends on the electron-donative or electron-withdrawing nature of
the p-substituent, covering the potential range of 0.6 to 1.8 V vs. SCE [25,76–78]. For
example, the electrochemical oxidation of N-ethyl-S-(2-nitrophenyl)thiohydroxylamine
was performed at 0.69 V vs. SCE in dichloromethane containing 0.1 M [Bu4N][ClO4] as the
supporting electrolyte in the presence of N1,N1,N4,N4-tetrakis(4-bromophenyl)benzene-
1,4-diamine as the catalyst (Equation (19)) [79]. The respective sulfenimine product was
isolated in a 72% yield. Similarly, the electrochemical oxidation of benzylamine was
performed at 0.99 V vs. SCE in acetonitrile containing 0.1 M [Bu4N][BF4] as the supporting
electrolyte in the presence of tris(4-bromophenyl)amine as the catalyst (Equation (20)).
Under these conditions, the respective iminium product was identified. Nevertheless,
when the reaction was performed in a 50:50 dichloromethane:methanol solvent mixture,
N-benzyl-1-phenylmethanimine was isolated in a 78% yield [80].
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Pentaammineaquaruthenium(II) trifluoroacetate was used to catalyse the formation of
amide functional groups from nitrile [81,82]. The reaction starts with the nitrile substituting
the aqua ligand in the ruthenium complex (Equation (21)). Oxidation of this ruthenium(II)
complex to ruthenium(III) permits the hydrolysis of nitrile to the amide. The reduction of
this complex ensures the formation of the amide in a 70% yield and the recovery of the
catalyst (Equation (22)) [82].
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When a primary amine is used instead of a nitrile, the oxidation reaction forms the
imine product or even the nitrile. For example, in the case of benzylamine, the final product
was benzonitrile, with an 85% yield [82].

The oxidation of Fc to the corresponding ferrocenium cation, in the presence of different
cyclohexylamines and n-alkylamines, was also studied in acetonitrile and dichloromethane
containing 0.1 M [Bu4N][PF6] as the supporting electrolyte [17,18]. The reaction follows the
mechanism described in Equations (1)–(7), obtaining the dealkylated amine as the main
product (see above).

2.2. Examples of Applications

The electrochemical oxidation of cardiovascular-active kopsingine alkaloid in a
CH2Cl2/CH3CN solvent system and in the presence of the non-nucleophilic base 2,6-
lutidine results in an intramolecular cyclisation, generated by the attack of a hydroxy group
to the electrochemically generated iminium ion, forming kopsidine A in 72% yield (Table 2,
entry 20) [41,42].

Catharanthus alkaloids are valuable reagents for treating several cancers [83,84]. The
electrochemical oxidation of the catharanthus roseus alkaloids catharanthine produces the
iminium ion, which fragmented to give the highly cytostatic anhydrovinblastine. In the pres-
ence of methanol, the methoxy group is introduced in C16, making 16-methoxycleavamine
in a 95% yield [85].

The 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) catalyst was used in the electro-
chemical N-demethylation of opiates resulting in noropiates, a critical intermediate in
the opiate medicine partial chemical synthesis with a good yield of up to 83% [86]. This
N-demethylation process follows through the anodic oxidation of TEMPO, resulting in
an oxoammonium species, which then oxidises opiate to an iminium cation. Finally, this
intermediate hydrolyses to yield noropiate.

The microsomal cytochrome P-450 monooxygenase system catalyses the dealkylation
of secondary and tertiary amines and amides via an oxidation pathway. Therefore, the
product of the enzymatic processes was compared with those discussed above to gain
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insight into the cytochrome P-450 catalysed N-dealkylation [87]. An agreement on the
selectivity of dealkylation between microsomal and anodic dealkylations was observed [87].

Our group used the ferrocene-mediated oxidation of alkylamines to construct a selec-
tive and sensitive electrochemical biosensor to detect DNA hybridisation by employing
the electrocatalytic activity of Fc-bearing Zn-cyclen complexes [60]. A sandwich-type
approach was created, which involves hybridising a target probe with the immobilised
thiolated capture probe attached to a gold electrode. Electrochemical signals are generated
by voltammetric interrogation of Fc complexes that selectively and quantitatively bind to
the duplex layers through strong chelation between the Zn-cyclen complexes and thymine
bases within the DNA sequence. Coupling the redox chemistry of the surface-bound Fc-
bearing Zn-cyclen complex and dimethylamine provides an electrocatalytic pathway that
increases the sensitivity of the assay and allows the target DNA sequence to be detected at
a 100 fM concentration level [60].

The selective electrochemical oxidation of tropane alkaloids to their nortropane deriva-
tives using GC as the working electrode in a 2:1 ethanol:water or 2:1 methanol:water solvent
system (0.1 M NaClO4) was described [40]. These oxidation products are important inter-
mediates in the production of anticholinergics ipratropium and oxitropium bromide drugs.
The reaction proceeds at room temperature following a mechanism similar to that described
above to form the iminium intermediate (see Equations (1)–(5)), which reacts in the presence
of water to form the respective nortropane (16) and formaldehyde (Equation (23)). When
the oxidation reaction was performed in the presence of cyanide or 16 as nucleophiles, the
respective addition reactions were observed (Table 2, entry 19 and Equation (24)) [7,40,88].
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2.3. Alkanolamines, Amides, Carbamates and Lactams

The term alkanolamines describes molecules that simultaneously contain amino and
hydroxyl functional groups. The oxidation of these molecules in alkaline or neutral aqueous
systems undergoes the previously mentioned dealkylation mechanism. For example, the ox-
idation of 2-(dimethylamino)-1-phenylethan-1-ol (17) yields benzaldehyde and the respec-
tive radical (Equation (25)), which disproportionate or loses a second electron to form an
iminium intermediate (Equation (26)). The formation of formaldehyde and dimethylamine
is observed after the interaction of this reactive intermediate with water molecules [89].
The electrochemical oxidation of ephedrine (2-(methylamino)-1-phenylpropan-1-ol) was
evaluated using GCE as the working electrode in a pH 10 aqueous solution. The oxidation
products benzaldehyde, acetaldehyde, and N-methylamine were obtained in yields of
65%, 68%, and 87%, respectively [90]. A similar mechanism and product distribution were
observed for related alkanolamines, confirming the proposed mechanism [79,91,92].
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The electrochemical oxidation of 2,2′-(benzylazanediyl)bis(ethan-1-ol) was studied in
alkaline methanol using a platinum working electrode. The major electrolysis products
were 2-(2-phenyloxazolidin-3-yl)ethan-1-ol and 3-benzyloxazolidine in a 25% and 45% yield,
respectively (Table 2, entry 2) [37]. Similarly, the anodic oxidation of 2-(benzyl(methyl)amino)-
ethan-1-ol under the same conditions leads to the formation of a mixture of 3-methyl-2-
phenyl-oxazolidine and 3-benzyloxazolidine (Table 2, entry 3) [37].

The anodic oxidation of amides and carbamates is of considerable value from a synthetic
point of view due to the stability of the intermediates [7]. Examples of synthetic applications
can be observed in the alkaloids, enantiopure amino acids, chiral α-hydroxyl amide metabo-
lites, and peptidomimetics areas [7,43,44,46–52,88,93–109]. The reaction proceeds via the initial
one-electron oxidation of the nitrogen atom to the respective radical cation, which follows a
similar pathway to that described before (Equations (1)–(5)) to produce the respective iminium
intermediate (18, Equation (27)) [11,12]. The subsequent reactions of the iminium cations with
nucleophiles (Equation (28)) have been extensively reported as amidoalkylation (examples in
Table 2, entries 22–33). Typical nucleophiles include hydroxyl, enamines, isocyanides, enol
esters, electron-rich olefins and aromatics, enol ethers, trimethylsilyl cyanide, vinyl and allyl
silanes, and trialkylphosphites [44,46–52,93–108,110,111]. Meanwhile, as the iminium is in
equilibrium with its enamine form (Equation (5)), this last intermediate can react with
electrophilic groups (Equation (29)). Typical electrophiles include acyl chlorides and alkyl
halides [112–117].
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dibutyltetrahydrofuran-2-amine was formed in 30% yields [122]. 
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The conversion of an α-aminomalonic half-ester or an N-acylated amino acid via
the Hofer–Moest reaction also allows the formation of 18 (Equation (30)). The reaction
mechanism is similar to that shown above for alkanolamines (Equations (25) and (26)) and
comprises an electrolytic decarboxylation reaction in neutral or alkaline solutions [118].
Because of the similarity in the mechanism with alkanolamines, the electrochemical oxi-
dation of N-acylated β-amino alcohols will also generate the same N-acyliminium ion 18
(Equation (31)).
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Secondary amide anions can be oxidised at potentials about 1 V more cathodic to the
related amine (Table 1). The electrochemical irreversible one-electron oxidation produces
the aminyl radical, which dimerises to make the respective hydrazine (Equation (32)). A
similar result was obtained when secondary amines were electrochemically oxidised in
an alkaline media [119–121]. Furthermore, it was observed that the reaction is effective
if the intramolecular coupling occurs, producing cyclic hydrazines [119,120]. When di-
n-butylamide is electrochemically oxidised in THF in the presence of di-n-butylamine,
N,N-dibutyltetrahydrofuran-2-amine was formed in 30% yields [122].
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The electrochemical oxidation of lactams follows the same mechanism postulated for
amides. Nevertheless, the oxidation position depends on the lactam ring size, structure
of the N-alkyl substituent and electrolysis conditions. In the case of five- and six-member
N-alkyl lactam rings, the oxidation and nucleophilic addition occur selectively at the lactam
α-carbon to nitrogen (Table 2, entries 25, 26). Meanwhile, seven-member lactam rings
show the reaction at the N-alkyl α-carbon [123–126]. Methoxylation at both positions
was observed after the anodic oxidation of N-alkyl-β-lactam and N-benzyl-β-lactams in
methanol using a platinum working electrode [45,127].

The anodic oxidation of 4-carboxy-2-azetidinone (19) in acetonitrile follows the decar-
boxylation mechanism described in Equation (30), which in the presence of sodium acetate
produces 4-acetoxy-2-azetidinones (20) in 76% yield (Equation (33)) [128].
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3. Aniline and Derivatives

The electrochemical anodic oxidation of aromatic amines has been studied extensively.
The prime focus of all those investigations was to establish the oxidation mechanism
under multiple electrolysis setups due to their wide variety of applications in synthetic and
polymer chemistry and pharmaceutical and dye industries. In the literature, several reviews
of the electrochemical oxidation of aromatic amines are available [4,7,129]. Hence, the
anodic oxidation mechanism of aniline and its derivatives, which are not comprehensively
discussed in the available literature, is addressed in this work.
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The electrochemical potential at which aniline derivatives oxidise depends on the
nature of the substituents present both at the nitrogen and the aromatic ring. Electron-
withdrawing substituents shift the oxidation redox potential towards more positive values,
while the electron-donating substituents change the oxidation potential in the opposite
direction (Table 1). Nevertheless, a common feature in all cases is that the anodic oxi-
dation of aniline and its derivatives starts with the nitrogen loss of one electron to yield
the radical cation 21 (Equation (34)). After this point, the oxidation mechanism depends
on the substitution level at the nitrogen atom and the basicity of the reaction media. For
N,N-disubstituted anilines under basic conditions, the oxidation mechanism is similar to
that previously described for aliphatic amines with the formation of the respective iminium
product 23 (Equation (34)). However, nitrogen deprotonation reaction is predominantly
observed in mono- or no N-substituted anilines, producing the respective radical interme-
diate 24. Alternatively, the subsequent oxidation produces 22, which may deprotonate to
generate the respective nitrenium cation (Equation (34)) [130].

Writing the resonance structures for 24 may help to understand all the reaction path-
ways discussed below. Based on this resonance, it is possible to see that the radical may
reside on the nitrogen atom or delocalised at the ortho (25) and para (26) positions in the
aromatic ring (Equation (35)).
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Therefore, it is evident that a diverse range of products can be formed, where two
radical cations, two radicals, a radical cation and a radical, or a cation and a starting
molecule can couple together via the formation of a new C-C, C-N, or N-N bond [131]. For
example, the following general reactions can be postulated [132]:

(i). Two resonance structures 26 can react through a tail-to-tail coupling to form dimer 27
(Equation (36)).

(ii). The nitrenium cation can react with starting molecule through a head-to-tail coupling to
form dimer 28. The same outcome is obtained by reacting 24 with 26 (Equation (37)).

(iii). Two resonance structures 24 can react via a head-to-head coupling to form dimer 30
(Equation (38)).

In the case of N,N-disubstituted anilines under basic conditions, iminium product 23
can react with nucleophiles present in the solution to produce the respective addition (or
an α-substitution if we consider the starting molecule) products (Equation (39)).
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3.1. Aniline and Para-Substituted Anilines

The electrochemical anodic oxidation of aniline may follow the different mechanisms
outlined in Equations (36)–(38). The major product obtained depends on the aqueous or
nonaqueous, acidic, basic, or neutral pH media conditions. Acidic conditions, which are
usually used to facilitate the dissolution in aqueous media of otherwise insoluble aniline
derivatives, may require the addition to the reaction mechanism of an initial deproto-
nation homogeneous chemical reaction before the first electron transfer, which most of
the time is not taken into consideration when reporting the oxidation mechanisms under
these conditions.

The three different anodic oxidation products of aniline are as follows. When there is
no para substituent (or X=H), the intermediate 26 can undergo tail-to-tail coupling with itself
or head-to-tail coupling with 24 in an acidic aqueous medium, producing benzidine (27) in
a small yield and p-aminodiphenylamine (28), respectively (Equations (36) and (37)), both
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of which can be reversibly oxidised via a two-electron and two-proton process [133]. The
head-to-head dimerisation reaction to form hydrazobenzene 30 was reported both in acidic
and basic reaction conditions [23,134]. In the case of 28, the oxidation product may undergo
slow acid-catalysed hydrolysis to produce p-benzoquinone and the parent amine, in this
case, aniline (Equation (40)). The anodic oxidation of aniline in a nonaqueous medium (e.g.,
acetonitrile) generates 28 as the main product, which is stable under these conditions due
to the non-availability of protons to catalyse the previously mentioned hydrolysis.
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When there is a substituent at para position (X = OCH3, OC2H5, Cl, CH3, COOH,
NO2), intermediate 24 undergoes a head-to-head coupling predominantly to produce
hydrazobenzene 30 derivatives [133].

When aniline and its derivatives are oxidised using an acetonitrile/pyridine solvent
system, azobenzene 31 is produced in 39% yield, with 30 appearing as a by-product [23].
The head-to-head coupling of radical cations in the presence of pyridine can be explained
using Equations (34) and (38), where the radical cation 21 reacts with pyridine in a Bronsted–
Lowry acid–base reaction producing 24 (in this case, R1 = R2 = H), which undergoes
head-to-head coupling to yield 30 (Equation (38)). A simple explanation for the gener-
ation of 29 could be the head-to-tail coupling of the neutral radical and the subsequent
two-electron and two-proton oxidation process. Pyridine plays the crucial role of proton
acceptor in this reaction. For example, electrochemical oxidation of p-nitroaniline and
p-chloroaniline in acetonitrile/pyridine produced 4,4′-dinitroazobenzene (39.2% yield)
and 4,4′-dichloroazobenzene (24.3% yield), respectively [23]. The anodic oxidation of 2,4-
dinitroaniline produced 2,2′,4,4′-tetranitroazobenzene in a 38% and 31% yield when a 3:5
water:acetonitrile and 1:3 water:DMF solvent mixtures were used, respectively [135]. Ani-
line was oxidised in 1M KOH, forming hydrazobenzene, which produced 31 (Equation (38))
in a 30% yield after further oxidation [136].

3.2. N-Substituted Anilines

After the first oxidative electron transfer step, the mono N-alkyl or N-aryl substituted
anilines show a relatively more stable radial cation due to the stabilisation effect of its
electron-donating substituents. There are four possible ways this radical cation under-
goes subsequent reactions depending on the reaction conditions. The first three pathways
are identical to those explained for aniline (Equations (36)–(38)). The fourth one is in
the presence of nucleophiles following the nucleophilic substitution at the α-carbon to
the nitrogen through an iminium ion intermediate (Equation (39)). For example, if the
electrolysis reaction is performed under high current density conditions (e.g., 4 mA cm2),
the high concentration of radical cations produced and the lower concentration of par-
ent molecules remaining at the electrode surface leads to a tail-to-tail coupling product.
However, when the reactions are performed under strongly basic conditions and at lower
current densities (e.g., ≤0.8 mA cm2), the higher concentration of parent molecules at the
electrode surface favours the head-to-tail coupling product formation, which in this case
may undergo oxidation and hydrolysis to yield p-benzoquinone and starting amine [7].
Moreover, the bulkiness of the N-alkyl group plays a crucial role in product formation. For
example, in acidic conditions, electrolysis of N-methylaniline at a high current density pro-
duces p-benzoquinone (50%) and N,N′-dimethylbenzidine (50%); N-ethylaniline produces
p-benzoquinone (40%) and N,N′-diethylbenzidine (60%); N-t-butylaniline in acetonitrile at
a high current density yields N,N′-di-t-butylbenzidine (100%) [133].

The oxidation of diphenylamine in acetonitrile using platinum electrodes generates
the electroactive N,N′-diphenylbenzidine product [137]. The same type of coupling can
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be observed even when the oxidation of diphenylamine is carried out under weakly basic
conditions [138]. Nevertheless, under weakly basic conditions, if a methoxy group is
present in the para position, as in the case of dianisylamine, 2,7-dimethoxy-9,10-dianisyl-
9,10-dihydrophenazine is formed as the main product [138].

N-alkyl substituted anilines also undergo nucleophilic substitution at the α-carbon to
the nitrogen (Equation (39)) in the presence of nucleophiles such as enol ethers [139]. For
example, when N-methylaniline is oxidised under constant current in methanol containing
LiClO4 as the supporting electrolyte and in the presence of 2,3-dihydrofuran, the tetrahy-
droquinoline 32 (12%) and the acetal 33 (6.3% trans-isomer and 5% cis-isomer) derivatives
were obtained (Equation (41)) [139].
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The anodic oxidation of diphenylamine and its derivatives, o-methoxydiphenylamine,
o-methyldiphenylamine, and m-methyldiphenylamine in methanol containing sodium
cyanide as the supporting electrolyte and the source of nucleophile was performed, result-
ing in the formation of the respective cyanodiphenylamines in relatively good yield [140].
For example, the cyanation of diphenylamine happened at the para position of both phenyl
rings to produce bis(4-cyanophenyl)amine in a 61% yield (Equation (42)). However, in the
case of o-methoxydiphenylamine, o-methyldiphenylamine, and m-methyldiphenylamine,
the nucleophilic aromatic substitution happened only at the para position of the substituted
phenyl ring in a 40–50% yield.
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3.3. N,N-Disubstituted Anilines

The N,N-dialkylanilines and N,N-diarylanilines undergo a similar oxidation mecha-
nism as discussed earlier for N-substituted anilines. For example, in the absence of para
substituent, the tail-to-tail coupling producing derivatives of 27 was observed. The re-
sulting dimer is more easily oxidised than the starting material, generating the respective
quinoidal diimino cation [131].

The anodic oxidation of N,N-dimethylaniline derivatives has been extensively studied
in different reaction media and it was found that the primary product formed through
tail-to-tail coupling is N,N,N′,N′-tetramethylbenzidiene [24,141–144]. However, if the
electrochemical oxidation of N,N-dimethylaniline is performed in the presence of phenoth-
iazine, a para-selective head-to-tail coupling happens with the formation of N,N,N′,N′-
tetramethylbenzidiene as a secondary product (Equation (43)) [145]. Similarly, anodic
oxidation of 8-aminoquinolines and para-substituted N,N-dimethylaniline in the presence
of sodium sulfinates generates radical–radical cross-coupling, resulting in the formation of
sulfones with a new C-S bond [146,147].
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The oxidation of N,N-diphenylaniline in acetonitrile undertakes tail-to-tail coupling
to yield tetraphenyl benzidine, and this dimer undergoes further oxidation, resulting in a
quinoidal dication [25]. On the other hand, the oxidation of N,N-dimethyl-p-anisidine in ace-
tonitrile containing traces of water results in the formation of 4-dimethylaminophenol [148].
The anodic oxidation of 4-dimethylaminophenol in aqueous media produces N,N-dimethy-
lbenzoquinoneimine, which undergoes further hydrolysis to yield benzoquinone and
dimethylamine in a reaction similar to that described in Equation (40) [149]. The oxidation
of N,N-dimethyl-p-toluidine in acetonitrile leads to the tail-to-tail dimerisation product
4,4′-(ethane-1,2-diyl)bis(N,N-dimethylaniline) [148,150,151].

N,N-dialkylanilines can undergo nucleophilic substitution in α-position to nitro-
gen. For example, the anodic oxidation of N,N-dimethylaniline in methanol under basic
conditions yields two products, α-methoxy-N-N-dimethylaniline and α-α′-dimethoxy-N-
N-dimethylaniline in a ratio of 6:1 [37,152]. However, the methoxylation of N-ethyl-N-
methylaniline predominately occurs at the methyl group, resulting in a highly regiose-
lective reaction (Equation (44)) [153]. Similarly, the oxidation of N-ethyl-N-methylaniline
in acetonitrile containing tetraethylammonium cyanide as the supporting electrolyte and
the nucleophile source produced cyanation preferentially at the methyl position (64%
yield) with the formation of 2-(methyl(phenyl)amino)propanenitrile by-product in a 34%
yield [154].
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3.4. Aminophenols and N-Acylated Anilines

Like other anilines, the aminophenol radical cation formed after the initial elec-
tron transfer may undergo dimerisation reactions, resulting in a new N-N, C-C, or C-
N bond depending on the reaction condition. These dimerisation pathways can be ex-
plained using Equations (36)–(38). For example, the anodic two-electron oxidation of
p-aminophenol to quinoneimine is a well-documented reaction, which may undergo hy-
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drolysis in acidic media, resulting in the formation of the respective p-benzoquinone
(Equation (46)) [156,157]. The oxidation of o-aminophenol in basic or neutral media pro-
duces a dimer formed through N-N coupling of o-aminophenol cation radicals similar
to that reported in Equation (38) [158]. However, if the same reaction was performed
in acidic solutions, the C-N coupling of o-aminophenol results in the formation of 2-
aminophenoxazin-3-one [158].

Molecules 2023, 28, x FOR PEER REVIEW 23 of 31 
 

 

[156,157]. The oxidation of o-aminophenol in basic or neutral media produces a dimer 
formed through N-N coupling of o-aminophenol cation radicals similar to that reported 
in Equation (38) [158]. However, if the same reaction was performed in acidic solutions, 
the C-N coupling of o-aminophenol results in the formation of 2-aminophenoxazin-3-one 
[158]. 

 

(46)

When the anodic oxidation of o- or p-aminophenol derivatives results in a stable qui-
noneimine intermediate, they can then react with nucleophiles present in the solution. For 
example, the anodic oxidation of 1-(4-(4-hydroxyphenyl)piperazin-1-yl)ethan-1-one, 36, 
in a phosphate buffer/acetonitrile solvent mixture undergoes a two-electron and one pro-
ton transfer process to yield the respective quinoneimine, 37, which, in the presence of 2-
mercaptobenzothiazole, produces the mono-thiolated product 38 (Equation (47)) [159]. 
This product can undergo a second two-electron oxidation process and add a second 2-
mercaptobenzothiazole molecule to the remaining ortho position to the OH-group, gener-
ating the respective di-thiolated product in a 93% yield. 

 

(47)

The anodic oxidation of N-acylated aniline derivatives can yield various products 
depending on the nature of the reactants and reaction conditions. The reaction proceeds, 
as discussed in Equation (34), with the formation of the radical 24. Then, the radicals di-
merise to create a new N-N or C-C bond. For example, the anodic oxidation of substituted 
anilides at graphite electrodes in acetonitrile containing potassium acetate and acetic acid 
produced N,N-diarylhydrazine derivatives, 39, in a ca. 63% yield (Equation (48)) [160]. 
Meanwhile, when the reaction is performed at a glassy carbon electrode in methanol con-
taining tributylmethylammonium methylsulfate as the supporting electrolyte and 
1,1,1,3,3,3-hexafluoro-2-propanol (HFP) as a stabiliser, the C-C coupling product 40 is ob-
tained in a 51% yield (Equation (49)) [161–163]. It was postulated that HFP may help to 
prolong the amidyl radical intermediate lifetime. Alternatively, the HFP alkoxide gener-
ated in situ at the cathode electrode may help during the initial electron-transfer process 
[161–163]. 

(46)

When the anodic oxidation of o- or p-aminophenol derivatives results in a stable
quinoneimine intermediate, they can then react with nucleophiles present in the solution.
For example, the anodic oxidation of 1-(4-(4-hydroxyphenyl)piperazin-1-yl)ethan-1-one,
36, in a phosphate buffer/acetonitrile solvent mixture undergoes a two-electron and one
proton transfer process to yield the respective quinoneimine, 37, which, in the presence of
2-mercaptobenzothiazole, produces the mono-thiolated product 38 (Equation (47)) [159].
This product can undergo a second two-electron oxidation process and add a second
2-mercaptobenzothiazole molecule to the remaining ortho position to the OH-group, gener-
ating the respective di-thiolated product in a 93% yield.
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The anodic oxidation of N-acylated aniline derivatives can yield various products
depending on the nature of the reactants and reaction conditions. The reaction proceeds, as
discussed in Equation (34), with the formation of the radical 24. Then, the radicals dimerise
to create a new N-N or C-C bond. For example, the anodic oxidation of substituted
anilides at graphite electrodes in acetonitrile containing potassium acetate and acetic acid
produced N,N-diarylhydrazine derivatives, 39, in a ca. 63% yield (Equation (48)) [160].
Meanwhile, when the reaction is performed at a glassy carbon electrode in methanol
containing tributylmethylammonium methylsulfate as the supporting electrolyte and
1,1,1,3,3,3-hexafluoro-2-propanol (HFP) as a stabiliser, the C-C coupling product 40 is
obtained in a 51% yield (Equation (49)) [161–163]. It was postulated that HFP may help
to prolong the amidyl radical intermediate lifetime. Alternatively, the HFP alkoxide
generated in situ at the cathode electrode may help during the initial electron-transfer
process [161–163].
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Like o- or p-aminophenol derivatives, quinoneimine intermediates also are produced upon
the oxidation of amino-protected o- or p-aminophenol derivatives. These quinoneimine interme-
diates are valuable electrophiles to perform different organic reactions. N-(4-hydroxyphenyl)-
4-methylbenzenesulfonamide can be electrochemically oxidised at a graphite electrode in
acetate buffer/acetonitrile solvent mixture to produce 41 via a two-electron two-proton
process (Equation (50)) [164]. This quinoneimine can react with sodium benzenesulfinate to
produce N-[4-hydroxy-5-(phenylsulfonyl)phenyl]benzenesulfonamide, 42, in a 55% yield.
The presence of the amino-protecting group increases the regioselectivity of the reaction,
happening exclusively at the ortho-position to the -OH group [164].
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3.5. Catalysed Oxidation of Aniline and Its Derivatives

The electrocatalytic oxidation of N,N-dialkylaniline in acetonitrile containing water, lu-
tidine (as the base), NaClO4 as the supporting electrolyte, and TEMPO as the catalyst was re-
ported to produce N-alkylformanilide and N-alkylaniline as a secondary product [165,166].
The electrochemically generated oxoammonium cation (43, Equation (51)) reacts with
N,N-dialkylaniline, generating the iminium derivative 44 (Equation (52)). As previously
mentioned, the iminium can hydrolyse in the presence of water, resulting in the formation
of N-alkylaniline, 45 via an amino alcohol intermediate. Alternatively, it can be further
oxidised for a second mol of 43 to form N-alkylformanilide derivative, 46 (Equation (53)),
in a 75–92% yield, depending on the nature of the R group [165].
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and the experimental conditions. Meanwhile, if the formation of an iminium in equilib-
rium with its enamine form is possible, then this last intermediate can react with electro-
philic groups, facilitating β-substitutions. 
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4. Conclusions

Over the past few decades, electrochemical anodic oxidation of amines has achieved
remarkable advancement and shown great promise as a tool for organic transformations.
The idea of creating radical precursors through electrode-initiated electron transfer pro-
vides a greener choice than conventional chemical reagents and can offer the possibility
of using solvents in a sustainable form. In this work, we discussed the electrochemical
oxidation mechanism of aliphatic amines, amides, aniline and aniline derivatives, carba-
mates, and lactams, either directly oxidised at different electrode surfaces or indirectly
oxidised by a reversible redox molecule, in which the reactive form was generated in situ.
A common feature in the oxidation mechanism of these amines is that the reaction starts
with the nitrogen loss of one electron to yield a radical cation, which is stabilised by a
following deprotonation step. This means that hydrogen at the α-carbon to the amine,
directly connected to the amine, or at the aromatic ring becomes acidic in this process, facil-
itating α-substitution, radical–radical dimerisation, or nucleophilic aromatic substitution
reaction, depending on the substituents present on the amine molecule under study and
the experimental conditions. Meanwhile, if the formation of an iminium in equilibrium
with its enamine form is possible, then this last intermediate can react with electrophilic
groups, facilitating β-substitutions.

This work could help readers understand the comparative similarities and differences
in the anodic oxidation mechanism of different amines.
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